/usr/lib/python2.7/dist-packages/pyresample/utils.py is in python-pyresample 1.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | #pyresample, Resampling of remote sensing image data in python
#
#Copyright (C) 2010 Esben S. Nielsen
#
#This program is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Utility functions for pyresample"""
import numpy as np
from configobj import ConfigObj
import geometry, grid, kd_tree
import _spatial_mp
class AreaNotFound(Exception):
"""Exception raised when specified are is no found in file"""
pass
def load_area(area_file_name, *regions):
"""Load area(s) from area file
:Parameters:
area_file_name : str
Path to area definition file
regions : str argument list
Regions to parse. If no regions are specified all
regions in the file are returned
:Returns:
area_defs : object or list
If one area name is specified a single AreaDefinition object is returned
If several area names are specified a list of AreaDefinition objects is returned
:Raises:
AreaNotFound
If a specified area name is not found
"""
area_list = parse_area_file(area_file_name, *regions)
if len(area_list) == 1:
return area_list[0]
else:
return area_list
def parse_area_file(area_file_name, *regions):
"""Parse area information from area file
:Parameters:
area_file_name : str
Path to area definition file
regions : str argument list
Regions to parse. If no regions are specified all
regions in the file are returned
:Returns:
area_defs : list
List of AreaDefinition objects
:Raises:
AreaNotFound
If a specified area is not found
"""
area_file = open(area_file_name, 'r')
area_list = list(regions)
if len(area_list) == 0:
select_all_areas = True
area_defs = []
else:
select_all_areas = False
area_defs = [None for i in area_list]
#Extract area from file
in_area = False
for line in area_file.readlines():
if not in_area:
if 'REGION' in line:
area_id = line.replace('REGION:', ''). \
replace('{', '').strip()
if area_id in area_list or select_all_areas:
in_area = True
area_content = ''
elif '};' in line:
in_area = False
if select_all_areas:
area_defs.append(_create_area(area_id, area_content))
else:
area_defs[area_list.index(area_id)] = _create_area(area_id,
area_content)
else:
area_content += line
area_file.close()
#Check if all specified areas were found
if not select_all_areas:
for i, area in enumerate(area_defs):
if area is None:
raise AreaNotFound('Area "%s" not found in file "%s"'%
(area_list[i], area_file_name))
return area_defs
def _create_area(area_id, area_content):
"""Parse area configuration"""
config_obj = area_content.replace('{', '').replace('};', '')
config_obj = ConfigObj([line.replace(':', '=', 1)
for line in config_obj.splitlines()])
config = config_obj.dict()
config['REGION'] = area_id
try:
config['NAME'].__iter__()
config['NAME'] = ', '.join(config['NAME'])
except:
config['NAME'] = ''.join(config['NAME'])
config['XSIZE'] = int(config['XSIZE'])
config['YSIZE'] = int(config['YSIZE'])
config['AREA_EXTENT'][0] = config['AREA_EXTENT'][0].replace('(', '')
config['AREA_EXTENT'][3] = config['AREA_EXTENT'][3].replace(')', '')
for i, val in enumerate(config['AREA_EXTENT']):
config['AREA_EXTENT'][i] = float(val)
config['PCS_DEF'] = _get_proj4_args(config['PCS_DEF'])
return geometry.AreaDefinition(config['REGION'], config['NAME'],
config['PCS_ID'], config['PCS_DEF'],
config['XSIZE'], config['YSIZE'],
config['AREA_EXTENT'])
def get_area_def(area_id, area_name, proj_id, proj4_args, x_size, y_size,
area_extent):
"""Construct AreaDefinition object from arguments
:Parameters:
area_id : str
ID of area
proj_id : str
ID of projection
area_name :str
Description of area
proj4_args : list or str
Proj4 arguments as list of arguments or string
x_size : int
Number of pixel in x dimension
y_size : int
Number of pixel in y dimension
area_extent : list
Area extent as a list of ints (LL_x, LL_y, UR_x, UR_y)
:Returns:
area_def : object
AreaDefinition object
"""
proj_dict = _get_proj4_args(proj4_args)
return geometry.AreaDefinition(area_id, area_name, proj_id, proj_dict, x_size,
y_size, area_extent)
def generate_quick_linesample_arrays(source_area_def, target_area_def, nprocs=1):
"""Generate linesample arrays for quick grid resampling
:Parameters:
source_area_def : object
Source area definition as AreaDefinition object
target_area_def : object
Target area definition as AreaDefinition object
nprocs : int, optional
Number of processor cores to be used
:Returns:
(row_indices, col_indices) : tuple of numpy arrays
"""
if not (isinstance(source_area_def, geometry.AreaDefinition) and
isinstance(target_area_def, geometry.AreaDefinition)):
raise TypeError('source_area_def and target_area_def must be of type '
'geometry.AreaDefinition')
lons, lats = target_area_def.get_lonlats(nprocs)
source_pixel_y, source_pixel_x = grid.get_linesample(lons, lats,
source_area_def,
nprocs=nprocs)
source_pixel_x = _downcast_index_array(source_pixel_x,
source_area_def.shape[1])
source_pixel_y = _downcast_index_array(source_pixel_y,
source_area_def.shape[0])
return source_pixel_y, source_pixel_x
def generate_nearest_neighbour_linesample_arrays(source_area_def, target_area_def,
radius_of_influence, nprocs=1):
"""Generate linesample arrays for nearest neighbour grid resampling
:Parameters:
source_area_def : object
Source area definition as AreaDefinition object
target_area_def : object
Target area definition as AreaDefinition object
radius_of_influence : float
Cut off distance in meters
nprocs : int, optional
Number of processor cores to be used
:Returns:
(row_indices, col_indices) : tuple of numpy arrays
"""
if not (isinstance(source_area_def, geometry.AreaDefinition) and
isinstance(target_area_def, geometry.AreaDefinition)):
raise TypeError('source_area_def and target_area_def must be of type '
'geometry.AreaDefinition')
valid_input_index, valid_output_index, index_array, distance_array = \
kd_tree.get_neighbour_info(source_area_def,
target_area_def,
radius_of_influence,
neighbours=1,
nprocs=nprocs)
#Enumerate rows and cols
rows = np.fromfunction(lambda i, j: i, source_area_def.shape,
dtype=np.int32).ravel()
cols = np.fromfunction(lambda i, j: j, source_area_def.shape,
dtype=np.int32).ravel()
#Reduce to match resampling data set
rows_valid = rows[valid_input_index]
cols_valid = cols[valid_input_index]
#Get result using array indexing
number_of_valid_points = valid_input_index.sum()
index_mask = (index_array == number_of_valid_points)
index_array[index_mask] = 0
row_sample = rows_valid[index_array]
col_sample = cols_valid[index_array]
row_sample[index_mask] = -1
col_sample[index_mask] = -1
#Reshape to correct shape
row_indices = row_sample.reshape(target_area_def.shape)
col_indices = col_sample.reshape(target_area_def.shape)
row_indices = _downcast_index_array(row_indices,
source_area_def.shape[0])
col_indices = _downcast_index_array(col_indices,
source_area_def.shape[1])
return row_indices, col_indices
def fwhm2sigma(fwhm):
"""Calculate sigma for gauss function from FWHM (3 dB level)
:Parameters:
fwhm : float
FWHM of gauss function (3 dB level of beam footprint)
:Returns:
sigma : float
sigma for use in resampling gauss function
"""
return fwhm / (2 * np.sqrt(np.log(2)))
def _get_proj4_args(proj4_args):
"""Create dict from proj4 args
"""
if isinstance(proj4_args, str):
proj_config = ConfigObj(proj4_args.replace('+', '').split())
else:
proj_config = ConfigObj(proj4_args)
return proj_config.dict()
def _downcast_index_array(index_array, size):
"""Try to downcast array to uint16
"""
if size <= np.iinfo(np.uint16).max:
mask = (index_array < 0) | (index_array >= size)
index_array[mask] = size
index_array = index_array.astype(np.uint16)
return index_array
|