This file is indexed.

/usr/share/pyshared/spykeutils/plot/sde.py is in python-spykeutils 0.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import scipy as sp

from guiqwt.builder import make
from guiqwt.baseplot import BasePlot
from guiqwt.plot import BaseCurveWidget

import quantities as pq

from .. import SpykeException
from .. import rate_estimation
from .. import signal_processing
from ..progress_indicator import ProgressIndicator
from dialog import PlotDialog
import helper


@helper.needs_qt
def sde(trains, events=None, start=0 * pq.ms, stop=None,
        kernel_size=100 * pq.ms, optimize_steps=0,
        minimum_kernel=10 * pq.ms, maximum_kernel=500 * pq.ms,
        kernel=None, time_unit=pq.ms, progress=None):
    """ Create a spike density estimation plot.

    The spike density estimations give an estimate of the instantaneous
    rate. Optionally finds optimal kernel size for given data.

    :param dict trains: A dictionary of :class:`neo.core.SpikeTrain` lists.
    :param dict events: A dictionary (with the same indices as ``trains``)
        of Event objects or lists of Event objects. In case of lists,
        the first event in the list will be used for alignment. The events
        will be at time 0 on the plot. If None, spike trains are used
        unmodified.
    :param start: The desired time for the start of the first bin. It
        will be recalculated if there are spike trains which start later
        than this time. This parameter can be negative (which could be
        useful when aligning on events).
    :type start: Quantity scalar
    :param stop: The desired time for the end of the last bin. It will
        be recalculated if there are spike trains which end earlier
        than this time.
    :type stop: Quantity scalar
    :param kernel_size: A uniform kernel size for all spike trains.
        Only used if optimization of kernel sizes is not used (i.e.
        ``optimize_steps`` is 0).
    :type kernel_size: Quantity scalar
    :param int optimize_steps: The number of different kernel sizes tried
        between ``minimum_kernel`` and ``maximum_kernel``.
        If 0, ``kernel_size`` will be used.
    :param minimum_kernel: The minimum kernel size to try in optimization.
    :type minimum_kernel: Quantity scalar
    :param maximum_kernel: The maximum kernel size to try in optimization.
    :type maximum_kernel: Quantity scalar
    :param kernel: The kernel function or instance to use, should accept
        two parameters: A ndarray of distances and a kernel size.
        The total area under the kernel function should be 1.
        Automatic optimization assumes a Gaussian kernel and will
        likely not produce optimal results for different kernels.
        Default: Gaussian kernel
    :type kernel: func or :class:`spykeutils.signal_processing.Kernel`
    :param Quantity time_unit: Unit of X-Axis.
    :param progress: Set this parameter to report progress.
    :type progress: :class:`spykeutils.progress_indicator.ProgressIndicator`
    """
    if not progress:
        progress = ProgressIndicator()

    start.units = time_unit
    if stop:
        stop.units = time_unit
    kernel_size.units = time_unit
    minimum_kernel.units = time_unit
    maximum_kernel.units = time_unit

    if kernel is None:
        kernel = signal_processing.GaussianKernel(100 * pq.ms)

    # Align spike trains
    for u in trains:
        if events:
            trains[u] = rate_estimation.aligned_spike_trains(
                trains[u], events)

    # Calculate spike density estimation
    if optimize_steps:
        steps = sp.logspace(sp.log10(minimum_kernel),
                            sp.log10(maximum_kernel),
                            optimize_steps) * time_unit
        sde, kernel_size, eval_points = \
            rate_estimation.spike_density_estimation(
                trains, start, stop,
                optimize_steps=steps, kernel=kernel,
                progress=progress)
    else:
        sde, kernel_size, eval_points = \
            rate_estimation.spike_density_estimation(
                trains, start, stop,
                kernel_size=kernel_size, kernel=kernel,
                progress=progress)
    progress.done()

    if not sde:
        raise SpykeException('No spike trains for SDE!')

    # Plot
    win_title = 'Kernel Density Estimation'
    win = PlotDialog(toolbar=True, wintitle=win_title)

    pW = BaseCurveWidget(win)
    plot = pW.plot
    plot.set_antialiasing(True)
    for u in trains:
        if u and u.name:
            name = u.name
        else:
            name = 'Unknown'

        curve = make.curve(
            eval_points, sde[u],
            title='%s, Kernel width %.2f %s' %
                  (name, kernel_size[u], time_unit.dimensionality.string),
            color=helper.get_object_color(u))
        plot.add_item(curve)

    plot.set_axis_title(BasePlot.X_BOTTOM, 'Time')
    plot.set_axis_unit(BasePlot.X_BOTTOM, eval_points.dimensionality.string)
    plot.set_axis_title(BasePlot.Y_LEFT, 'Rate')
    plot.set_axis_unit(BasePlot.Y_LEFT, 'Hz')
    l = make.legend()
    plot.add_item(l)

    win.add_plot_widget(pW, 0)
    win.add_custom_curve_tools()
    win.add_legend_option([l], True)
    win.show()

    return win