This file is indexed.

/usr/lib/python2.7/dist-packages/pyevolve/Selectors.py is in python-pyevolve 0.6~rc1+svn398+dfsg-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""

:mod:`Selectors` -- selection methods module
==============================================================

This module have the *selection methods*, like roulette wheel, tournament, ranking, etc.

"""

import random
import Consts
import operator

def GRankSelector(population, **args):
   """ The Rank Selector - This selector will pick the best individual of
   the population every time.
   """
   count = 0

   if args["popID"] != GRankSelector.cachePopID:
      if population.sortType == Consts.sortType["scaled"]:
         best_fitness = population.bestFitness().fitness
         for index in xrange(1, len(population.internalPop)):
            if population[index].fitness == best_fitness:
               count += 1
      else:
         best_raw = population.bestRaw().score
         for index in xrange(1, len(population.internalPop)):
            if population[index].score == best_raw:
               count += 1

      GRankSelector.cachePopID = args["popID"]
      GRankSelector.cacheCount = count

   else: count = GRankSelector.cacheCount

   return population[random.randint(0, count)]

GRankSelector.cachePopID = None
GRankSelector.cacheCount = None

def GUniformSelector(population, **args):
   """ The Uniform Selector """
   return population[random.randint(0, len(population)-1)]

def GTournamentSelector(population, **args):
   """ The Tournament Selector
   
   It accepts the *tournamentPool* population parameter.

   .. note::
      the Tournament Selector uses the Roulette Wheel to
      pick individuals for the pool

   .. versionchanged:: 0.6
      Changed the parameter `poolSize` to the `tournamentPool`, now the selector
      gets the pool size from the population.

   """
   choosen = None
   should_minimize = population.minimax == Consts.minimaxType["minimize"]
   minimax_operator = min if should_minimize else max

   poolSize = population.getParam("tournamentPool", Consts.CDefTournamentPoolSize)
   tournament_pool = [GRouletteWheel(population, **args) for i in xrange(poolSize) ] 

   if population.sortType == Consts.sortType["scaled"]:
      choosen = minimax_operator(tournament_pool, key=lambda ind: ind.fitness)
   else:
      choosen = minimax_operator(tournament_pool, key=lambda ind: ind.score)

   return choosen

def GTournamentSelectorAlternative(population, **args):
   """ The alternative Tournament Selector
   
   This Tournament Selector don't uses the Roulette Wheel

   It accepts the *tournamentPool* population parameter.

   .. versionadded: 0.6
      Added the GTournamentAlternative function.

   """
   pool_size = population.getParam("tournamentPool", Consts.CDefTournamentPoolSize)
   len_pop = len(population)
   should_minimize = population.minimax == Consts.minimaxType["minimize"]
   minimax_operator = min if should_minimize else max
   tournament_pool = [population[random.randint(0, len_pop-1)] for i in xrange(pool_size)]
   
   if population.sortType == Consts.sortType["scaled"]:
      choosen = minimax_operator(tournament_pool, key=lambda ind: ind.fitness)
   else:
      choosen = minimax_operator(tournament_pool, key=lambda ind: ind.score)

   return choosen

def GRouletteWheel(population, **args):
   """ The Roulette Wheel selector """
   psum = None
   if args["popID"] != GRouletteWheel.cachePopID:
      GRouletteWheel.cachePopID = args["popID"]
      psum = GRouletteWheel_PrepareWheel(population)
      GRouletteWheel.cacheWheel = psum
   else:
      psum = GRouletteWheel.cacheWheel
  
   cutoff = random.random()
   lower = 0
   upper = len(population) - 1
   while(upper >= lower):
      i = lower + ((upper-lower)/2)
      if psum[i] > cutoff: upper = i-1
      else: lower = i+1

   lower = min(len(population)-1, lower)
   lower = max(0, lower)

   return population.bestFitness(lower)

GRouletteWheel.cachePopID = None
GRouletteWheel.cacheWheel = None

def GRouletteWheel_PrepareWheel(population):
   """ A preparation for Roulette Wheel selection """

   len_pop = len(population)
   
   psum = [i for i in xrange(len_pop)]

   population.statistics()

   if population.sortType == Consts.sortType["scaled"]:
      pop_fitMax = population.stats["fitMax"]
      pop_fitMin = population.stats["fitMin"]

      if pop_fitMax == pop_fitMin:
         for index in xrange(len_pop):
            psum[index] = (index+1) / float(len_pop)
      elif (pop_fitMax > 0 and pop_fitMin >= 0) or (pop_fitMax <= 0 and pop_fitMin < 0):
         population.sort()
         if population.minimax == Consts.minimaxType["maximize"]:
            psum[0] = population[0].fitness
            for i in xrange(1, len_pop):
               psum[i] = population[i].fitness + psum[i-1]
            for i in xrange(len_pop):
               psum[i] /= float(psum[len_pop - 1])
         else:
            psum[0] = -population[0].fitness + pop_fitMax + pop_fitMin
            for i in xrange(1, len_pop):
               psum[i] = -population[i].fitness + pop_fitMax + pop_fitMin + psum[i-1]
            for i in xrange(len_pop):
               psum[i] /= float(psum[len_pop - 1])
   else:
      pop_rawMax = population.stats["rawMax"]
      pop_rawMin = population.stats["rawMin"]

      if pop_rawMax == pop_rawMin:
         for index in xrange(len_pop):
            psum[index] = (index+1) / float(len_pop)
      
      elif (pop_rawMax > 0 and pop_rawMin >= 0) or (pop_rawMax <= 0 and pop_rawMin < 0):
         population.sort()
         if population.minimax == Consts.minimaxType["maximize"]:
            psum[0] = population[0].score
            for i in xrange(1, len_pop):
               psum[i] = population[i].score + psum[i-1]
            for i in xrange(len_pop):
               psum[i] /= float(psum[len_pop-1])
         else:
            psum[0] = - population[0].score + pop_rawMax + pop_rawMin
            for i in xrange(1, len_pop):
               psum[i] = - population[i].score + pop_rawMax + pop_rawMin + psum[i-1]
            for i in xrange(len_pop):
               psum[i] /= float(psum[len_pop-1])

   return psum