This file is indexed.

/usr/lib/python2.7/dist-packages/pyresample/utils.py is in python-pyresample 1.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#pyresample, Resampling of remote sensing image data in python
# 
#Copyright (C) 2010  Esben S. Nielsen
#
#This program is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""Utility functions for pyresample"""

import numpy as np
from configobj import ConfigObj

import geometry, grid, kd_tree
import _spatial_mp

class AreaNotFound(Exception):
    """Exception raised when specified are is no found in file"""
    pass

def load_area(area_file_name, *regions):
    """Load area(s) from area file
    
    :Parameters:
    area_file_name : str
        Path to area definition file
    regions : str argument list 
        Regions to parse. If no regions are specified all 
        regions in the file are returned
             
    :Returns:
    area_defs : object or list
        If one area name is specified a single AreaDefinition object is returned
        If several area names are specified a list of AreaDefinition objects is returned
        
    :Raises:
    AreaNotFound
        If a specified area name is not found
    """
    
    area_list = parse_area_file(area_file_name, *regions)
    if len(area_list) == 1:
        return area_list[0]
    else:
        return area_list

def parse_area_file(area_file_name, *regions):
    """Parse area information from area file
    
    :Parameters:
    area_file_name : str
        Path to area definition file
    regions : str argument list 
        Regions to parse. If no regions are specified all 
        regions in the file are returned
             
    :Returns:
    area_defs : list
        List of AreaDefinition objects
        
    :Raises:
    AreaNotFound
        If a specified area is not found
    """
            
    area_file = open(area_file_name, 'r')
    area_list = list(regions)
    if len(area_list) == 0:
        select_all_areas = True
        area_defs = []
    else:
        select_all_areas = False
        area_defs = [None for i in area_list]
        
    #Extract area from file
    in_area = False
    for line in area_file.readlines():
        if not in_area:
            if 'REGION' in line:
                area_id = line.replace('REGION:', ''). \
                              replace('{', '').strip()
                if area_id in area_list or select_all_areas:
                    in_area = True
                    area_content = ''
        elif '};' in line:
            in_area = False            
            if select_all_areas:
                area_defs.append(_create_area(area_id, area_content))
            else:
                area_defs[area_list.index(area_id)] = _create_area(area_id,
                                                                   area_content)
        else:
            area_content += line

    area_file.close()
    
    #Check if all specified areas were found
    if not select_all_areas:
        for i, area in enumerate(area_defs):
            if area is None:
                raise AreaNotFound('Area "%s" not found in file "%s"'%
                                   (area_list[i], area_file_name))    
    return area_defs

def _create_area(area_id, area_content):
    """Parse area configuration"""

    config_obj = area_content.replace('{', '').replace('};', '')
    config_obj = ConfigObj([line.replace(':', '=', 1)
                            for line in config_obj.splitlines()])
    config = config_obj.dict()
    config['REGION'] = area_id
    try:
        config['NAME'].__iter__()
        config['NAME'] = ', '.join(config['NAME'])
    except:
        config['NAME'] = ''.join(config['NAME'])
    config['XSIZE'] = int(config['XSIZE'])
    config['YSIZE'] = int(config['YSIZE'])
    config['AREA_EXTENT'][0] = config['AREA_EXTENT'][0].replace('(', '')
    config['AREA_EXTENT'][3] = config['AREA_EXTENT'][3].replace(')', '')
    
    for i, val in enumerate(config['AREA_EXTENT']):
        config['AREA_EXTENT'][i] = float(val)
        
    config['PCS_DEF'] = _get_proj4_args(config['PCS_DEF'])
    
    return geometry.AreaDefinition(config['REGION'], config['NAME'], 
                                   config['PCS_ID'], config['PCS_DEF'], 
                                   config['XSIZE'], config['YSIZE'], 
                                   config['AREA_EXTENT'])

def get_area_def(area_id, area_name, proj_id, proj4_args, x_size, y_size,
                 area_extent):
    """Construct AreaDefinition object from arguments
    
    :Parameters:
    area_id : str
        ID of area
    proj_id : str
        ID of projection
    area_name :str
        Description of area
    proj4_args : list or str
        Proj4 arguments as list of arguments or string
    x_size : int
        Number of pixel in x dimension
    y_size : int  
        Number of pixel in y dimension
    area_extent : list 
        Area extent as a list of ints (LL_x, LL_y, UR_x, UR_y)
    
    :Returns: 
    area_def : object
        AreaDefinition object
    """
    
    proj_dict = _get_proj4_args(proj4_args)
    return geometry.AreaDefinition(area_id, area_name, proj_id, proj_dict, x_size,
                                   y_size, area_extent)    

def generate_quick_linesample_arrays(source_area_def, target_area_def, nprocs=1):
    """Generate linesample arrays for quick grid resampling
    
    :Parameters:
    source_area_def : object 
        Source area definition as AreaDefinition object
    target_area_def : object 
        Target area definition as AreaDefinition object
    nprocs : int, optional 
        Number of processor cores to be used

    :Returns: 
    (row_indices, col_indices) : tuple of numpy arrays
    """
    if not (isinstance(source_area_def, geometry.AreaDefinition) and
            isinstance(target_area_def, geometry.AreaDefinition)):
        raise TypeError('source_area_def and target_area_def must be of type '
                        'geometry.AreaDefinition')
            
    lons, lats = target_area_def.get_lonlats(nprocs)
    
    source_pixel_y, source_pixel_x = grid.get_linesample(lons, lats, 
                                                         source_area_def, 
                                                         nprocs=nprocs)
    
    source_pixel_x = _downcast_index_array(source_pixel_x, 
                                           source_area_def.shape[1]) 
    source_pixel_y = _downcast_index_array(source_pixel_y, 
                                           source_area_def.shape[0])
                     
    return source_pixel_y, source_pixel_x

def generate_nearest_neighbour_linesample_arrays(source_area_def, target_area_def, 
                                                 radius_of_influence, nprocs=1):
    """Generate linesample arrays for nearest neighbour grid resampling
    
    :Parameters:
    source_area_def : object 
        Source area definition as AreaDefinition object
    target_area_def : object 
        Target area definition as AreaDefinition object
    radius_of_influence : float 
        Cut off distance in meters
    nprocs : int, optional 
        Number of processor cores to be used

    :Returns: 
    (row_indices, col_indices) : tuple of numpy arrays
    """
    
    if not (isinstance(source_area_def, geometry.AreaDefinition) and
            isinstance(target_area_def, geometry.AreaDefinition)):
        raise TypeError('source_area_def and target_area_def must be of type '
                        'geometry.AreaDefinition')
    
    valid_input_index, valid_output_index, index_array, distance_array = \
                            kd_tree.get_neighbour_info(source_area_def, 
                                                       target_area_def, 
                                                       radius_of_influence, 
                                                       neighbours=1,
                                                       nprocs=nprocs)
    #Enumerate rows and cols
    rows = np.fromfunction(lambda i, j: i, source_area_def.shape, 
                           dtype=np.int32).ravel()
    cols = np.fromfunction(lambda i, j: j, source_area_def.shape, 
                           dtype=np.int32).ravel()
    
    #Reduce to match resampling data set
    rows_valid = rows[valid_input_index]
    cols_valid = cols[valid_input_index]
    
    #Get result using array indexing
    number_of_valid_points = valid_input_index.sum()
    index_mask = (index_array == number_of_valid_points)
    index_array[index_mask] = 0
    row_sample = rows_valid[index_array]
    col_sample = cols_valid[index_array]
    row_sample[index_mask] = -1
    col_sample[index_mask] = -1
    
    #Reshape to correct shape
    row_indices = row_sample.reshape(target_area_def.shape)
    col_indices = col_sample.reshape(target_area_def.shape)
    
    row_indices = _downcast_index_array(row_indices, 
                                        source_area_def.shape[0])
    col_indices = _downcast_index_array(col_indices, 
                                        source_area_def.shape[1])
    
    return row_indices, col_indices

def fwhm2sigma(fwhm):
    """Calculate sigma for gauss function from FWHM (3 dB level)
    
    :Parameters:
    fwhm : float 
        FWHM of gauss function (3 dB level of beam footprint)

    :Returns: 
    sigma : float
        sigma for use in resampling gauss function
        
    """
    
    return fwhm / (2 * np.sqrt(np.log(2)))
    
def _get_proj4_args(proj4_args):
    """Create dict from proj4 args
    """
    
    if isinstance(proj4_args, str):
        proj_config = ConfigObj(proj4_args.replace('+', '').split())
    else:
        proj_config = ConfigObj(proj4_args)
    return proj_config.dict()


def _downcast_index_array(index_array, size):
    """Try to downcast array to uint16
    """
    
    if size <= np.iinfo(np.uint16).max:
        mask = (index_array < 0) | (index_array >= size)
        index_array[mask] = size
        index_array = index_array.astype(np.uint16)
    return index_array