This file is indexed.

/usr/lib/python2.7/dist-packages/pyevolve/GTree.py is in python-pyevolve 0.6~rc1+svn398+dfsg-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
"""

:mod:`GTree` and GTreeGP -- the tree chromosomes
=============================================================

This is the rooted tree representation, this chromosome representation
can carry any data-type.

Default Parameters
-------------------------------------------------------------

*Initializator*

  :func:`Initializators.GTreeInitializatorInteger`

   The Integer Initializator for GTree

*Mutator*
   
   :func:`Mutators.GTreeMutatorIntegerRange`

   The Integer Range mutator for GTree

*Crossover*

   :func:`Crossovers.GTreeCrossoverSinglePointStrict`

   The Strict Single Point crossover for GTree

.. versionadded:: 0.6
   The *GTree* module.

Classes
-------------------------------------------------------------
"""
import random
from GenomeBase import GenomeBase, GTreeBase, GTreeNodeBase
import Consts
import Util

try:
   import pydot
   HAVE_PYDOT = True
except ImportError:
   HAVE_PYDOT = False
   
#################################
#             GTree             # 
#################################


class GTree(GenomeBase, GTreeBase):
   """ The GTree class - The tree chromosome representation

   Inheritance diagram for :class:`GTree.GTree`:

   .. inheritance-diagram:: GTree.GTree

   :param root_node: the root node of the tree
   """
   
   evaluator = None
   """ This is the :term:`evaluation function` slot, you can add
   a function with the *set* method: ::

      genome.evaluator.set(eval_func)
   """

   initializator = None
   """ This is the initialization function of the genome, you
   can change the default initializator using the function slot: ::

      genome.initializator.set(Initializators.G1DListInitializatorAllele)

   In this example, the initializator :func:`Initializators.G1DListInitializatorAllele`
   will be used to create the initial population.
   """

   mutator = None
   """ This is the mutator function slot, you can change the default
   mutator using the slot *set* function: ::

      genome.mutator.set(Mutators.G1DListMutatorSwap)

   """

   crossover = None
   """ This is the reproduction function slot, the crossover. You
   can change the default crossover method using: ::

      genome.crossover.set(Crossovers.G1DListCrossoverUniform)
   """

   def __init__(self, root_node=None):
      GenomeBase.__init__(self)
      GTreeBase.__init__(self, root_node)
      self.initializator.set(Consts.CDefGTreeInit)
      self.mutator.set(Consts.CDefGGTreeMutator)
      self.crossover.set(Consts.CDefGTreeCrossover)

   def __repr__(self):
      """ Return a string representation of Genome """
      ret  = GenomeBase.__repr__(self)
      ret += GTreeBase.__repr__(self)
      return ret

   def copy(self, g):
      """ Copy the contents to the destination g
      
      :param g: the GTree genome destination
      """
      GenomeBase.copy(self, g)
      GTreeBase.copy(self, g)

   def clone(self):
      """ Return a new instance of the genome
      
      :rtype: new GTree instance
      """
      newcopy = GTree()
      self.copy(newcopy)
      newcopy.processNodes(True)
      return newcopy

class GTreeNode(GTreeNodeBase):
   """ The GTreeNode class - The node representation

   Inheritance diagram for :class:`GTree.GTreeNode`:

   .. inheritance-diagram:: GTree.GTreeNode

   :param data: the root node of the tree
   :param parent: the parent node, if root, this
                  must be *None*
   """

   def __init__(self, data, parent=None):
      GTreeNodeBase.__init__(self, parent)
      self.node_data = data

   def __repr__(self):
      str_repr  = GTreeNodeBase.__repr__(self)
      str_repr += " - [%s]" % self.node_data
      return str_repr     

   def setData(self, data):
      """ Sets the data of the node

      :param data: the data of the node
      """
      self.node_data = data

   def getData(self):
      """ Return the data of the node

      :rtype: the data of the node
      """
      return self.node_data

   def newNode(self, data):
      """ Created a new child node

      :param data: the data of the new created node
      """
      node = GTreeNode(data, self)
      self.addChild(node)
      return node

   def swapNodeData(self, node):
      """ Swaps the node data with another node
      
      :param node: the node to do the data swap
      """
      tmp_data = self.node_data
      self.setData(node.getData())
      node.setData(tmp_data)

   def copy(self, g):
      """ Copy the contents to the destination g
      
      :param g: the GTreeNode genome destination
      """
      GTreeNodeBase.copy(self, g)
      g.node_data = self.node_data

   def clone(self):
      """ Return a new instance of the genome
      
      :rtype: new GTree instance
      """
      newcopy = GTreeNode(None)
      self.copy(newcopy)
      return newcopy

#################################
#    Tree Utility Functions     # 
#################################


def buildGTreeGrow(depth, value_callback, max_siblings, max_depth):
   """ Random generates a Tree structure using the value_callback
   for data generation and the method "Grow"

   :param depth: the initial depth, zero
   :param value_callback: the function which generates the random
                          values for nodes
   :param max_siblings: the maximum number of sisters of a node
   :param max_depth: the maximum depth of the tree   

   :rtype: the root node of created tree
   """

   random_value = value_callback()
   n = GTreeNode(random_value)

   if depth == max_depth: return n

   for i in xrange(random.randint(0, abs(max_siblings))):
      child = buildGTreeGrow(depth+1, value_callback, max_siblings, max_depth)
      child.setParent(n)
      n.addChild(child)
   return n

def buildGTreeFull(depth, value_callback, max_siblings, max_depth):
   """ Random generates a Tree structure using the value_callback
   for data generation and the method "Full"

   :param depth: the initial depth, zero
   :param value_callback: the function which generates the random
                          values for nodes
   :param max_siblings: the maximum number of sisters of a node
   :param max_depth: the maximum depth of the tree   

   :rtype: the root node of created tree
   """

   random_value = value_callback()
   n = GTreeNode(random_value)

   if depth == max_depth: return n

   if max_siblings < 0: range_val = abs(max_siblings)
   else:                range_val = random.randint(1, abs(max_siblings))
 
   for i in xrange(range_val):
      child = buildGTreeFull(depth+1, value_callback, max_siblings, max_depth)
      child.setParent(n)
      n.addChild(child)
   return n

#################################
#             GTree   GP        # 
#################################

class GTreeNodeGP(GTreeNodeBase):
   """ The GTreeNodeGP Class - The Genetic Programming Node representation
   
   Inheritance diagram for :class:`GTree.GTreeNodeGP`:

   .. inheritance-diagram:: GTree.GTreeNodeGP

   :param data: the node data
   :param type: the node type
   :param parent: the node parent
   
   """
   def __init__(self, data, node_type=0, parent=None):
      GTreeNodeBase.__init__(self, parent)
      self.node_type = node_type
      self.node_data = data

   def __repr__(self):
      str_repr  = GTreeNodeBase.__repr__(self)
      str_repr += " - [%s]" % self.node_data
      return str_repr     

   def compare(self, other):
      """ Compare this node with other 
      
      :param other: the other GTreeNodeGP
      """
      if not isinstance(other, GTreeNodeGP):
         Util.raiseException("The other node used to compare is not a GTreeNodeGP class", TypeError)

      if other.node_type == self.node_type:
         if other.node_data == self.node_data:
            return 0
      return -1

   def setData(self, data):
      """Sets the node internal data
      
      :param data: the internal data
      """
      self.node_data = data

   def getData(self):
      """Gets the node internal data
      
      :rtype: the internal data
      """
      return self.node_data

   def setType(self, node_type):
      """Sets the node type 
      
      :param node_type: the node type is type of Consts.nodeType
      """
      self.node_type = node_type

   def getType(self):
      """Get the node type 
      
      :rtype: the node type is type of Consts.nodeType
      """
      return self.node_type

   def newNode(self, data):
      """Creates a new node and adds this
      node as children of current node

      :param data: the internal node data
      """
      node = GTreeNodeGP(data, self)
      self.addChild(node)
      return node

   def swapNodeData(self, node):
      """Swaps the node data and type with another node

      :param node: the node
      """
      tmp_data = self.node_data
      tmp_type = self.node_type
      self.setData(node.getData())
      self.setType(node.getType())
      node.setData(tmp_data)
      node.setType(tmp_type)

   def copy(self, g):
      """ Copy the contents to the destination g
      
      :param g: the GTreeNodeGP genome destination
      """
      GTreeNodeBase.copy(self, g)
      g.node_data = self.node_data
      g.node_type = self.node_type

   def clone(self):
      """ Return a new copy of the node

      :rtype: the new GTreeNodeGP instance
      """
      newcopy = GTreeNodeGP(None)
      self.copy(newcopy)
      return newcopy

class GTreeGP(GenomeBase, GTreeBase):
   """ The GTreeGP Class - The Genetic Programming Tree representation
   
   Inheritance diagram for :class:`GTree.GTreeGP`:

   .. inheritance-diagram:: GTree.GTreeGP

   :param root_node: the Root node of the GP Tree
   """
   def __init__(self, root_node=None, cloning=False):
      GenomeBase.__init__(self)
      GTreeBase.__init__(self, root_node)
      if not cloning:
         self.initializator.set(Consts.CDefGTreeGPInit)
         self.mutator.set(Consts.CDefGGTreeGPMutator)
         self.crossover.set(Consts.CDefGTreeGPCrossover)

   def __repr__(self):
      """ Return a string representation of Genome """
      ret  = GenomeBase.__repr__(self)
      ret += GTreeBase.__repr__(self)
      ret += "\n- GTreeGP\n"      
      ret += "\tExpression: %s\n" % self.getPreOrderExpression()
      return ret

   def writeDotImage(self, filename):
      """ Writes a image representation of the individual

      :param filename: the output file image
      """
      if not HAVE_PYDOT:
         Util.raiseException("You must install Pydot to use this feature !")

      graph = pydot.Dot()
      self.writeDotGraph(graph)
      graph.write_jpeg(filename, prog='dot')

   def writeDotRaw(self, filename):
      """ Writes the raw dot file (text-file used by dot/neato) with the
      representation of the individual

      :param filename: the output file, ex: individual.dot
      """
      if not HAVE_PYDOT:
         Util.raiseException("You must install Pydot to use this feature !")

      graph = pydot.Dot(graph_type="digraph")
      self.writeDotGraph(graph)
      graph.write(filename, prog='dot', format="raw")

   def writeDotGraph(self, graph, startNode=0):
      """ Write a graph to the pydot Graph instance
      
      :param graph: the pydot Graph instance
      :param startNode: used to plot more than one individual 
      """
      if not HAVE_PYDOT:
         print "You must install Pydot to use this feature !"
         return

      count = startNode
      node_stack = []
      nodes_dict = {}
      tmp = None
      import __main__ as main_module

      for i in xrange(len(self.nodes_list)):
         newnode = pydot.Node(str(count), style="filled")
         count += 1

         if self.nodes_list[i].getType() == Consts.nodeType["TERMINAL"]:
            newnode.set_color("lightblue2")
         else:
            newnode.set_color("goldenrod2")

         if self.nodes_list[i].getType() == Consts.nodeType["NONTERMINAL"]:
            func = getattr(main_module, self.nodes_list[i].getData())

            if hasattr(func, "shape"):
               newnode.set_shape(func.shape)

            if hasattr(func, "representation"):
               newnode.set_label(func.representation)
            else:
               newnode.set_label(self.nodes_list[i].getData())
            if hasattr(func, "color"): newnode.set_color(func.color)

         else:
            newnode.set_label(self.nodes_list[i].getData())
      
         nodes_dict.update({self.nodes_list[i]: newnode})
         graph.add_node(newnode)

      node_stack.append(self.getRoot())
      while len(node_stack) > 0:
         tmp = node_stack.pop()

         parent = tmp.getParent()
         if parent is not None:
            parent_node = nodes_dict[parent]
            child_node  = nodes_dict[tmp]
           
            newedge = pydot.Edge(parent_node, child_node)
            graph.add_edge(newedge)
   
         rev_childs = tmp.getChilds()[:]
         rev_childs.reverse()
         node_stack.extend(rev_childs)

      return count



   def getSExpression(self, start_node=None):
      """ Returns a tree-formated string (s-expression) of the tree.
      
      :rtype: a S-Expression representing the tree
      """
      str_buff = ""
      if start_node is None:
         start_node = self.getRoot()
         str_buff += "%s " % start_node.getData()

      is_leaf = start_node.isLeaf()
      if not is_leaf:
         str_buff += "( "

      for child_node in start_node.getChilds():
         str_buff += "%s " % child_node.getData()
         str_buff += self.getSExpression(child_node)

      if not is_leaf:
         str_buff += " )"
      return str_buff

   def getPreOrderExpression(self, start_node=None):
      """ Return the pre order expression string of the Tree, used
      to python *eval*.

      :rtype: the expression string
      """
      if start_node is None:
         start_node = self.getRoot()

      str_buff = start_node.getData()

      if not start_node.isLeaf():
         all_childs  = start_node.getChilds()
         str_buff += "(" + self.getPreOrderExpression(all_childs[0])

         for index in xrange(1, len(all_childs)):
            child = all_childs[index]
            str_buff += ", " + self.getPreOrderExpression(child)
         str_buff += ")"
      
      return str_buff

   def getCompiledCode(self):
      """ Get the compiled code for the Tree expression
      After getting the compiled code object, you just need to evaluate it using
      the :func:`eval` native Python method.
      
      :rtype: compiled python code
      """
      expr = self.getPreOrderExpression()
      return compile(expr, "<string>", "eval")

   def copy(self, g):
      """ Copy the contents to the destination g
      
      :param g: the GTreeGP genome destination
      """
      GenomeBase.copy(self, g)
      GTreeBase.copy(self, g)

   def clone(self):
      """ Return a new instance of the genome
      
      :rtype: the new GTreeGP instance
      """
      newcopy = GTreeGP(cloning=True)
      self.copy(newcopy)
      newcopy.processNodes(True)
      return newcopy

   def compare(self, other):
      """ This method will compare the currently tree with another one

      :param other: the other GTreeGP to compare
      """
      if not isinstance(other, GTreeGP):
         Util.raiseException("The other tree used to compare is not a GTreeGP class", TypeError)

      stack_self  = []
      stack_other = []

      tmp_self  = None
      tmp_other = None

      stack_self.append(self.getRoot())
      stack_other.append(other.getRoot())

      while len(stack_self) > 0:

         if (len(stack_self) <= 0) or (len(stack_other) <= 0):
            return -1
         
         tmp_self, tmp_other = stack_self.pop(), stack_other.pop()
         if tmp_self.compare(tmp_other) <> 0:
            return -1

         stack_self.extend(tmp_self.getChilds())
         stack_other.extend(tmp_other.getChilds())
   
      return 0

   @staticmethod
   def writePopulationDot(ga_engine, filename, format="jpeg", start=0, end=0):
      """ Writes to a graphical file using pydot, the population of trees

      Example:
         >>> GTreeGP.writePopulationDot(ga_engine, "pop.jpg", "jpeg", 0, 10)

      This example will draw the first ten individuals of the population into
      the file called "pop.jpg".

      :param ga_engine: the GA Engine
      :param filename: the filename, ie. population.jpg
      :param start: the start index of individuals
      :param end: the end index of individuals
      """
      if not HAVE_PYDOT:
         Util.raiseException("You must install Pydot to use this feature !")

      pop = ga_engine.getPopulation()
      graph = pydot.Dot(graph_type="digraph")

      if not isinstance(pop[0], GTreeGP):
         Util.raiseException("The population must have individuals of the GTreeGP chromosome !")

      n = 0
      end_index = len(pop) if end==0 else end
      for i in xrange(start, end_index):
         ind = pop[i]
         subg = pydot.Cluster("cluster_%d" % i, label="\"Ind. #%d - Score Raw/Fit.: %.4f/%.4f\"" % (i, ind.getRawScore(), ind.getFitnessScore()))
         n = ind.writeDotGraph(subg, n)
         graph.add_subgraph(subg)

      graph.write(filename, prog='dot', format=format)

   @staticmethod
   def writePopulationDotRaw(ga_engine, filename, start=0, end=0):
      """ Writes to a raw dot file using pydot, the population of trees

      Example:
         >>> GTreeGP.writePopulationDotRaw(ga_engine, "pop.dot", 0, 10)

      This example will draw the first ten individuals of the population into
      the file called "pop.dot".

      :param ga_engine: the GA Engine
      :param filename: the filename, ie. population.dot
      :param start: the start index of individuals
      :param end: the end index of individuals
      """
      if not HAVE_PYDOT:
         Util.raiseException("You must install Pydot to use this feature !")

      pop = ga_engine.getPopulation()
      graph = pydot.Dot(graph_type="digraph")

      if not isinstance(pop[0], GTreeGP):
         Util.raiseException("The population must have individuals of the GTreeGP chromosome !")

      n = 0
      end_index = len(pop) if end==0 else end
      for i in xrange(start, end_index):
         ind = pop[i]
         subg = pydot.Cluster("cluster_%d" % i, label="\"Ind. #%d - Score Raw/Fit.: %.4f/%.4f\"" % (i, ind.getRawScore(), ind.getFitnessScore()))
         n = ind.writeDotGraph(subg, n)
         graph.add_subgraph(subg)

      graph.write(filename, prog='dot', format="raw")


#################################
#    Tree GP Utility Functions  # 
#################################

def gpdec(**kwds):
   """ This is a decorator to use with genetic programming non-terminals
   
   It currently accepts the attributes: shape, color and representation.
   """
   def decorate(f):
      for k in kwds:
            setattr(f, k, kwds[k])
      return f
   return decorate

def checkTerminal(terminal):
   """ Do some check on the terminal, to evaluate ephemeral constants

   :param terminal: the terminal string
   """
   if terminal.startswith("ephemeral:"):
      splited = terminal.split(":")
      ephemeral_constant = eval(splited[1])
      return str(ephemeral_constant)
   else:
      return terminal

def buildGTreeGPGrow(ga_engine, depth, max_depth):
   """ Creates a new random GTreeGP root node with subtrees using
   the "Grow" method.
   
   :param ga_engine: the GA Core
   :param depth: the initial depth
   :max_depth: the maximum depth of the tree
   :rtype: the root node
   """

   gp_terminals = ga_engine.getParam("gp_terminals")
   assert gp_terminals is not None

   gp_function_set = ga_engine.getParam("gp_function_set")
   assert gp_function_set is not None

   if depth == max_depth:
      random_terminal = checkTerminal(random.choice(gp_terminals))
      n = GTreeNodeGP(random_terminal, Consts.nodeType["TERMINAL"])
      return n
   else:
      # Do not generate degenerative trees 
      if depth == 0:
         random_node = random.choice(gp_function_set.keys())
      else:
         fchoice = random.choice([gp_function_set.keys(), gp_terminals])
         random_node = random.choice(fchoice)

      if random_node in gp_terminals:
         n = GTreeNodeGP(checkTerminal(random_node), Consts.nodeType["TERMINAL"])
      else:
         n = GTreeNodeGP(random_node, Consts.nodeType["NONTERMINAL"])

   if n.getType() == Consts.nodeType["NONTERMINAL"]:
      for i in xrange(gp_function_set[n.getData()]):
         child = buildGTreeGPGrow(ga_engine, depth+1, max_depth)
         child.setParent(n)
         n.addChild(child)

   return n

def buildGTreeGPFull(ga_engine, depth, max_depth):
   """ Creates a new random GTreeGP root node with subtrees using
   the "Full" method.
   
   :param ga_engine: the GA Core
   :param depth: the initial depth
   :max_depth: the maximum depth of the tree
   :rtype: the root node
   """
   gp_terminals = ga_engine.getParam("gp_terminals")
   assert gp_terminals is not None

   gp_function_set = ga_engine.getParam("gp_function_set")
   assert gp_function_set is not None

   if depth == max_depth:
      random_terminal = checkTerminal(random.choice(gp_terminals))
      n = GTreeNodeGP(random_terminal, Consts.nodeType["TERMINAL"])
      return n
   else:
      random_oper = random.choice(gp_function_set.keys())
      n = GTreeNodeGP(random_oper, Consts.nodeType["NONTERMINAL"])

   if n.getType() == Consts.nodeType["NONTERMINAL"]:
      for i in xrange(gp_function_set[n.getData()]):
         child = buildGTreeGPFull(ga_engine, depth+1, max_depth)
         child.setParent(n)
         n.addChild(child)

   return n