This file is indexed.

/usr/share/pyshared/spykeutils/signal_processing.py is in python-spykeutils 0.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import copy
import quantities as pq
import scipy as sp
import scipy.signal
import scipy.special
import tools

default_kernel_area_fraction = 0.99999


class Kernel(object):
    """ Base class for kernels.  """

    def __init__(self, kernel_size, normalize):
        """
        :param kernel_size: Parameter controlling the kernel size.
        :type kernel_size: Quantity 1D
        :param bool normalize: Whether to normalize the kernel to unit area.
        """
        self.kernel_size = kernel_size
        self.normalize = normalize

    def __call__(self, t, kernel_size=None):
        """ Evaluates the kernel at all time points in the array `t`.

        :param t: Time points to evaluate the kernel at.
        :type t: Quantity 1D
        :param kernel_size: If not `None` this overwrites the kernel size of
            the `Kernel` instance.
        :type kernel_size: Quantity scalar
        :returns: The result of the kernel evaluations.
        :rtype: Quantity 1D
        """

        if kernel_size is None:
            kernel_size = self.kernel_size

        if self.normalize:
            normalization = self.normalization_factor(kernel_size)
        else:
            normalization = 1.0 * pq.dimensionless

        return self._evaluate(t, kernel_size) * normalization

    def _evaluate(self, t, kernel_size):
        """ Evaluates the kernel.

        :param t: Time points to evaluate the kernel at.
        :type t: Quantity 1D
        :param kernel_size: Controls the width of the kernel.
        :type kernel_size: Quantity scalar
        :returns: The result of the kernel evaluations.
        :rtype: Quantity 1D
        """
        raise NotImplementedError()

    def normalization_factor(self, kernel_size):
        """ Returns the factor needed to normalize the kernel to unit area.

        :param kernel_size: Controls the width of the kernel.
        :type kernel_size: Quantity scalar
        :returns: Factor to normalize the kernel to unit width.
        :rtype: Quantity scalar
        """
        raise NotImplementedError()

    def boundary_enclosing_at_least(self, fraction):
        """ Calculates the boundary :math:`b` so that the integral from
        :math:`-b` to :math:`b` encloses at least a certain fraction of the
        integral over the complete kernel.

        :param float fraction: Fraction of the whole area which at least has to
            be enclosed.
        :returns: boundary
        :rtype: Quantity scalar
        """
        raise NotImplementedError()

    def is_symmetric(self):
        """ Should return `True` if the kernel is symmetric. """
        return False

    def summed_dist_matrix(self, vectors, presorted=False):
        """ Calculates the sum of all element pair distances for each
        pair of vectors.

        If :math:`(a_1, \\dots, a_n)` and :math:`(b_1, \\dots, b_m)` are the
        :math:`u`-th and :math:`v`-th vector from `vectors` and :math:`K` the
        kernel, the resulting entry in the 2D array will be :math:`D_{uv}
        = \\sum_{i=1}^{n} \\sum_{j=1}^{m} K(a_i - b_j)`.

        :param sequence vectors: A sequence of Quantity 1D to calculate the
            summed distances for each pair. The required units depend on the
            kernel. Usually it will be the inverse unit of the kernel size.
        :param bool presorted: Some optimized specializations of this function
            may need sorted vectors. Set `presorted` to `True` if you know that
            the passed vectors are already sorted to skip the sorting and thus
            increase performance.
        :rtype: Quantity 2D
        """

        D = sp.empty((len(vectors), len(vectors)))
        if len(vectors) > 0:
            might_have_units = self(vectors[0])
            if hasattr(might_have_units, 'units'):
                D = D * might_have_units.units
            else:
                D = D * pq.dimensionless

        for i, j in sp.ndindex(len(vectors), len(vectors)):
            D[i, j] = sp.sum(self(
                (vectors[i] - sp.atleast_2d(vectors[j]).T).flatten()))
        return D


class KernelFromFunction(Kernel):
    """ Creates a kernel form a function. Please note, that not all methods for
    such a kernel are implemented.
    """

    def __init__(self, kernel_func, kernel_size):
        Kernel.__init__(self, kernel_size, normalize=False)
        self._evaluate = kernel_func

    def is_symmetric(self):
        return False


def as_kernel_of_size(obj, kernel_size):
    """ Returns a kernel of desired size.

    :param obj: Either an existing kernel or a kernel function. A kernel
        function takes two arguments. First a `Quantity 1D` of evaluation time
        points and second a kernel size.
    :type obj: Kernel or func
    :param kernel_size: Desired size of the kernel.
    :type kernel_size: Quantity 1D
    :returns: A :class:`Kernel` with the desired kernel size. If `obj` is
        already a :class:`Kernel` instance, a shallow copy of this instance with
        changed kernel size will be returned. If `obj` is a function it will be
        wrapped in a :class:`Kernel` instance.
    :rtype: :class:`Kernel`
    """

    if isinstance(obj, Kernel):
        obj = copy.copy(obj)
        obj.kernel_size = kernel_size
    else:
        obj = KernelFromFunction(obj, kernel_size)
    return obj


class SymmetricKernel(Kernel):
    """ Base class for symmetric kernels. """

    def __init__(self, kernel_size, normalize):
        """
        :param kernel_size: Parameter controlling the kernel size.
        :type kernel_size: Quantity 1D
        :param bool normalize: Whether to normalize the kernel to unit area.
        """
        Kernel.__init__(self, kernel_size, normalize)

    def is_symmetric(self):
        return True

    def summed_dist_matrix(self, vectors, presorted=False):
        D = sp.empty((len(vectors), len(vectors)))
        if len(vectors) > 0:
            might_have_units = self(vectors[0])
            if hasattr(might_have_units, 'units'):
                D = D * might_have_units.units

        for i in xrange(len(vectors)):
            for j in xrange(i, len(vectors)):
                D[i, j] = D[j, i] = sp.sum(self(
                    (vectors[i] - sp.atleast_2d(vectors[j]).T).flatten()))
        return D


class CausalDecayingExpKernel(Kernel):
    r""" Unnormalized: :math:`K(t) = \exp(-\frac{t}{\tau}) \Theta(t)` with
    :math:`\Theta(t) = \left\{\begin{array}{ll}0, & x < 0\\ 1, & x \geq
    0\end{array}\right.` and kernel size :math:`\tau`.

    Normalized to unit area: :math:`K'(t) = \frac{1}{\tau} K(t)`
    """

    @staticmethod
    def evaluate(t, kernel_size):
        return sp.piecewise(
            t, [t < 0, t >= 0], [
                lambda t: 0,
                lambda t: sp.exp(
                    (-t * pq.dimensionless / kernel_size).simplified)])

    def _evaluate(self, t, kernel_size):
        return self.evaluate(t, kernel_size)

    def normalization_factor(self, kernel_size):
        return 1.0 / kernel_size

    def __init__(self, kernel_size=1.0 * pq.s, normalize=True):
        Kernel.__init__(self, kernel_size, normalize)

    def boundary_enclosing_at_least(self, fraction):
        return -self.kernel_size * sp.log(1.0 - fraction)


class GaussianKernel(SymmetricKernel):
    r""" Unnormalized: :math:`K(t) = \exp(-\frac{t^2}{2 \sigma^2})` with kernel
    size :math:`\sigma` (corresponds to the standard deviation of a Gaussian
    distribution).

    Normalized to unit area: :math:`K'(t) = \frac{1}{\sigma \sqrt{2 \pi}} K(t)`
    """

    @staticmethod
    def evaluate(t, kernel_size):
        return sp.exp(
            -0.5 * (t * pq.dimensionless / kernel_size).simplified ** 2)

    def _evaluate(self, t, kernel_size):
        return self.evaluate(t, kernel_size)

    def normalization_factor(self, kernel_size):
        return 1.0 / (sp.sqrt(2.0 * sp.pi) * kernel_size)

    def __init__(self, kernel_size=1.0 * pq.s, normalize=True):
        Kernel.__init__(self, kernel_size, normalize)

    def boundary_enclosing_at_least(self, fraction):
        return self.kernel_size * sp.sqrt(2.0) * \
            scipy.special.erfinv(fraction + scipy.special.erf(0.0))


class LaplacianKernel(SymmetricKernel):
    r""" Unnormalized: :math:`K(t) = \exp(-|\frac{t}{\tau}|)` with kernel size
    :math:`\tau`.

    Normalized to unit area: :math:`K'(t) = \frac{1}{2 \tau} K(t)`
    """

    @staticmethod
    def evaluate(t, kernel_size):
        return sp.exp(
            -(sp.absolute(t) * pq.dimensionless / kernel_size).simplified)

    def _evaluate(self, t, kernel_size):
        return self.evaluate(t, kernel_size)

    def normalization_factor(self, kernel_size):
        return 0.5 / kernel_size

    def __init__(self, kernel_size=1.0 * pq.s, normalize=True):
        Kernel.__init__(self, kernel_size, normalize)

    def boundary_enclosing_at_least(self, fraction):
        return -self.kernel_size * sp.log(1.0 - fraction)

    def summed_dist_matrix(self, vectors, presorted=False):
        # This implementation is based on
        #
        # Houghton, C., & Kreuz, T. (2012). On the efficient calculation of van
        # Rossum distances. Network: Computation in Neural Systems, 23(1-2),
        # 48-58.
        #
        # Note that the cited paper contains some errors: In formula (9) the
        # left side of the equation should be divided by two and in the last
        # sum in this equation it should say `j|v_i >= u_i` instead of
        # `j|v_i > u_i`. Also, in equation (11) it should say `j|u_i >= v_i`
        # instead of `j|u_i > v_i`.
        #
        # Given N vectors with n entries on average the run-time complexity is
        # O(N^2 * n). O(N^2 + N * n) memory will be needed.

        if len(vectors) <= 0:
            return sp.zeros((0, 0))

        if not presorted:
            vectors = [v.copy() for v in vectors]
            for v in vectors:
                v.sort()

        sizes = sp.asarray([v.size for v in vectors])
        values = sp.empty((len(vectors), max(1, sizes.max())))
        values.fill(sp.nan)
        for i, v in enumerate(vectors):
            if v.size > 0:
                values[i, :v.size] = \
                    (v / self.kernel_size * pq.dimensionless).simplified

        exp_diffs = sp.exp(values[:, :-1] - values[:, 1:])
        markage = sp.zeros(values.shape)
        for u in xrange(len(vectors)):
            markage[u, 0] = 0
            for i in xrange(sizes[u] - 1):
                markage[u, i + 1] = (markage[u, i] + 1.0) * exp_diffs[u, i]

        # Same vector terms
        D = sp.empty((len(vectors), len(vectors)))
        D[sp.diag_indices_from(D)] = sizes + 2.0 * sp.sum(markage, axis=1)

        # Cross vector terms
        for u in xrange(D.shape[0]):
            all_ks = sp.searchsorted(values[u], values, 'left') - 1
            for v in xrange(u):
                js = sp.searchsorted(values[v], values[u], 'right') - 1
                ks = all_ks[v]
                slice_j = sp.s_[sp.searchsorted(js, 0):sizes[u]]
                slice_k = sp.s_[sp.searchsorted(ks, 0):sizes[v]]
                D[u, v] = sp.sum(
                    sp.exp(values[v][js[slice_j]] - values[u][slice_j]) *
                    (1.0 + markage[v][js[slice_j]]))
                D[u, v] += sp.sum(
                    sp.exp(values[u][ks[slice_k]] - values[v][slice_k]) *
                    (1.0 + markage[u][ks[slice_k]]))
                D[v, u] = D[u, v]

        if self.normalize:
            normalization = self.normalization_factor(self.kernel_size)
        else:
            normalization = 1.0
        return normalization * D


class RectangularKernel(SymmetricKernel):
    r""" Unnormalized: :math:`K(t) = \left\{\begin{array}{ll}1, & |t| < \tau \\
    0, & |t| \geq \tau\end{array} \right.` with kernel size :math:`\tau`
    corresponding to the half width.

    Normalized to unit area: :math:`K'(t) = \frac{1}{2 \tau} K(t)`
    """

    @staticmethod
    def evaluate(t, half_width):
        return (sp.absolute(t) < half_width)

    def _evaluate(self, t, kernel_size):
        return self.evaluate(t, kernel_size)

    def normalization_factor(self, half_width):
        return 0.5 / half_width

    def __init__(self, half_width=1.0 * pq.s, normalize=True):
        Kernel.__init__(self, half_width, normalize)

    def boundary_enclosing_at_least(self, fraction):
        return self.kernel_size


class TriangularKernel(SymmetricKernel):
    r""" Unnormalized: :math:`K(t) = \left\{ \begin{array}{ll}1
    - \frac{|t|}{\tau}, & |t| < \tau \\ 0, & |t| \geq \tau \end{array} \right.`
    with kernel size :math:`\tau` corresponding to the half width.

    Normalized to unit area: :math:`K'(t) = \frac{1}{\tau} K(t)`
    """

    @staticmethod
    def evaluate(t, half_width):
        return sp.maximum(
            0.0,
            (1.0 - sp.absolute(t.rescale(half_width.units)) * pq.dimensionless /
             half_width).magnitude)

    def _evaluate(self, t, kernel_size):
        return self.evaluate(t, kernel_size)

    def normalization_factor(self, half_width):
        return 1.0 / half_width

    def __init__(self, half_width=1.0 * pq.s, normalize=True):
        Kernel.__init__(self, half_width, normalize)

    def boundary_enclosing_at_least(self, fraction):
        return self.kernel_size


def discretize_kernel(
        kernel, sampling_rate, area_fraction=default_kernel_area_fraction,
        num_bins=None, ensure_unit_area=False):
    """ Discretizes a kernel.

    :param kernel: The kernel or kernel function. If a kernel function is used
        it should take exactly one 1-D array as argument.
    :type kernel: :class:`Kernel` or function
    :param float area_fraction: Fraction between 0 and 1 (exclusive)
        of the integral of the kernel which will be at least covered by the
        discretization. Will be ignored if `num_bins` is not `None`. If
        `area_fraction` is used, the kernel has to provide a method
        :meth:`boundary_enclosing_at_least` (see
        :meth:`.Kernel.boundary_enclosing_at_least`).
    :param sampling_rate: Sampling rate for the discretization. The unit will
        typically be a frequency unit.
    :type sampling_rate: Quantity scalar
    :param int num_bins: Number of bins to use for the discretization.
    :param bool ensure_unit_area: If `True`, the area of the discretized
        kernel will be normalized to 1.0.
    :rtype: Quantity 1D
    """

    t_step = 1.0 / sampling_rate

    if num_bins is not None:
        start = -num_bins // 2
        stop = num_bins // 2
    elif area_fraction is not None:
        boundary = kernel.boundary_enclosing_at_least(area_fraction)
        if hasattr(boundary, 'rescale'):
            boundary = boundary.rescale(t_step.units)
        start = sp.ceil(-boundary / t_step)
        stop = sp.floor(boundary / t_step) + 1
    else:
        raise ValueError(
            "One of area_fraction and num_bins must not be None.")

    k = kernel(sp.arange(start, stop) * t_step)
    if ensure_unit_area:
        k /= sp.sum(k) * t_step
    return k


def smooth(
        binned, kernel, sampling_rate, mode='same',
        **kernel_discretization_params):
    """ Smoothes a binned representation (e.g. of a spike train) by convolving
    with a kernel.

    :param binned: Bin array to smooth.
    :type binned: 1-D array
    :param kernel: The kernel instance to convolve with.
    :type kernel: :class:`Kernel`
    :param sampling_rate: The sampling rate which will be used to discretize the
        kernel. It should be equal to the sampling rate used to obtain `binned`.
        The unit will typically be a frequency unit.
    :type sampling_rate: Quantity scalar
    :param mode:
        * 'same': The default which returns an array of the same size as
          `binned`
        * 'full': Returns an array with a bin for each shift where `binned` and
          the discretized kernel overlap by at least one bin.
        * 'valid': Returns only the discretization bins where the discretized
          kernel and `binned` completely overlap.

        See also `numpy.convolve
        <http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html>`_.
    :type mode: {'same', 'full', 'valid'}
    :param dict kernel_discretization_params: Additional discretization
        arguments which will be passed to :func:`.discretize_kernel`.
    :returns: The smoothed representation of `binned`.
    :rtype: Quantity 1D
    """
    k = discretize_kernel(
        kernel, sampling_rate=sampling_rate, **kernel_discretization_params)
    return scipy.signal.convolve(binned, k, mode) * k.units


def st_convolve(
        train, kernel, sampling_rate, mode='same', binning_params={},
        kernel_discretization_params={}):
    """ Convolves a :class:`neo.core.SpikeTrain` with a kernel.

    :param train: Spike train to convolve.
    :type train: :class:`neo.core.SpikeTrain`
    :param kernel: The kernel instance to convolve with.
    :type kernel: :class:`Kernel`
    :param sampling_rate: The sampling rate which will be used to bin
        the spike train. The unit will typically be a frequency unit.
    :type sampling_rate: Quantity scalar
    :param mode:
        * 'same': The default which returns an array covering the whole
          duration of the spike train `train`.
        * 'full': Returns an array with additional discretization bins in the
          beginning and end so that for each spike the whole discretized
          kernel is included.
        * 'valid': Returns only the discretization bins where the discretized
          kernel and spike train completely overlap.

        See also :func:`scipy.signal.convolve`.
    :type mode: {'same', 'full', 'valid'}
    :param dict binning_params: Additional discretization arguments which will
        be passed to :func:`.tools.bin_spike_trains`.
    :param dict kernel_discretization_params: Additional discretization
        arguments which will be passed to :func:`.discretize_kernel`.
    :returns: The convolved spike train, the boundaries of the discretization
        bins
    :rtype: (Quantity 1D, Quantity 1D with the inverse units of `sampling_rate`)
    """

    binned, bins = tools.bin_spike_trains(
        {0: [train]}, sampling_rate, **binning_params)
    binned = binned[0][0]
    #sampling_rate = binned.size / (bins[-1] - bins[0])
    result = smooth(
        binned, kernel, sampling_rate, mode, **kernel_discretization_params)

    assert (result.size - binned.size) % 2 == 0
    num_additional_bins = (result.size - binned.size) // 2
    bins = sp.linspace(
        bins[0] - num_additional_bins / sampling_rate,
        bins[-1] + num_additional_bins / sampling_rate,
        result.size + 1)

    return result, bins