This file is indexed.

/usr/lib/python2.7/dist-packages/scikit_learn-0.14.1.egg-info is in python-sklearn 0.14.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Metadata-Version: 1.1
Name: scikit-learn
Version: 0.14.1
Summary: A set of python modules for machine learning and data mining
Home-page: http://scikit-learn.org
Author: Andreas Mueller
Author-email: amueller@ais.uni-bonn.de
License: new BSD
Download-URL: http://sourceforge.net/projects/scikit-learn/files/
Description: .. -*- mode: rst -*-
        
        |Travis|_
        
        .. |Travis| image:: https://api.travis-ci.org/scikit-learn/scikit-learn.png?branch=master
        .. _Travis: https://travis-ci.org/scikit-learn/scikit-learn
        
        scikit-learn
        ============
        
        scikit-learn is a Python module for machine learning built on top of
        SciPy and distributed under the 3-Clause BSD license.
        
        The project was started in 2007 by David Cournapeau as a Google Summer
        of Code project, and since then many volunteers have contributed. See
        the AUTHORS.rst file for a complete list of contributors.
        
        It is currently maintained by a team of volunteers.
        
        **Note** `scikit-learn` was previously referred to as `scikits.learn`.
        
        
        Important links
        ===============
        
        - Official source code repo: https://github.com/scikit-learn/scikit-learn
        - HTML documentation (stable release): http://scikit-learn.org
        - HTML documentation (development version): http://scikit-learn.org/dev/
        - Download releases: http://sourceforge.net/projects/scikit-learn/files/
        - Issue tracker: https://github.com/scikit-learn/scikit-learn/issues
        - Mailing list: https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
        - IRC channel: ``#scikit-learn`` at ``irc.freenode.net``
        
        Dependencies
        ============
        
        scikit-learn is tested to work under Python 2.6+ and Python 3.3+
        (using the same codebase thanks to an embedded copy of `six <http://pythonhosted.org/six/>`_).
        
        The required dependencies to build the software Numpy >= 1.3, SciPy >= 0.7
        and a working C/C++ compiler.
        
        For running the examples Matplotlib >= 0.99.1 is required and for running the
        tests you need nose >= 0.10.
        
        This configuration matches the Ubuntu 10.04 LTS release from April 2010.
        
        
        Install
        =======
        
        This package uses distutils, which is the default way of installing
        python modules. To install in your home directory, use::
        
          python setup.py install --user
        
        To install for all users on Unix/Linux::
        
          python setup.py build
          sudo python setup.py install
        
        
        Development
        ===========
        
        Code
        ----
        
        GIT
        ~~~
        
        You can check the latest sources with the command::
        
            git clone git://github.com/scikit-learn/scikit-learn.git
        
        or if you have write privileges::
        
            git clone git@github.com:scikit-learn/scikit-learn.git
        
        
        Testing
        -------
        
        After installation, you can launch the test suite from outside the
        source directory (you will need to have nosetests installed)::
        
           $ nosetests --exe sklearn
        
        See the web page http://scikit-learn.org/stable/install.html#testing
        for more information.
        
            Random number generation can be controlled during testing by setting
            the ``SKLEARN_SEED`` environment variable.
        
Platform: UNKNOWN
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved
Classifier: Programming Language :: C
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3