This file is indexed.

/usr/lib/python2.7/dist-packages/sklearn/dummy.py is in python-sklearn 0.14.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Arnaud Joly <a.joly@ulg.ac.be>
# License: BSD 3 clause

import numpy as np

from .base import BaseEstimator, ClassifierMixin, RegressorMixin
from .externals.six.moves import xrange
from .utils import check_random_state
from .utils.fixes import unique
from .utils.validation import safe_asarray


class DummyClassifier(BaseEstimator, ClassifierMixin):
    """
    DummyClassifier is a classifier that makes predictions using simple rules.

    This classifier is useful as a simple baseline to compare with other
    (real) classifiers. Do not use it for real problems.

    Parameters
    ----------
    strategy: str
        Strategy to use to generate predictions.
            * "stratified": generates predictions by respecting the training
              set's class distribution.
            * "most_frequent": always predicts the most frequent label in the
              training set.
            * "uniform": generates predictions uniformly at random.

    random_state: int seed, RandomState instance, or None (default)
        The seed of the pseudo random number generator to use.

    Attributes
    ----------
    `classes_` : array or list of array of shape = [n_classes]
        Class labels for each output.

    `n_classes_` : array or list of array of shape = [n_classes]
        Number of label for each output.

    `class_prior_` : array or list of array of shape = [n_classes]
        Probability of each class for each output.

    `n_outputs_` : int,
        Number of outputs.

    `outputs_2d_` : bool,
        True if the output at fit is 2d, else false.
    """

    def __init__(self, strategy="stratified", random_state=None):
        self.strategy = strategy
        self.random_state = random_state

    def fit(self, X, y):
        """Fit the random classifier.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        Returns
        -------
        self : object
            Returns self.
        """
        if self.strategy not in ("most_frequent", "stratified", "uniform"):
            raise ValueError("Unknown strategy type.")

        y = np.atleast_1d(y)
        self.output_2d_ = y.ndim == 2

        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]
        self.classes_ = []
        self.n_classes_ = []
        self.class_prior_ = []

        for k in xrange(self.n_outputs_):
            classes, y_k = unique(y[:, k], return_inverse=True)
            self.classes_.append(classes)
            self.n_classes_.append(classes.shape[0])
            self.class_prior_.append(np.bincount(y_k) / float(y_k.shape[0]))

        if self.n_outputs_ == 1 and not self.output_2d_:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]
            self.class_prior_ = self.class_prior_[0]

        return self

    def predict(self, X):
        """
        Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples] or [n_samples, n_outputs]
            Predicted target values for X.
        """
        if not hasattr(self, "classes_"):
            raise ValueError("DummyClassifier not fitted.")

        X = safe_asarray(X)
        n_samples = X.shape[0]
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        if self.n_outputs_ == 1:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]

        # Compute probability only once
        if self.strategy == "stratified":
            proba = self.predict_proba(X)
            if self.n_outputs_ == 1:
                proba = [proba]

        y = []
        for k in xrange(self.n_outputs_):
            if self.strategy == "most_frequent":
                ret = np.ones(n_samples, dtype=int) * class_prior_[k].argmax()

            elif self.strategy == "stratified":
                ret = proba[k].argmax(axis=1)

            elif self.strategy == "uniform":
                ret = rs.randint(n_classes_[k], size=n_samples)

            y.append(classes_[k][ret])

        y = np.vstack(y).T
        if self.n_outputs_ == 1 and not self.output_2d_:
            y = np.ravel(y)

        return y

    def predict_proba(self, X):
        """
        Return probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        P : array-like or list of array-lke of shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically, for each
            output.
        """
        if not hasattr(self, "classes_"):
            raise ValueError("DummyClassifier not fitted.")

        X = safe_asarray(X)
        n_samples = X.shape[0]
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        if self.n_outputs_ == 1 and not self.output_2d_:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]

        P = []
        for k in xrange(self.n_outputs_):
            if self.strategy == "most_frequent":
                ind = np.ones(n_samples, dtype=int) * class_prior_[k].argmax()
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0

            elif self.strategy == "stratified":
                out = rs.multinomial(1, class_prior_[k], size=n_samples)

            elif self.strategy == "uniform":
                out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
                out /= n_classes_[k]

            P.append(out)

        if self.n_outputs_ == 1 and not self.output_2d_:
            P = P[0]

        return P

    def predict_log_proba(self, X):
        """
        Return log probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        P : array-like or list of array-like of shape = [n_samples, n_classes]
            Returns the log probability of the sample for each class in
            the model, where classes are ordered arithmetically for each
            output.
        """
        proba = self.predict_proba(X)
        if self.n_outputs_ == 1:
            return np.log(proba)
        else:
            return [np.log(p) for p in proba]


class DummyRegressor(BaseEstimator, RegressorMixin):
    """
    DummyRegressor is a regressor that always predicts the mean of the training
    targets.

    This regressor is useful as a simple baseline to compare with other
    (real) regressors. Do not use it for real problems.

    Attributes
    ----------
    `y_mean_` : float or array of shape [n_outputs]
        Mean of the training targets.

    `n_outputs_` : int,
        Number of outputs.

    `outputs_2d_` : bool,
        True if the output at fit is 2d, else false.
    """

    def fit(self, X, y):
        """Fit the random regressor.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        Returns
        -------
        self : object
            Returns self.
        """
        y = safe_asarray(y)
        self.y_mean_ = np.reshape(np.mean(y, axis=0), (1, -1))
        self.n_outputs_ = np.size(self.y_mean_)  # y.shape[1] is not safe
        self.output_2d_ = (y.ndim == 2)
        return self

    def predict(self, X):
        """
        Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples]  or [n_samples, n_outputs]
            Predicted target values for X.
        """
        if not hasattr(self, "y_mean_"):
            raise ValueError("DummyRegressor not fitted.")

        X = safe_asarray(X)
        n_samples = X.shape[0]
        y = np.ones((n_samples, 1)) * self.y_mean_

        if self.n_outputs_ == 1 and not self.output_2d_:
            y = np.ravel(y)

        return y