/usr/lib/python2.7/dist-packages/sklearn/hmm.py is in python-sklearn 0.14.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 | # Hidden Markov Models
#
# Author: Ron Weiss <ronweiss@gmail.com>
# and Shiqiao Du <lucidfrontier.45@gmail.com>
# API changes: Jaques Grobler <jaquesgrobler@gmail.com>
"""
The :mod:`sklearn.hmm` module implements hidden Markov models.
**Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known
numerical stability issues. If nobody volunteers to write documentation and
make it more stable, this module will be removed in version 0.11.
"""
import string
import numpy as np
from .utils import check_random_state, deprecated
from .utils.extmath import logsumexp
from .base import BaseEstimator
from .mixture import (
GMM, log_multivariate_normal_density, sample_gaussian,
distribute_covar_matrix_to_match_covariance_type, _validate_covars)
from . import cluster
from . import _hmmc
__all__ = ['GMMHMM',
'GaussianHMM',
'MultinomialHMM',
'decoder_algorithms',
'normalize']
ZEROLOGPROB = -1e200
EPS = np.finfo(float).eps
NEGINF = -np.inf
decoder_algorithms = ("viterbi", "map")
def normalize(A, axis=None):
""" Normalize the input array so that it sums to 1.
Parameters
----------
A: array, shape (n_samples, n_features)
Non-normalized input data
axis: int
dimension along which normalization is performed
Returns
-------
normalized_A: array, shape (n_samples, n_features)
A with values normalized (summing to 1) along the prescribed axis
WARNING: Modifies inplace the array
"""
A += EPS
Asum = A.sum(axis)
if axis and A.ndim > 1:
# Make sure we don't divide by zero.
Asum[Asum == 0] = 1
shape = list(A.shape)
shape[axis] = 1
Asum.shape = shape
return A / Asum
class _BaseHMM(BaseEstimator):
"""Hidden Markov Model base class.
Representation of a hidden Markov model probability distribution.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
See the instance documentation for details specific to a
particular object.
Attributes
----------
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
transmat_prior : array, shape (`n_components`, `n_components`)
Matrix of prior transition probabilities between states.
startprob_prior : array, shape ('n_components`,)
Initial state occupation prior distribution.
algorithm : string, one of the decoder_algorithms
decoder algorithm
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'm' for means, and 'c' for covars, etc.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'm' for means, and 'c' for
covars, etc. Defaults to all parameters.
See Also
--------
GMM : Gaussian mixture model
"""
# This class implements the public interface to all HMMs that
# derive from it, including all of the machinery for the
# forward-backward and Viterbi algorithms. Subclasses need only
# implement _generate_sample_from_state(), _compute_log_likelihood(),
# _init(), _initialize_sufficient_statistics(),
# _accumulate_sufficient_statistics(), and _do_mstep(), all of
# which depend on the specific emission distribution.
#
# Subclasses will probably also want to implement properties for
# the emission distribution parameters to expose them publicly.
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
self.n_components = n_components
self.n_iter = n_iter
self.thresh = thresh
self.params = params
self.init_params = init_params
self.startprob_ = startprob
self.startprob_prior = startprob_prior
self.transmat_ = transmat
self.transmat_prior = transmat_prior
self._algorithm = algorithm
self.random_state = random_state
@deprecated("HMM.eval was renamed to HMM.score_samples in 0.14 and will be"
" removed in 0.16.")
def eval(self, X):
return self.score_samples(X)
def score_samples(self, obs):
"""Compute the log probability under the model and compute posteriors.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
logprob : float
Log likelihood of the sequence ``obs``.
posteriors : array_like, shape (n, n_components)
Posterior probabilities of each state for each
observation
See Also
--------
score : Compute the log probability under the model
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, fwdlattice = self._do_forward_pass(framelogprob)
bwdlattice = self._do_backward_pass(framelogprob)
gamma = fwdlattice + bwdlattice
# gamma is guaranteed to be correctly normalized by logprob at
# all frames, unless we do approximate inference using pruning.
# So, we will normalize each frame explicitly in case we
# pruned too aggressively.
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
posteriors += np.finfo(np.float32).eps
posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
return logprob, posteriors
def score(self, obs):
"""Compute the log probability under the model.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
logprob : float
Log likelihood of the ``obs``.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, _ = self._do_forward_pass(framelogprob)
return logprob
def _decode_viterbi(self, obs):
"""Find most likely state sequence corresponding to ``obs``.
Uses the Viterbi algorithm.
Parameters
----------
obs : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
viterbi_logprob : float
Log probability of the maximum likelihood path through the HMM.
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob)
return viterbi_logprob, state_sequence
def _decode_map(self, obs):
"""Find most likely state sequence corresponding to `obs`.
Uses the maximum a posteriori estimation.
Parameters
----------
obs : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
map_logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
_, posteriors = self.score_samples(obs)
state_sequence = np.argmax(posteriors, axis=1)
map_logprob = np.max(posteriors, axis=1).sum()
return map_logprob, state_sequence
def decode(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to ``obs``.
Uses the selected algorithm for decoding.
Parameters
----------
obs : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
algorithm : string, one of the `decoder_algorithms`
decoder algorithm to be used
Returns
-------
logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
if self._algorithm in decoder_algorithms:
algorithm = self._algorithm
elif algorithm in decoder_algorithms:
algorithm = algorithm
decoder = {"viterbi": self._decode_viterbi,
"map": self._decode_map}
logprob, state_sequence = decoder[algorithm](obs)
return logprob, state_sequence
def predict(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to `obs`.
Parameters
----------
obs : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
"""
_, state_sequence = self.decode(obs, algorithm)
return state_sequence
def predict_proba(self, obs):
"""Compute the posterior probability for each state in the model
Parameters
----------
obs : array_like, shape (n, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
T : array-like, shape (n, n_components)
Returns the probability of the sample for each state in the model.
"""
_, posteriors = self.score_samples(obs)
return posteriors
def sample(self, n=1, random_state=None):
"""Generate random samples from the model.
Parameters
----------
n : int
Number of samples to generate.
random_state: RandomState or an int seed (0 by default)
A random number generator instance. If None is given, the
object's random_state is used
Returns
-------
(obs, hidden_states)
obs : array_like, length `n` List of samples
hidden_states : array_like, length `n` List of hidden states
"""
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
startprob_pdf = self.startprob_
startprob_cdf = np.cumsum(startprob_pdf)
transmat_pdf = self.transmat_
transmat_cdf = np.cumsum(transmat_pdf, 1)
# Initial state.
rand = random_state.rand()
currstate = (startprob_cdf > rand).argmax()
hidden_states = [currstate]
obs = [self._generate_sample_from_state(
currstate, random_state=random_state)]
for _ in range(n - 1):
rand = random_state.rand()
currstate = (transmat_cdf[currstate] > rand).argmax()
hidden_states.append(currstate)
obs.append(self._generate_sample_from_state(
currstate, random_state=random_state))
return np.array(obs), np.array(hidden_states, dtype=int)
def fit(self, obs):
"""Estimate model parameters.
An initialization step is performed before entering the EM
algorithm. If you want to avoid this step, pass proper
``init_params`` keyword argument to estimator's constructor.
Parameters
----------
obs : list
List of array-like observation sequences (shape (n_i, n_features)).
Notes
-----
In general, `logprob` should be non-decreasing unless
aggressive pruning is used. Decreasing `logprob` is generally
a sign of overfitting (e.g. a covariance parameter getting too
small). You can fix this by getting more training data, or
decreasing `covars_prior`.
"""
if self.algorithm not in decoder_algorithms:
self._algorithm = "viterbi"
self._init(obs, self.init_params)
logprob = []
for i in range(self.n_iter):
# Expectation step
stats = self._initialize_sufficient_statistics()
curr_logprob = 0
for seq in obs:
framelogprob = self._compute_log_likelihood(seq)
lpr, fwdlattice = self._do_forward_pass(framelogprob)
bwdlattice = self._do_backward_pass(framelogprob)
gamma = fwdlattice + bwdlattice
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
curr_logprob += lpr
self._accumulate_sufficient_statistics(
stats, seq, framelogprob, posteriors, fwdlattice,
bwdlattice, self.params)
logprob.append(curr_logprob)
# Check for convergence.
if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh:
break
# Maximization step
self._do_mstep(stats, self.params)
return self
def _get_algorithm(self):
"decoder algorithm"
return self._algorithm
def _set_algorithm(self, algorithm):
if algorithm not in decoder_algorithms:
raise ValueError("algorithm must be one of the decoder_algorithms")
self._algorithm = algorithm
algorithm = property(_get_algorithm, _set_algorithm)
def _get_startprob(self):
"""Mixing startprob for each state."""
return np.exp(self._log_startprob)
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(startprob):
normalize(startprob)
if len(startprob) != self.n_components:
raise ValueError('startprob must have length n_components')
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
startprob_ = property(_get_startprob, _set_startprob)
def _get_transmat(self):
"""Matrix of transition probabilities."""
return np.exp(self._log_transmat)
def _set_transmat(self, transmat):
if transmat is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(transmat):
normalize(transmat, axis=1)
if (np.asarray(transmat).shape
!= (self.n_components, self.n_components)):
raise ValueError('transmat must have shape '
'(n_components, n_components)')
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
transmat_ = property(_get_transmat, _set_transmat)
def _do_viterbi_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
state_sequence, logprob = _hmmc._viterbi(
n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob)
return logprob, state_sequence
def _do_forward_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
fwdlattice = np.zeros((n_observations, n_components))
_hmmc._forward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, fwdlattice)
fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF
return logsumexp(fwdlattice[-1]), fwdlattice
def _do_backward_pass(self, framelogprob):
n_observations, n_components = framelogprob.shape
bwdlattice = np.zeros((n_observations, n_components))
_hmmc._backward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, bwdlattice)
bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF
return bwdlattice
def _compute_log_likelihood(self, obs):
pass
def _generate_sample_from_state(self, state, random_state=None):
pass
def _init(self, obs, params):
if 's' in params:
self.startprob_.fill(1.0 / self.n_components)
if 't' in params:
self.transmat_.fill(1.0 / self.n_components)
# Methods used by self.fit()
def _initialize_sufficient_statistics(self):
stats = {'nobs': 0,
'start': np.zeros(self.n_components),
'trans': np.zeros((self.n_components, self.n_components))}
return stats
def _accumulate_sufficient_statistics(self, stats, seq, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
stats['nobs'] += 1
if 's' in params:
stats['start'] += posteriors[0]
if 't' in params:
n_observations, n_components = framelogprob.shape
lneta = np.zeros((n_observations - 1, n_components, n_components))
lnP = logsumexp(fwdlattice[-1])
_hmmc._compute_lneta(n_observations, n_components, fwdlattice,
self._log_transmat, bwdlattice, framelogprob,
lnP, lneta)
stats["trans"] += np.exp(logsumexp(lneta, 0))
def _do_mstep(self, stats, params):
# Based on Huang, Acero, Hon, "Spoken Language Processing",
# p. 443 - 445
if self.startprob_prior is None:
self.startprob_prior = 1.0
if self.transmat_prior is None:
self.transmat_prior = 1.0
if 's' in params:
self.startprob_ = normalize(
np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20))
if 't' in params:
transmat_ = normalize(
np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20),
axis=1)
self.transmat_ = transmat_
class GaussianHMM(_BaseHMM):
"""Hidden Markov Model with Gaussian emissions
Representation of a hidden Markov model probability distribution.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
Parameters
----------
n_components : int
Number of states.
``_covariance_type`` : string
String describing the type of covariance parameters to
use. Must be one of 'spherical', 'tied', 'diag', 'full'.
Defaults to 'diag'.
Attributes
----------
``_covariance_type`` : string
String describing the type of covariance parameters used by
the model. Must be one of 'spherical', 'tied', 'diag', 'full'.
n_features : int
Dimensionality of the Gaussian emissions.
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
means : array, shape (`n_components`, `n_features`)
Mean parameters for each state.
covars : array
Covariance parameters for each state. The shape depends on
``_covariance_type``::
(`n_components`,) if 'spherical',
(`n_features`, `n_features`) if 'tied',
(`n_components`, `n_features`) if 'diag',
(`n_components`, `n_features`, `n_features`) if 'full'
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'm' for means, and 'c' for covars, etc.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'm' for means, and 'c' for
covars, etc. Defaults to all parameters.
Examples
--------
>>> from sklearn.hmm import GaussianHMM
>>> GaussianHMM(n_components=2)
... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
GaussianHMM(algorithm='viterbi',...
See Also
--------
GMM : Gaussian mixture model
"""
def __init__(self, n_components=1, covariance_type='diag', startprob=None,
transmat=None, startprob_prior=None, transmat_prior=None,
algorithm="viterbi", means_prior=None, means_weight=0,
covars_prior=1e-2, covars_weight=1,
random_state=None, n_iter=10, thresh=1e-2,
params=string.ascii_letters,
init_params=string.ascii_letters):
_BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior, algorithm=algorithm,
random_state=random_state, n_iter=n_iter,
thresh=thresh, params=params,
init_params=init_params)
self._covariance_type = covariance_type
if not covariance_type in ['spherical', 'tied', 'diag', 'full']:
raise ValueError('bad covariance_type')
self.means_prior = means_prior
self.means_weight = means_weight
self.covars_prior = covars_prior
self.covars_weight = covars_weight
@property
def covariance_type(self):
"""Covariance type of the model.
Must be one of 'spherical', 'tied', 'diag', 'full'.
"""
return self._covariance_type
def _get_means(self):
"""Mean parameters for each state."""
return self._means_
def _set_means(self, means):
means = np.asarray(means)
if (hasattr(self, 'n_features')
and means.shape != (self.n_components, self.n_features)):
raise ValueError('means must have shape '
'(n_components, n_features)')
self._means_ = means.copy()
self.n_features = self._means_.shape[1]
means_ = property(_get_means, _set_means)
def _get_covars(self):
"""Return covars as a full matrix."""
if self._covariance_type == 'full':
return self._covars_
elif self._covariance_type == 'diag':
return [np.diag(cov) for cov in self._covars_]
elif self._covariance_type == 'tied':
return [self._covars_] * self.n_components
elif self._covariance_type == 'spherical':
return [np.eye(self.n_features) * f for f in self._covars_]
def _set_covars(self, covars):
covars = np.asarray(covars)
_validate_covars(covars, self._covariance_type, self.n_components)
self._covars_ = covars.copy()
covars_ = property(_get_covars, _set_covars)
def _compute_log_likelihood(self, obs):
return log_multivariate_normal_density(
obs, self._means_, self._covars_, self._covariance_type)
def _generate_sample_from_state(self, state, random_state=None):
if self._covariance_type == 'tied':
cv = self._covars_
else:
cv = self._covars_[state]
return sample_gaussian(self._means_[state], cv, self._covariance_type,
random_state=random_state)
def _init(self, obs, params='stmc'):
super(GaussianHMM, self)._init(obs, params=params)
if (hasattr(self, 'n_features')
and self.n_features != obs[0].shape[1]):
raise ValueError('Unexpected number of dimensions, got %s but '
'expected %s' % (obs[0].shape[1],
self.n_features))
self.n_features = obs[0].shape[1]
if 'm' in params:
self._means_ = cluster.KMeans(
n_clusters=self.n_components).fit(obs[0]).cluster_centers_
if 'c' in params:
cv = np.cov(obs[0].T)
if not cv.shape:
cv.shape = (1, 1)
self._covars_ = distribute_covar_matrix_to_match_covariance_type(
cv, self._covariance_type, self.n_components)
def _initialize_sufficient_statistics(self):
stats = super(GaussianHMM, self)._initialize_sufficient_statistics()
stats['post'] = np.zeros(self.n_components)
stats['obs'] = np.zeros((self.n_components, self.n_features))
stats['obs**2'] = np.zeros((self.n_components, self.n_features))
stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features,
self.n_features))
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
super(GaussianHMM, self)._accumulate_sufficient_statistics(
stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
params)
if 'm' in params or 'c' in params:
stats['post'] += posteriors.sum(axis=0)
stats['obs'] += np.dot(posteriors.T, obs)
if 'c' in params:
if self._covariance_type in ('spherical', 'diag'):
stats['obs**2'] += np.dot(posteriors.T, obs ** 2)
elif self._covariance_type in ('tied', 'full'):
for t, o in enumerate(obs):
obsobsT = np.outer(o, o)
for c in range(self.n_components):
stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT
def _do_mstep(self, stats, params):
super(GaussianHMM, self)._do_mstep(stats, params)
# Based on Huang, Acero, Hon, "Spoken Language Processing",
# p. 443 - 445
denom = stats['post'][:, np.newaxis]
if 'm' in params:
prior = self.means_prior
weight = self.means_weight
if prior is None:
weight = 0
prior = 0
self._means_ = (weight * prior + stats['obs']) / (weight + denom)
if 'c' in params:
covars_prior = self.covars_prior
covars_weight = self.covars_weight
if covars_prior is None:
covars_weight = 0
covars_prior = 0
means_prior = self.means_prior
means_weight = self.means_weight
if means_prior is None:
means_weight = 0
means_prior = 0
meandiff = self._means_ - means_prior
if self._covariance_type in ('spherical', 'diag'):
cv_num = (means_weight * (meandiff) ** 2
+ stats['obs**2']
- 2 * self._means_ * stats['obs']
+ self._means_ ** 2 * denom)
cv_den = max(covars_weight - 1, 0) + denom
self._covars_ = (covars_prior + cv_num) / cv_den
if self._covariance_type == 'spherical':
self._covars_ = np.tile(
self._covars_.mean(1)[:, np.newaxis],
(1, self._covars_.shape[1]))
elif self._covariance_type in ('tied', 'full'):
cvnum = np.empty((self.n_components, self.n_features,
self.n_features))
for c in range(self.n_components):
obsmean = np.outer(stats['obs'][c], self._means_[c])
cvnum[c] = (means_weight * np.outer(meandiff[c],
meandiff[c])
+ stats['obs*obs.T'][c]
- obsmean - obsmean.T
+ np.outer(self._means_[c], self._means_[c])
* stats['post'][c])
cvweight = max(covars_weight - self.n_features, 0)
if self._covariance_type == 'tied':
self._covars_ = ((covars_prior + cvnum.sum(axis=0)) /
(cvweight + stats['post'].sum()))
elif self._covariance_type == 'full':
self._covars_ = ((covars_prior + cvnum) /
(cvweight + stats['post'][:, None, None]))
class MultinomialHMM(_BaseHMM):
"""Hidden Markov Model with multinomial (discrete) emissions
Attributes
----------
n_components : int
Number of states in the model.
n_symbols : int
Number of possible symbols emitted by the model (in the observations).
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
emissionprob : array, shape ('n_components`, 'n_symbols`)
Probability of emitting a given symbol when in each state.
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'm' for means, and 'c' for covars, etc.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'm' for means, and 'c' for
covars, etc. Defaults to all parameters.
Examples
--------
>>> from sklearn.hmm import MultinomialHMM
>>> MultinomialHMM(n_components=2)
... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
MultinomialHMM(algorithm='viterbi',...
See Also
--------
GaussianHMM : HMM with Gaussian emissions
"""
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
"""Create a hidden Markov model with multinomial emissions.
Parameters
----------
n_components : int
Number of states.
"""
_BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior,
algorithm=algorithm,
random_state=random_state,
n_iter=n_iter,
thresh=thresh,
params=params,
init_params=init_params)
def _get_emissionprob(self):
"""Emission probability distribution for each state."""
return np.exp(self._log_emissionprob)
def _set_emissionprob(self, emissionprob):
emissionprob = np.asarray(emissionprob)
if hasattr(self, 'n_symbols') and \
emissionprob.shape != (self.n_components, self.n_symbols):
raise ValueError('emissionprob must have shape '
'(n_components, n_symbols)')
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(emissionprob):
normalize(emissionprob)
self._log_emissionprob = np.log(emissionprob)
underflow_idx = np.isnan(self._log_emissionprob)
self._log_emissionprob[underflow_idx] = NEGINF
self.n_symbols = self._log_emissionprob.shape[1]
emissionprob_ = property(_get_emissionprob, _set_emissionprob)
def _compute_log_likelihood(self, obs):
return self._log_emissionprob[:, obs].T
def _generate_sample_from_state(self, state, random_state=None):
cdf = np.cumsum(self.emissionprob_[state, :])
random_state = check_random_state(random_state)
rand = random_state.rand()
symbol = (cdf > rand).argmax()
return symbol
def _init(self, obs, params='ste'):
super(MultinomialHMM, self)._init(obs, params=params)
self.random_state = check_random_state(self.random_state)
if 'e' in params:
if not hasattr(self, 'n_symbols'):
symbols = set()
for o in obs:
symbols = symbols.union(set(o))
self.n_symbols = len(symbols)
emissionprob = normalize(self.random_state.rand(self.n_components,
self.n_symbols), 1)
self.emissionprob_ = emissionprob
def _initialize_sufficient_statistics(self):
stats = super(MultinomialHMM, self)._initialize_sufficient_statistics()
stats['obs'] = np.zeros((self.n_components, self.n_symbols))
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
super(MultinomialHMM, self)._accumulate_sufficient_statistics(
stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
params)
if 'e' in params:
for t, symbol in enumerate(obs):
stats['obs'][:, symbol] += posteriors[t]
def _do_mstep(self, stats, params):
super(MultinomialHMM, self)._do_mstep(stats, params)
if 'e' in params:
self.emissionprob_ = (stats['obs']
/ stats['obs'].sum(1)[:, np.newaxis])
def _check_input_symbols(self, obs):
"""check if input can be used for Multinomial.fit input must be both
positive integer array and every element must be continuous.
e.g. x = [0, 0, 2, 1, 3, 1, 1] is OK and y = [0, 0, 3, 5, 10] not
"""
symbols = np.asarray(obs).flatten()
if symbols.dtype.kind != 'i':
# input symbols must be integer
return False
if len(symbols) == 1:
# input too short
return False
if np.any(symbols < 0):
# input contains negative intiger
return False
symbols.sort()
if np.any(np.diff(symbols) > 1):
# input is discontinous
return False
return True
def fit(self, obs, **kwargs):
err_msg = ("Input must be both positive integer array and "
"every element must be continuous, but %s was given.")
if not self._check_input_symbols(obs):
raise ValueError(err_msg % obs)
return _BaseHMM.fit(self, obs, **kwargs)
class GMMHMM(_BaseHMM):
"""Hidden Markov Model with Gaussin mixture emissions
Attributes
----------
init_params : string, optional
Controls which parameters are initialized prior to training. Can \
contain any combination of 's' for startprob, 't' for transmat, 'm' \
for means, and 'c' for covars, etc. Defaults to all parameters.
params : string, optional
Controls which parameters are updated in the training process. Can
contain any combination of 's' for startprob, 't' for transmat,'m' for
means, and 'c' for covars, etc. Defaults to all parameters.
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
gmms : array of GMM objects, length `n_components`
GMM emission distributions for each state.
random_state : RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
Examples
--------
>>> from sklearn.hmm import GMMHMM
>>> GMMHMM(n_components=2, n_mix=10, covariance_type='diag')
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
GMMHMM(algorithm='viterbi', covariance_type='diag',...
See Also
--------
GaussianHMM : HMM with Gaussian emissions
"""
def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", gmms=None, covariance_type='diag',
covars_prior=1e-2, random_state=None, n_iter=10, thresh=1e-2,
params=string.ascii_letters,
init_params=string.ascii_letters):
"""Create a hidden Markov model with GMM emissions.
Parameters
----------
n_components : int
Number of states.
"""
_BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior,
algorithm=algorithm,
random_state=random_state,
n_iter=n_iter,
thresh=thresh,
params=params,
init_params=init_params)
# XXX: Hotfit for n_mix that is incompatible with the scikit's
# BaseEstimator API
self.n_mix = n_mix
self._covariance_type = covariance_type
self.covars_prior = covars_prior
self.gmms = gmms
if gmms is None:
gmms = []
for x in range(self.n_components):
if covariance_type is None:
g = GMM(n_mix)
else:
g = GMM(n_mix, covariance_type=covariance_type)
gmms.append(g)
self.gmms_ = gmms
# Read-only properties.
@property
def covariance_type(self):
"""Covariance type of the model.
Must be one of 'spherical', 'tied', 'diag', 'full'.
"""
return self._covariance_type
def _compute_log_likelihood(self, obs):
return np.array([g.score(obs) for g in self.gmms_]).T
def _generate_sample_from_state(self, state, random_state=None):
return self.gmms_[state].sample(1, random_state=random_state).flatten()
def _init(self, obs, params='stwmc'):
super(GMMHMM, self)._init(obs, params=params)
allobs = np.concatenate(obs, 0)
for g in self.gmms_:
g.set_params(init_params=params, n_iter=0)
g.fit(allobs)
def _initialize_sufficient_statistics(self):
stats = super(GMMHMM, self)._initialize_sufficient_statistics()
stats['norm'] = [np.zeros(g.weights_.shape) for g in self.gmms_]
stats['means'] = [np.zeros(np.shape(g.means_)) for g in self.gmms_]
stats['covars'] = [np.zeros(np.shape(g.covars_)) for g in self.gmms_]
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
super(GMMHMM, self)._accumulate_sufficient_statistics(
stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
params)
for state, g in enumerate(self.gmms_):
_, lgmm_posteriors = g.score_samples(obs)
lgmm_posteriors += np.log(posteriors[:, state][:, np.newaxis]
+ np.finfo(np.float).eps)
gmm_posteriors = np.exp(lgmm_posteriors)
tmp_gmm = GMM(g.n_components, covariance_type=g.covariance_type)
n_features = g.means_.shape[1]
tmp_gmm._set_covars(
distribute_covar_matrix_to_match_covariance_type(
np.eye(n_features), g.covariance_type,
g.n_components))
norm = tmp_gmm._do_mstep(obs, gmm_posteriors, params)
if np.any(np.isnan(tmp_gmm.covars_)):
raise ValueError
stats['norm'][state] += norm
if 'm' in params:
stats['means'][state] += tmp_gmm.means_ * norm[:, np.newaxis]
if 'c' in params:
if tmp_gmm.covariance_type == 'tied':
stats['covars'][state] += tmp_gmm.covars_ * norm.sum()
else:
cvnorm = np.copy(norm)
shape = np.ones(tmp_gmm.covars_.ndim)
shape[0] = np.shape(tmp_gmm.covars_)[0]
cvnorm.shape = shape
stats['covars'][state] += tmp_gmm.covars_ * cvnorm
def _do_mstep(self, stats, params):
super(GMMHMM, self)._do_mstep(stats, params)
# All that is left to do is to apply covars_prior to the
# parameters updated in _accumulate_sufficient_statistics.
for state, g in enumerate(self.gmms_):
n_features = g.means_.shape[1]
norm = stats['norm'][state]
if 'w' in params:
g.weights_ = normalize(norm)
if 'm' in params:
g.means_ = stats['means'][state] / norm[:, np.newaxis]
if 'c' in params:
if g.covariance_type == 'tied':
g.covars_ = ((stats['covars'][state]
+ self.covars_prior * np.eye(n_features))
/ norm.sum())
else:
cvnorm = np.copy(norm)
shape = np.ones(g.covars_.ndim)
shape[0] = np.shape(g.covars_)[0]
cvnorm.shape = shape
if (g.covariance_type in ['spherical', 'diag']):
g.covars_ = (stats['covars'][state] +
self.covars_prior) / cvnorm
elif g.covariance_type == 'full':
eye = np.eye(n_features)
g.covars_ = ((stats['covars'][state]
+ self.covars_prior * eye[np.newaxis])
/ cvnorm)
|