This file is indexed.

/usr/lib/python2.7/dist-packages/seaborn/axisgrid.py is in python-seaborn 0.4.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
from __future__ import division
from itertools import product
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

from six import string_types

from . import utils
from .palettes import color_palette


class Grid(object):
    """Base class for grids of subplots."""
    _margin_titles = False
    _legend_out = True

    def set(self, **kwargs):
        """Set attributes on each subplot Axes."""
        for ax in self.axes.flat:
            ax.set(**kwargs)

        return self

    def savefig(self, *args, **kwargs):
        """Save the figure."""
        self.fig.savefig(*args, **kwargs)

    def add_legend(self, legend_data=None, title=None, label_order=None):
        """Draw a legend, possibly resizing the figure."""
        # Find the data for the legend
        legend_data = self._legend_data if legend_data is None else legend_data
        if label_order is None:
            if self.hue_names is None:
                label_order = np.sort(list(legend_data.keys()))
            else:
                label_order = list(map(str, self.hue_names))
        handles = [legend_data[l] for l in label_order if l in legend_data]
        title = self._hue_var if title is None else title
        try:
            title_size = mpl.rcParams["axes.labelsize"] * .85
        except TypeError:  # labelsize is something like "large"
            title_size = mpl.rcParams["axes.labelsize"]

        if self._legend_out:
            # Draw a full-figure legend outside the grid
            figlegend = plt.figlegend(handles, label_order, "center right",
                                      scatterpoints=1)
            self._legend = figlegend
            figlegend.set_title(title)

            # Set the title size a roundabout way to maintain
            # compatability with matplotlib 1.1
            prop = mpl.font_manager.FontProperties(size=title_size)
            figlegend._legend_title_box._text.set_font_properties(prop)

            # Draw the plot to set the bounding boxes correctly
            plt.draw()

            # Calculate and set the new width of the figure so the legend fits
            legend_width = figlegend.get_window_extent().width / self.fig.dpi
            figure_width = self.fig.get_figwidth()
            self.fig.set_figwidth(figure_width + legend_width)

            # Draw the plot again to get the new transformations
            plt.draw()

            # Now calculate how much space we need on the right side
            legend_width = figlegend.get_window_extent().width / self.fig.dpi
            space_needed = legend_width / (figure_width + legend_width)
            margin = .04 if self._margin_titles else .01
            self._space_needed = margin + space_needed
            right = 1 - self._space_needed

            # Place the subplot axes to give space for the legend
            self.fig.subplots_adjust(right=right)

        else:
            # Draw a legend in the first axis
            leg = self.axes.flat[0].legend(handles, label_order, loc="best")
            leg.set_title(title)

            # Set the title size a roundabout way to maintain
            # compatability with matplotlib 1.1
            prop = mpl.font_manager.FontProperties(size=title_size)
            leg._legend_title_box._text.set_font_properties(prop)

    def _clean_axis(self, ax):
        """Turn off axis labels and legend."""
        ax.set_xlabel("")
        ax.set_ylabel("")
        ax.legend_ = None
        return self

    def _update_legend_data(self, ax):
        """Extract the legend data from an axes object and save it."""
        handles, labels = ax.get_legend_handles_labels()
        data = {l: h for h, l in zip(handles, labels)}
        self._legend_data.update(data)

    def _get_palette(self, data, hue, hue_order, palette, dropna):
        """Get a list of colors for the hue variable."""
        if hue is None:
            palette = color_palette(n_colors=1)

        else:
            if hue_order is None:
                hue_names = np.unique(np.sort(data[hue]))
            else:
                hue_names = hue_order
            if dropna:
                # Filter NA from the list of unique hue names
                hue_names = list(filter(pd.notnull, hue_names))

            n_colors = len(hue_names)

            # By default use either the current color palette or HUSL
            if palette is None:
                current_palette = mpl.rcParams["axes.color_cycle"]
                if n_colors > len(current_palette):
                    colors = color_palette("husl", n_colors)
                else:
                    colors = color_palette(n_colors=n_colors)

            # Allow for palette to map from hue variable names
            elif isinstance(palette, dict):
                color_names = [palette[h] for h in hue_names]
                colors = color_palette(color_names, n_colors)

            # Otherwise act as if we just got a list of colors
            else:
                colors = color_palette(palette, n_colors)

            palette = color_palette(colors, n_colors)

        return palette


class FacetGrid(Grid):
    """Subplot grid for plotting conditional relationships in a dataset."""

    def __init__(self, data, row=None, col=None, hue=None, col_wrap=None,
                 sharex=True, sharey=True, size=3, aspect=1, palette=None,
                 row_order=None, col_order=None, hue_order=None,
                 dropna=True, legend=True, legend_out=True, despine=True,
                 margin_titles=False, xlim=None, ylim=None):
        """Initialize the plot figure and FacetGrid object.

        Parameters
        ----------
        data : DataFrame
            Tidy (long-form) dataframe where each column is a variable and
            each row is an observation.
        row, col, hue : strings, optional
            Variable (column) names to subset the data for the facets.
        col_wrap : int, optional
            Wrap the column variable at this width. Incompatible with `row`.
        share{x, y}: booleans, optional
            Lock the limits of the vertical andn horizontal axes across the
            facets.
        size : scalar, optional
            Height (in inches) of each facet.
        aspect : scalar, optional
            Aspect * size gives the width (in inches) of each facet.
        palette : dict or seaborn color palette
            Set of colors for mapping the `hue` variable. If a dict, keys
            should be values  in the `hue` variable.
        {row, col, hue}_order: sequence of strings
            Order to plot the values in the faceting variables in, otherwise
            sorts the unique values.
        dropna : boolean, optional
            Drop missing values from the data before plotting.
        legend : boolean, optional
            Draw a legend for the data when using a `hue` variable.
        legend_out: boolean, optional
            Draw the legend outside the grid of plots.
        despine : boolean, optional
            Remove the top and right spines from the plots.
        margin_titles : boolean, optional
            Write the column and row variable labels on the margins of the
            grid rather than above each plot.
        {x, y}lim: tuples, optional
            Limits for each of the axes on each facet when share{x, y} is True.

        Returns
        -------
        self : FacetGrid
            Returns self for plotting onto the grid.

        See Also
        --------
        PairGrid : Subplot grid for plotting pairwise relationships.
        lmplot : Combines regplot and a FacetGrid
        factorplot : Combines pointplot, barplot, or boxplot and a FacetGrid

        """
        # Compute the grid shape
        ncol = 1 if col is None else len(data[col].unique())
        nrow = 1 if row is None else len(data[row].unique())
        self._n_facets = ncol * nrow

        self._col_wrap = col_wrap
        if col_wrap is not None:
            ncol = col_wrap
            nrow = int(np.ceil(len(data[col].unique()) / col_wrap))
        self._ncol = ncol
        self._nrow = nrow

        # Calculate the base figure size
        # This can get stretched later by a legend
        figsize = (ncol * size * aspect, nrow * size)

        # Validate some inputs
        if col_wrap is not None:
            margin_titles = False

        # Build the subplot keyword dictionary
        subplot_kw = {}
        if xlim is not None:
            subplot_kw["xlim"] = xlim
        if ylim is not None:
            subplot_kw["ylim"] = ylim

        # Initialize the subplot grid
        if col_wrap is None:
            fig, axes = plt.subplots(nrow, ncol, figsize=figsize,
                                     squeeze=False,
                                     sharex=sharex, sharey=sharey,
                                     subplot_kw=subplot_kw)
            self.axes = axes

        else:
            # If wrapping the col variable we need to make the grid ourselves
            n_axes = len(data[col].unique())
            fig = plt.figure(figsize=figsize)
            axes = np.empty(n_axes, object)
            axes[0] = fig.add_subplot(nrow, ncol, 1, **subplot_kw)
            if sharex:
                subplot_kw["sharex"] = axes[0]
            if sharey:
                subplot_kw["sharey"] = axes[0]
            for i in range(1, n_axes):
                axes[i] = fig.add_subplot(nrow, ncol, i + 1, **subplot_kw)
            self.axes = axes

            # Now we turn off labels on the inner axes
            if sharex:
                for ax in self._not_bottom_axes:
                    for label in ax.get_xticklabels():
                        label.set_visible(False)
                    ax.xaxis.offsetText.set_visible(False)
            if sharey:
                for ax in self._not_left_axes:
                    for label in ax.get_yticklabels():
                        label.set_visible(False)
                    ax.yaxis.offsetText.set_visible(False)

        # Determine the hue facet layer information
        hue_var = hue
        if hue is None:
            hue_names = None
        else:
            if hue_order is None:
                hue_names = np.unique(np.sort(data[hue]))
            else:
                hue_names = hue_order
            if dropna:
                # Filter NA from the list of unique hue names
                hue_names = list(filter(pd.notnull, hue_names))

        colors = self._get_palette(data, hue, hue_order, palette, dropna)

        # Make a boolean mask that is True anywhere there is an NA
        # value in one of the faceting variables, but only if dropna is True
        none_na = np.zeros(len(data), np.bool)
        if dropna:
            row_na = none_na if row is None else data[row].isnull()
            col_na = none_na if col is None else data[col].isnull()
            hue_na = none_na if hue is None else data[hue].isnull()
            not_na = ~(row_na | col_na | hue_na)
        else:
            not_na = ~none_na

        # Set up the lists of names for the row and column facet variables
        if row is None:
            row_names = []
        elif row_order is None:
            row_names = np.unique(np.sort(data[row]))
        else:
            row_names = row_order
        if dropna:
            row_names = list(filter(pd.notnull, row_names))

        if col is None:
            col_names = []
        elif col_order is None:
            col_names = np.unique(np.sort(data[col]))
        else:
            col_names = col_order
        if dropna:
            col_names = list(filter(pd.notnull, col_names))

        # Set up the class attributes
        # ---------------------------

        # First the public API
        self.data = data
        self.fig = fig
        self.axes = axes

        self.row_names = row_names
        self.col_names = col_names
        self.hue_names = hue_names

        # Next the private variables
        self._nrow = nrow
        self._row_var = row
        self._ncol = ncol
        self._col_var = col

        self._margin_titles = margin_titles
        self._col_wrap = col_wrap
        self._hue_var = hue_var
        self._colors = colors
        self._draw_legend = ((hue is not None and hue not in [col, row])
                             and legend)
        self._legend_out = legend_out
        self._legend = None
        self._legend_data = {}
        self._x_var = None
        self._y_var = None
        self._dropna = dropna
        self._not_na = not_na

        # Make the axes look good
        fig.tight_layout()
        if despine:
            self.despine()

    def facet_data(self):
        """Generator for name indices and data subsets for each facet.

        Yields
        ------
        (i, j, k), data_ijk : tuple of ints, DataFrame
            The ints provide an index into the {row, col, hue}_names attribute,
            and the dataframe contains a subset of the full data corresponding
            to each facet. The generator yields subsets that correspond with
            the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`
            is None.

        """
        data = self.data

        # Construct masks for the row variable
        if self._nrow == 1 or self._col_wrap is not None:
            row_masks = [np.repeat(True, len(self.data))]
        else:
            row_masks = [data[self._row_var] == n for n in self.row_names]

        # Construct masks for the column variable
        if self._ncol == 1:
            col_masks = [np.repeat(True, len(self.data))]
        else:
            col_masks = [data[self._col_var] == n for n in self.col_names]

        # Construct masks for the hue variable
        if len(self._colors) == 1:
            hue_masks = [np.repeat(True, len(self.data))]
        else:
            hue_masks = [data[self._hue_var] == n for n in self.hue_names]

        # Here is the main generator loop
        for (i, row), (j, col), (k, hue) in product(enumerate(row_masks),
                                                    enumerate(col_masks),
                                                    enumerate(hue_masks)):
            data_ijk = data[row & col & hue & self._not_na]
            yield (i, j, k), data_ijk

    def map(self, func, *args, **kwargs):
        """Apply a plotting function to each facet's subset of the data.

        Parameters
        ----------
        func : callable
            A plotting function that takes data and keyword arguments. It
            must plot to the currently active matplotlib Axes and take a
            `color` keyword argument. If faceting on the `hue` dimension,
            it must also take a `label` keyword argument.
        args : strings
            Column names in self.data that identify variables with data to
            plot. The data for each variable is passed to `func` in the
            order the variables are specified in the call.
        kwargs : keyword arguments
            All keyword arguments are passed to the plotting function.

        Returns
        -------
        self : object
            Returns self.

        """
        # If color was a keyword argument, grab it here
        kw_color = kwargs.pop("color", None)

        # Iterate over the data subsets
        for (row_i, col_j, hue_k), data_ijk in self.facet_data():

            # If this subset is null, move on
            if not data_ijk.values.tolist():
                continue

            # Get the current axis
            ax = self.facet_axis(row_i, col_j)

            # Decide what color to plot with
            kwargs["color"] = self._facet_color(hue_k, kw_color)

            # Insert a label in the keyword arguments for the legend
            if self._hue_var is not None:
                kwargs["label"] = str(self.hue_names[hue_k])

            # Get the actual data we are going to plot with
            plot_data = data_ijk[list(args)]
            if self._dropna:
                plot_data = plot_data.dropna()
            plot_args = [v for k, v in plot_data.iteritems()]

            # Some matplotlib functions don't handle pandas objects correctly
            if func.__module__.startswith("matplotlib"):
                plot_args = [v.values for v in plot_args]

            # Draw the plot
            self._facet_plot(func, ax, plot_args, kwargs)

        # Finalize the annotations and layout
        self._finalize_grid(args[:2])

        return self

    def map_dataframe(self, func, *args, **kwargs):
        """Like `map` but passes args as strings and inserts data in kwargs.

        This method is suitable for plotting with functions that accept a
        long-form DataFrame as a `data` keyword argument and access the
        data in that DataFrame using string variable names.

        Parameters
        ----------
        func : callable
            A plotting function that takes data and keyword arguments. Unlike
            the `map` method, a function used here must "understand" Pandas
            objects. It also must plot to the currently active matplotlib Axes
            and take a `color` keyword argument. If faceting on the `hue`
            dimension, it must also take a `label` keyword argument.
        args : strings
            Column names in self.data that identify variables with data to
            plot. The data for each variable is passed to `func` in the
            order the variables are specified in the call.
        kwargs : keyword arguments
            All keyword arguments are passed to the plotting function.

        Returns
        -------
        self : object
            Returns self.

        """

        # If color was a keyword argument, grab it here
        kw_color = kwargs.pop("color", None)

        # Iterate over the data subsets
        for (row_i, col_j, hue_k), data_ijk in self.facet_data():

            # If this subset is null, move on
            if not data_ijk.values.tolist():
                continue

            # Get the current axis
            ax = self.facet_axis(row_i, col_j)

            # Decide what color to plot with
            kwargs["color"] = self._facet_color(hue_k, kw_color)

            # Insert a label in the keyword arguments for the legend
            if self._hue_var is not None:
                kwargs["label"] = self.hue_names[hue_k]

            # Stick the facet dataframe into the kwargs
            if self._dropna:
                data_ijk = data_ijk.dropna()
            kwargs["data"] = data_ijk

            # Draw the plot
            self._facet_plot(func, ax, args, kwargs)

        # Finalize the annotations and layout
        self._finalize_grid(args[:2])

        return self

    def _facet_color(self, hue_index, kw_color):

        color = self._colors[hue_index]
        if kw_color is not None:
            return kw_color
        elif color is not None:
            return color

    def _facet_plot(self, func, ax, plot_args, plot_kwargs):

        # Draw the plot
        func(*plot_args, **plot_kwargs)

        # Sort out the supporting information
        self._update_legend_data(ax)
        self._clean_axis(ax)

    def _finalize_grid(self, axlabels):
        """Finalize the annotations and layout."""
        self.set_axis_labels(*axlabels)
        self.set_titles()
        self.fig.tight_layout()

    def facet_axis(self, row_i, col_j):
        """Make the axis identified by these indices active and return it."""

        # Calculate the actual indices of the axes to plot on
        if self._col_wrap is not None:
            ax = self.axes.flat[col_j]
        else:
            ax = self.axes[row_i, col_j]

        # Get a reference to the axes object we want, and make it active
        plt.sca(ax)
        return ax

    def despine(self, **kwargs):
        """Remove axis spines from the facets."""
        utils.despine(self.fig, **kwargs)
        return self

    def set_axis_labels(self, x_var=None, y_var=None):
        """Set axis labels on the left column and bottom row of the grid."""
        if x_var is not None:
            self._x_var = x_var
            self.set_xlabels(x_var)
        if y_var is not None:
            self._y_var = y_var
            self.set_ylabels(y_var)
        return self

    def set_xlabels(self, label=None, **kwargs):
        """Label the x axis on the bottom row of the grid."""
        if label is None:
            label = self._x_var
        for ax in self._bottom_axes:
            ax.set_xlabel(label, **kwargs)
        return self

    def set_ylabels(self, label=None, **kwargs):
        """Label the y axis on the left column of the grid."""
        if label is None:
            label = self._y_var
        for ax in self._left_axes:
            ax.set_ylabel(label, **kwargs)
        return self

    def set_xticklabels(self, labels=None, step=None, **kwargs):
        """Set x axis tick labels on the bottom row of the grid."""
        for ax in self.axes[-1, :]:
            if labels is None:
                labels = [l.get_text() for l in ax.get_xticklabels()]
                if step is not None:
                    xticks = ax.get_xticks()[::step]
                    labels = labels[::step]
                    ax.set_xticks(xticks)
            ax.set_xticklabels(labels, **kwargs)
        return self

    def set_yticklabels(self, labels=None, **kwargs):
        """Set y axis tick labels on the left column of the grid."""
        for ax in self.axes[-1, :]:
            if labels is None:
                labels = [l.get_text() for l in ax.get_yticklabels()]
            ax.set_yticklabels(labels, **kwargs)
        return self

    def set_titles(self, template=None, row_template=None,  col_template=None,
                   **kwargs):
        """Draw titles either above each facet or on the grid margins.

        Parameters
        ----------
        template : string
            Template for all titles with the formatting keys {col_var} and
            {col_name} (if using a `col` faceting variable) and/or {row_var}
            and {row_name} (if using a `row` faceting variable).
        row_template:
            Template for the row variable when titles are drawn on the grid
            margins. Must have {row_var} and {row_name} formatting keys.
        col_template:
            Template for the row variable when titles are drawn on the grid
            margins. Must have {col_var} and {col_name} formatting keys.

        Returns
        -------
        self: object
            Returns self.

        """
        args = dict(row_var=self._row_var, col_var=self._col_var)
        kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"])

        # Establish default templates
        if row_template is None:
            row_template = "{row_var} = {row_name}"
        if col_template is None:
            col_template = "{col_var} = {col_name}"
        if template is None:
            if self._row_var is None:
                template = col_template
            elif self._col_var is None:
                template = row_template
            else:
                template = " | ".join([row_template, col_template])

        if self._margin_titles:
            if self.row_names is not None:
                # Draw the row titles on the right edge of the grid
                for i, row_name in enumerate(self.row_names):
                    ax = self.axes[i, -1]
                    args.update(dict(row_name=row_name))
                    title = row_template.format(**args)
                    trans = self.fig.transFigure.inverted()
                    bbox = ax.bbox.transformed(trans)
                    x = bbox.xmax + 0.01
                    y = bbox.ymax - (bbox.height / 2)
                    self.fig.text(x, y, title, rotation=270,
                                  ha="left", va="center", **kwargs)
            if self.col_names is not None:
                # Draw the column titles  as normal titles
                for j, col_name in enumerate(self.col_names):
                    args.update(dict(col_name=col_name))
                    title = col_template.format(**args)
                    self.axes[0, j].set_title(title, **kwargs)

            return self

        # Otherwise title each facet with all the necessary information
        if (self._row_var is not None) and (self._col_var is not None):
            for i, row_name in enumerate(self.row_names):
                for j, col_name in enumerate(self.col_names):
                    args.update(dict(row_name=row_name, col_name=col_name))
                    title = template.format(**args)
                    self.axes[i, j].set_title(title, **kwargs)
        elif self.row_names is not None and len(self.row_names):
            for i, row_name in enumerate(self.row_names):
                args.update(dict(row_name=row_name))
                title = template.format(**args)
                self.axes[i, 0].set_title(title, **kwargs)
        elif self.col_names is not None and len(self.col_names):
            for i, col_name in enumerate(self.col_names):
                args.update(dict(col_name=col_name))
                title = template.format(**args)
                # Index the flat array so col_wrap works
                self.axes.flat[i].set_title(title, **kwargs)
        return self

    @property
    def _inner_axes(self):
        """Return a flat array of the inner axes."""
        if self._col_wrap is None:
            return self.axes[:-1, 1:].flat
        else:
            axes = []
            n_empty = self._nrow * self._ncol - self._n_facets
            for i, ax in enumerate(self.axes):
                append = (i % self._ncol and
                          i < (self._ncol * (self._nrow - 1)) and
                          i < (self._ncol * (self._nrow - 1) - n_empty))
                if append:
                    axes.append(ax)
            return np.array(axes, object).flat

    @property
    def _left_axes(self):
        """Return a flat array of the left column of axes."""
        if self._col_wrap is None:
            return self.axes[:, 0].flat
        else:
            axes = []
            for i, ax in enumerate(self.axes):
                if not i % self._ncol:
                    axes.append(ax)
            return np.array(axes, object).flat

    @property
    def _not_left_axes(self):
        """Return a flat array of axes that aren't on the left column."""
        if self._col_wrap is None:
            return self.axes[:, 1:].flat
        else:
            axes = []
            for i, ax in enumerate(self.axes):
                if i % self._ncol:
                    axes.append(ax)
            return np.array(axes, object).flat

    @property
    def _bottom_axes(self):
        """Return a flat array of the bottom row of axes."""
        if self._col_wrap is None:
            return self.axes[-1, :].flat
        else:
            axes = []
            n_empty = self._nrow * self._ncol - self._n_facets
            for i, ax in enumerate(self.axes):
                append = (i >= (self._ncol * (self._nrow - 1)) or
                          i >= (self._ncol * (self._nrow - 1) - n_empty))
                if append:
                    axes.append(ax)
            return np.array(axes, object).flat

    @property
    def _not_bottom_axes(self):
        """Return a flat array of axes that aren't on the bottom row."""
        if self._col_wrap is None:
            return self.axes[:-1, :].flat
        else:
            axes = []
            n_empty = self._nrow * self._ncol - self._n_facets
            for i, ax in enumerate(self.axes):
                append = (i < (self._ncol * (self._nrow - 1)) and
                          i < (self._ncol * (self._nrow - 1) - n_empty))
                if append:
                    axes.append(ax)
            return np.array(axes, object).flat


class PairGrid(Grid):
    """Subplot grid for plotting pairwise relationships in a dataset."""

    def __init__(self, data, hue=None, hue_order=None, palette=None,
                 vars=None, x_vars=None, y_vars=None,
                 diag_sharey=True, size=3, aspect=1,
                 despine=True, dropna=True):
        """Initialize the plot figure and PairGrid object.

        Parameters
        ----------
        data : DataFrame
            Tidy (long-form) dataframe where each column is a variable and
            each row is an observation.
        hue : string (variable name), optional
            Variable in ``data`` to map plot aspects to different colors.
        hue_order : list of strings
            Order for the levels of the hue variable in the palette
        palette : dict or seaborn color palette
            Set of colors for mapping the ``hue`` variable. If a dict, keys
            should be values  in the ``hue`` variable.
        vars : list of variable names, optional
            Variables within ``data`` to use, otherwise use every column with
            a numeric datatype.
        {x, y}_vars : lists of variable names, optional
            Variables within ``data`` to use separately for the rows and
            columns of the figure; i.e. to make a non-square plot.
        size : scalar, optional
            Height (in inches) of each facet.
        aspect : scalar, optional
            Aspect * size gives the width (in inches) of each facet.
        despine : boolean, optional
            Remove the top and right spines from the plots.
        dropna : boolean, optional
            Drop missing values from the data before plotting.

        Returns
        -------
        self : PairGrid
            Returns self for plotting onto the grid.

        See Also
        --------
        FacetGrid : Subplot grid for plotting conditional relationships.
        pairplot : Function for easily drawing common uses of PairGrid.

        """

        # Sort out the variables that define the grid
        if vars is not None:
            x_vars = list(vars)
            y_vars = list(vars)
        elif (x_vars is not None) or (y_vars is not None):
            if (x_vars is None) or (y_vars is None):
                raise ValueError("Must specify `x_vars` and `y_vars`")
        else:
            numeric_cols = self._find_numeric_cols(data)
            x_vars = numeric_cols
            y_vars = numeric_cols

        if np.isscalar(x_vars):
            x_vars = [x_vars]
        if np.isscalar(y_vars):
            y_vars = [y_vars]

        self.x_vars = list(x_vars)
        self.y_vars = list(y_vars)
        self.square_grid = self.x_vars == self.y_vars

        # Create the figure and the array of subplots
        figsize = len(x_vars) * size * aspect, len(y_vars) * size

        fig, axes = plt.subplots(len(y_vars), len(x_vars),
                                 figsize=figsize,
                                 sharex="col", sharey="row",
                                 squeeze=False)

        self.fig = fig
        self.axes = axes
        self.data = data

        # Save what we are going to do with the diagonal
        self.diag_sharey = diag_sharey
        self.diag_axes = None

        # Label the axes
        self._add_axis_labels()

        # Sort out the hue variable
        self._hue_var = hue
        if hue is None:
            self.hue_names = None
            self.hue_vals = pd.Series(["_nolegend_"] * len(data))
        else:
            if hue_order is None:
                hue_names = np.unique(np.sort(data[hue]))
            else:
                hue_names = hue_order
            if dropna:
                # Filter NA from the list of unique hue names
                hue_names = list(filter(pd.notnull, hue_names))
            self.hue_names = hue_names
            self.hue_vals = data[hue]

        self.palette = self._get_palette(data, hue, hue_order, palette, dropna)
        self._legend_data = {}

        # Make the plot look nice
        if despine:
            utils.despine(fig=fig)
        fig.tight_layout()

    def map(self, func, **kwargs):
        """Plot with the same function in every subplot.

        Parameters
        ----------
        func : callable plotting function
            Must take x, y arrays as positional arguments and draw onto the
            "currently active" matplotlib Axes.

        """
        kw_color = kwargs.pop("color", None)
        for i, y_var in enumerate(self.y_vars):
            for j, x_var in enumerate(self.x_vars):
                hue_grouped = self.data.groupby(self.hue_vals)
                for k, (label_k, data_k) in enumerate(hue_grouped):
                    ax = self.axes[i, j]
                    plt.sca(ax)

                    color = self.palette[k] if kw_color is None else kw_color
                    func(data_k[x_var], data_k[y_var],
                         label=label_k, color=color, **kwargs)

                self._clean_axis(ax)
                self._update_legend_data(ax)

        if kw_color is not None:
            kwargs["color"] = kw_color
        self._add_axis_labels()

    def map_diag(self, func, **kwargs):
        """Plot with a univariate function on each diagonal subplot.

        Parameters
        ----------
        func : callable plotting function
            Must take an x array as a positional arguments and draw onto the
            "currently active" matplotlib Axes. There is a special case when
            using a ``hue`` variable and ``plt.hist``; the histogram will be
            plotted with stacked bars.

        """
        # Add special diagonal axes for the univariate plot
        if self.square_grid and self.diag_axes is None:
            diag_axes = []
            for i, (var, ax) in enumerate(zip(self.x_vars,
                                              np.diag(self.axes))):
                if i and self.diag_sharey:
                    diag_ax = ax._make_twin_axes(sharex=ax,
                                                 sharey=diag_axes[0],
                                                 frameon=False)
                else:
                    diag_ax = ax._make_twin_axes(sharex=ax, frameon=False)
                diag_ax.set_axis_off()
                diag_axes.append(diag_ax)
            self.diag_axes = np.array(diag_axes, np.object)
        else:
            self.diag_axes = None

        # Plot on each of the diagonal axes
        for i, var in enumerate(self.x_vars):
            ax = self.diag_axes[i]
            hue_grouped = self.data[var].groupby(self.hue_vals)

            # Special-case plt.hist with stacked bars
            if func is plt.hist:
                plt.sca(ax)
                vals = [v.values for g, v in hue_grouped]
                func(vals, color=self.palette, histtype="barstacked",
                     **kwargs)
            else:
                for k, (label_k, data_k) in enumerate(hue_grouped):
                    plt.sca(ax)
                    func(data_k, label=label_k,
                         color=self.palette[k], **kwargs)

            self._clean_axis(ax)

        self._add_axis_labels()

    def map_lower(self, func, **kwargs):
        """Plot with a bivariate function on the lower diagonal subplots.

        Parameters
        ----------
        func : callable plotting function
            Must take x, y arrays as positional arguments and draw onto the
            "currently active" matplotlib Axes.

        """
        kw_color = kwargs.pop("color", None)
        for i, j in zip(*np.tril_indices_from(self.axes, -1)):
            hue_grouped = self.data.groupby(self.hue_vals)
            for k, (label_k, data_k) in enumerate(hue_grouped):

                ax = self.axes[i, j]
                plt.sca(ax)

                x_var = self.x_vars[j]
                y_var = self.y_vars[i]

                color = self.palette[k] if kw_color is None else kw_color
                func(data_k[x_var], data_k[y_var], label=label_k,
                     color=color, **kwargs)

            self._clean_axis(ax)
            self._update_legend_data(ax)

        if kw_color is not None:
            kwargs["color"] = kw_color
        self._add_axis_labels()

    def map_upper(self, func, **kwargs):
        """Plot with a bivariate function on the upper diagonal subplots.

        Parameters
        ----------
        func : callable plotting function
            Must take x, y arrays as positional arguments and draw onto the
            "currently active" matplotlib Axes.

        """
        kw_color = kwargs.pop("color", None)
        for i, j in zip(*np.triu_indices_from(self.axes, 1)):

            hue_grouped = self.data.groupby(self.hue_vals)
            for k, (label_k, data_k) in enumerate(hue_grouped):

                ax = self.axes[i, j]
                plt.sca(ax)

                x_var = self.x_vars[j]
                y_var = self.y_vars[i]

                color = self.palette[k] if kw_color is None else kw_color
                func(data_k[x_var], data_k[y_var], label=label_k,
                     color=color, **kwargs)

            self._clean_axis(ax)
            self._update_legend_data(ax)

        if kw_color is not None:
            kwargs["color"] = kw_color

    def map_offdiag(self, func, **kwargs):
        """Plot with a bivariate function on the off-diagonal subplots.

        Parameters
        ----------
        func : callable plotting function
            Must take x, y arrays as positional arguments and draw onto the
            "currently active" matplotlib Axes.

        """

        self.map_lower(func, **kwargs)
        self.map_upper(func, **kwargs)

    def _add_axis_labels(self):
        """Add labels to the left and bottom Axes."""
        for ax, label in zip(self.axes[-1, :], self.x_vars):
            ax.set_xlabel(label)
        for ax, label in zip(self.axes[:, 0], self.y_vars):
            ax.set_ylabel(label)

    def _find_numeric_cols(self, data):
        """Find which variables in a DataFrame are numeric."""
        # This can't be the best way to do this, but  I do not
        # know what the best way might be, so this seems ok
        numeric_cols = []
        for col in data:
            try:
                data[col].astype(np.float)
                numeric_cols.append(col)
            except ValueError:
                pass
        return numeric_cols


class JointGrid(object):
    """Grid for drawing a bivariate plot with marginal univariate plots."""
    def __init__(self, x, y, data=None, size=6, ratio=5, space=.2,
                 dropna=True, xlim=None, ylim=None):
        """Set up the grid of subplots.

        Parameters
        ----------
        x, y : strings or vectors
            Data or names of variables in `data`.
        data : DataFrame, optional
            DataFrame when `x` and `y` are variable names.
        size : numeric
            Size of the figure (it will be square).
        ratio : numeric
            Ratio of joint axes size to marginal axes height.
        space : numeric, optional
            Space between the joint and marginal axes
        dropna : bool, optional
            If True, remove observations that are missing from `x` and `y`.
        {x, y}lim : two-tuples, optional
            Axis limits to set before plotting.

        See Also
        --------
        jointplot : Inteface for drawing bivariate plots with several different
                    default plot kinds.

        """
        # Set up the subplot grid
        f = plt.figure(figsize=(size, size))
        gs = plt.GridSpec(ratio + 1, ratio + 1)

        ax_joint = f.add_subplot(gs[1:, :-1])
        ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint)
        ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint)

        self.fig = f
        self.ax_joint = ax_joint
        self.ax_marg_x = ax_marg_x
        self.ax_marg_y = ax_marg_y

        # Turn off tick visibility for the measure axis on the marginal plots
        plt.setp(ax_marg_x.get_xticklabels(), visible=False)
        plt.setp(ax_marg_y.get_yticklabels(), visible=False)

        # Turn off the ticks on the density axis for the marginal plots
        plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False)
        plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False)
        plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False)
        plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False)
        plt.setp(ax_marg_x.get_yticklabels(), visible=False)
        plt.setp(ax_marg_y.get_xticklabels(), visible=False)
        ax_marg_x.yaxis.grid(False)
        ax_marg_y.xaxis.grid(False)

        # Possibly extract the variables from a DataFrame
        if data is not None:
            if x in data:
                x = data[x]
            if y in data:
                y = data[y]

        # Possibly drop NA
        if dropna:
            not_na = pd.notnull(x) & pd.notnull(y)
            x = x[not_na]
            y = y[not_na]

        # Find the names of the variables
        if hasattr(x, "name"):
            xlabel = x.name
            ax_joint.set_xlabel(xlabel)
        if hasattr(y, "name"):
            ylabel = y.name
            ax_joint.set_ylabel(ylabel)

        # Convert the x and y data to arrays for plotting
        self.x = np.asarray(x)
        self.y = np.asarray(y)

        if xlim is not None:
            ax_joint.set_xlim(xlim)
        if ylim is not None:
            ax_joint.set_ylim(ylim)

        # Make the grid look nice
        utils.despine(f)
        utils.despine(ax=ax_marg_x, left=True)
        utils.despine(ax=ax_marg_y, bottom=True)
        f.tight_layout()
        f.subplots_adjust(hspace=space, wspace=space)

    def plot(self, joint_func, marginal_func, annot_func=None):
        """Shortcut to draw the full plot.

        Use `plot_joint` and `plot_marginals` directly for more control.

        Parameters
        ----------
        joint_func, marginal_func: callables
            Functions to draw the bivariate and univariate plots.

        Returns
        -------
        self : JointGrid instance
            Returns `self`.

        """
        self.plot_marginals(marginal_func)
        self.plot_joint(joint_func)
        if annot_func is not None:
            self.annotate(annot_func)
        return self

    def plot_joint(self, func, **kwargs):
        """Draw a bivariate plot of `x` and `y`.

        Parameters
        ----------
        func : plotting callable
            This must take two 1d arrays of data as the first two
            positional arguments, and it must plot on the "current" axes.
        kwargs : key, value mappings
            Keyword argument are passed to the plotting function.

        Returns
        -------
        self : JointGrid instance
            Returns `self`.

        """
        plt.sca(self.ax_joint)
        func(self.x, self.y, **kwargs)

        return self

    def plot_marginals(self, func, **kwargs):
        """Draw univariate plots for `x` and `y` separately.

        Parameters
        ----------
        func : plotting callable
            This must take a 1d array of data as the first positional
            argument, it must plot on the "current" axes, and it must
            accept a "vertical" keyword argument to orient the measure
            dimension of the plot vertically.
        kwargs : key, value mappings
            Keyword argument are passed to the plotting function.

        Returns
        -------
        self : JointGrid instance
            Returns `self`.

        """
        plt.sca(self.ax_marg_x)
        func(self.x, **kwargs)

        kwargs["vertical"] = True
        plt.sca(self.ax_marg_y)
        func(self.y, **kwargs)

        return self

    def annotate(self, func, template=None, stat=None, loc="best", **kwargs):
        """Annotate the plot with a statistic about the relationship.

        Parameters
        ----------
        func : callable
            Statistical function that maps the x, y vectors either to (val, p)
            or to val.
        template : string format template, optional
            The template must have the format keys "stat" and "val";
            if `func` returns a p value, it should also have the key "p".
        stat : string, optional
            Name to use for the statistic in the annotation, by default it
            uses the name of `func`.
        loc : string or int, optional
            Matplotlib legend location code; used to place the annotation.
        kwargs : key, value mappings
            Other keyword arguments are passed to `ax.legend`, which formats
            the annotation.

        Returns
        -------
        self : JointGrid instance.
            Returns `self`.

        """
        default_template = "{stat} = {val:.2g}; p = {p:.2g}"

        # Call the function and determine the form of the return value(s)
        out = func(self.x, self.y)
        try:
            val, p = out
        except TypeError:
            val, p = out, None
            default_template, _ = default_template.split(";")

        # Set the default template
        if template is None:
            template = default_template

        # Default to name of the function
        if stat is None:
            stat = func.__name__

        # Format the annotation
        if p is None:
            annotation = template.format(stat=stat, val=val)
        else:
            annotation = template.format(stat=stat, val=val, p=p)

        # Draw an invisible plot and use the legend to draw the annotation
        # This is a bit of a hack, but `loc=best` works nicely and is not
        # easily abstracted.
        phantom, = self.ax_joint.plot(self.x, self.y, linestyle="", alpha=0)
        self.ax_joint.legend([phantom], [annotation], loc=loc, **kwargs)
        phantom.remove()

        return self

    def set_axis_labels(self, xlabel="", ylabel="", **kwargs):
        """Set the axis labels on the bivariate axes.

        Parameters
        ----------
        xlabel, ylabel : strings
            Label names for the x and y variables.
        kwargs : key, value mappings
            Other keyword arguments are passed to the set_xlabel or
            set_ylabel.

        Returns
        -------
        self : JointGrid instance
            returns `self`

        """
        self.ax_joint.set_xlabel(xlabel, **kwargs)
        self.ax_joint.set_ylabel(ylabel, **kwargs)
        return self