/usr/share/pyshared/quantities/constants/quantum.py is in python-quantities 0.10.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | # -*- coding: utf-8 -*-
"""
"""
from __future__ import absolute_import
from ._utils import _cd
from ..unitquantity import UnitConstant
molar_Planck_constant = UnitConstant(
'molar_Planck_constant',
_cd('molar Planck constant'),
symbol='(N_A*h)',
u_symbol='(N_A·h)'
)
molar_Planck_constant_times_c = UnitConstant(
'molar_Planck_constant_times_c',
_cd('molar Planck constant times c'),
symbol='(N_A*h*c)',
u_symbol='(N_A·h·c)'
)
h = Planck_constant = UnitConstant(
'Planck_constant',
_cd('Planck constant'),
symbol='h'
)
hbar = Planck_constant_over_2_pi = UnitConstant(
'Planck_constant_over_2_pi',
_cd('Planck constant over 2 pi'),
symbol='(h/(2*pi))',
u_symbol='ħ'
)
quantum_of_circulation = UnitConstant(
'quantum_of_circulation',
_cd('quantum of circulation'),
symbol='(h/(2*m_e))',
u_symbol='(h/(2·mₑ))'
)
quantum_of_circulation_times_2 = UnitConstant(
'quantum_of_circulation_times_2',
_cd('quantum of circulation times 2'),
symbol='(h/m_e)',
u_symbol='(h/mₑ)'
)
l_P = Planck_length = UnitConstant(
'Planck_length',
_cd('Planck length'),
symbol='l_P'
)
m_P = Planck_mass = UnitConstant(
'Planck_mass',
_cd('Planck mass'),
symbol='m_P'
)
T_P = Planck_temperature = UnitConstant(
'Planck_temperature',
_cd('Planck temperature'),
symbol='T_P'
)
t_P = Planck_time = UnitConstant(
'Planck_time',
_cd('Planck time'),
symbol='t_P'
)
R_infinity = Rydberg_constant = UnitConstant(
'Rydberg_constant',
_cd('Rydberg constant'),
symbol='R_infinity',
u_symbol='R_∞'
)
Rydberg_constant_times_c_in_Hz = UnitConstant(
'Rydberg_constant_times_c_in_Hz',
_cd('Rydberg constant times c in Hz')
)
Rydberg_constant_times_hc_in_eV = UnitConstant(
'Rydberg_constant_times_hc_in_eV',
_cd('Rydberg constant times hc in eV')
)
Rydberg_constant_times_hc_in_J = UnitConstant(
'Rydberg_constant_times_hc_in_J',
_cd('Rydberg constant times hc in J'),
symbol='(R_infinity*h*c)',
u_symbol='(R_∞·h·c)'
)
G_0 = conductance_quantum = UnitConstant(
'conductance_quantum',
_cd('conductance quantum'),
symbol='G_0',
u_symbol='G₀'
)
K_J90 = conventional_value_of_Josephson_constant = UnitConstant(
'conventional_value_of_Josephson_constant',
_cd('conventional value of Josephson constant')
)
R_K90 = conventional_value_of_von_Klitzing_constant = UnitConstant(
'conventional_value_of_von_Klitzing_constant',
_cd('conventional value of von Klitzing constant')
)
Fermi_coupling_constant = UnitConstant(
'Fermi_coupling_constant',
_cd('Fermi coupling constant'),
symbol='(G_F/(hbar*c)**3)',
u_symbol='(G_F/(ħ·c)³)'
)
alpha = fine_structure_constant = UnitConstant(
'fine_structure_constant',
_cd('fine-structure constant'),
symbol='alpha',
u_symbol='α'
)
inverse_fine_structure_constant = UnitConstant(
'inverse_fine_structure_constant',
_cd('inverse fine-structure constant'),
symbol='alpha**-1',
u_symbol='α⁻¹'
)
c_1 = first_radiation_constant = UnitConstant(
'first_radiation_constant',
_cd('first radiation constant'),
symbol='c_1',
u_symbol='c₁'
)
c_1L = first_radiation_constant_for_spectral_radiance = UnitConstant(
'first_radiation_constant_for_spectral_radiance',
_cd('first radiation constant for spectral radiance'),
symbol='c_1L',
u_symbol='c₁_L'
)
inverse_of_conductance_quantum = UnitConstant(
'inverse_of_conductance_quantum',
_cd('inverse of conductance quantum'),
symbol='G_0**-1',
u_symbol='G₀⁻¹'
)
Josephson_constant = K_J = UnitConstant(
'Josephson_constant',
_cd('Josephson constant'),
symbol='K_J'
)
Phi_0 = magnetic_flux_quantum = UnitConstant(
'magnetic_flux_quantum',
_cd('magnetic flux quantum'),
symbol='Phi_0',
u_symbol='Φ₀'
)
Newtonian_constant_of_gravitation_over_h_bar_c = UnitConstant(
'Newtonian_constant_of_gravitation_over_h_bar_c',
_cd('Newtonian constant of gravitation over h-bar c'),
symbol='(G/(hbar*c))',
u_symbol='(G/(ħ·c))'
)
Sackur_Tetrode_constant_ST_100kPa = UnitConstant(
'Sackur_Tetrode_constant_ST_100kPa',
_cd('Sackur-Tetrode constant (1 K, 100 kPa)')
)
Sackur_Tetrode_constant_STP = UnitConstant(
'Sackur_Tetrode_constant_STP',
_cd('Sackur-Tetrode constant (1 K, 101.325 kPa)')
)
c_2 = second_radiation_constant = UnitConstant(
'second_radiation_constant',
_cd('second radiation constant'),
symbol='c_2',
u_symbol='c₂'
)
sigma = Stefan_Boltzmann_constant = UnitConstant(
'Stefan_Boltzmann_constant',
_cd('Stefan-Boltzmann constant'),
symbol='sigma',
u_symbol='σ'
)
R_K = von_Klitzing_constant = UnitConstant(
'von_Klitzing_constant',
_cd('von Klitzing constant'),
symbol='R_K'
)
b_prime = Wien_frequency_displacement_law_constant = UnitConstant(
'Wien_frequency_displacement_law_constant',
_cd('Wien frequency displacement law constant'),
symbol='bprime',
u_symbol='b′'
)
b = Wien_wavelength_displacement_law_constant = UnitConstant(
'Wien_wavelength_displacement_law_constant',
_cd('Wien wavelength displacement law constant'),
symbol='b'
)
Planck_constant_in_eV_s = UnitConstant(
'Planck_constant_in_eV_s',
_cd('Planck constant in eV s')
)
Planck_constant_over_2_pi_in_eV_s = UnitConstant(
'Planck_constant_over_2_pi_in_eV_s',
_cd('Planck constant over 2 pi in eV s')
)
Planck_constant_over_2_pi_times_c_in_MeV_fm = UnitConstant(
'Planck_constant_over_2_pi_times_c_in_MeV_fm',
_cd('Planck constant over 2 pi times c in MeV fm')
)
Planck_mass_energy_equivalent_in_GeV = UnitConstant(
'Planck_mass_energy_equivalent_in_GeV',
_cd('Planck mass energy equivalent in GeV')
)
del UnitConstant, _cd
|