This file is indexed.

/usr/lib/python2.7/dist-packages/sqlalchemy/ext/declarative/__init__.py is in python-sqlalchemy 0.9.8+dfsg-0.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
# ext/declarative/__init__.py
# Copyright (C) 2005-2014 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php

"""
Synopsis
========

SQLAlchemy object-relational configuration involves the
combination of :class:`.Table`, :func:`.mapper`, and class
objects to define a mapped class.
:mod:`~sqlalchemy.ext.declarative` allows all three to be
expressed at once within the class declaration. As much as
possible, regular SQLAlchemy schema and ORM constructs are
used directly, so that configuration between "classical" ORM
usage and declarative remain highly similar.

As a simple example::

    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base()

    class SomeClass(Base):
        __tablename__ = 'some_table'
        id = Column(Integer, primary_key=True)
        name =  Column(String(50))

Above, the :func:`declarative_base` callable returns a new base class from
which all mapped classes should inherit. When the class definition is
completed, a new :class:`.Table` and :func:`.mapper` will have been generated.

The resulting table and mapper are accessible via
``__table__`` and ``__mapper__`` attributes on the
``SomeClass`` class::

    # access the mapped Table
    SomeClass.__table__

    # access the Mapper
    SomeClass.__mapper__

Defining Attributes
===================

In the previous example, the :class:`.Column` objects are
automatically named with the name of the attribute to which they are
assigned.

To name columns explicitly with a name distinct from their mapped attribute,
just give the column a name.  Below, column "some_table_id" is mapped to the
"id" attribute of `SomeClass`, but in SQL will be represented as
"some_table_id"::

    class SomeClass(Base):
        __tablename__ = 'some_table'
        id = Column("some_table_id", Integer, primary_key=True)

Attributes may be added to the class after its construction, and they will be
added to the underlying :class:`.Table` and
:func:`.mapper` definitions as appropriate::

    SomeClass.data = Column('data', Unicode)
    SomeClass.related = relationship(RelatedInfo)

Classes which are constructed using declarative can interact freely
with classes that are mapped explicitly with :func:`.mapper`.

It is recommended, though not required, that all tables
share the same underlying :class:`~sqlalchemy.schema.MetaData` object,
so that string-configured :class:`~sqlalchemy.schema.ForeignKey`
references can be resolved without issue.

Accessing the MetaData
=======================

The :func:`declarative_base` base class contains a
:class:`.MetaData` object where newly defined
:class:`.Table` objects are collected. This object is
intended to be accessed directly for
:class:`.MetaData`-specific operations. Such as, to issue
CREATE statements for all tables::

    engine = create_engine('sqlite://')
    Base.metadata.create_all(engine)

:func:`declarative_base` can also receive a pre-existing
:class:`.MetaData` object, which allows a
declarative setup to be associated with an already
existing traditional collection of :class:`~sqlalchemy.schema.Table`
objects::

    mymetadata = MetaData()
    Base = declarative_base(metadata=mymetadata)


.. _declarative_configuring_relationships:

Configuring Relationships
=========================

Relationships to other classes are done in the usual way, with the added
feature that the class specified to :func:`~sqlalchemy.orm.relationship`
may be a string name.  The "class registry" associated with ``Base``
is used at mapper compilation time to resolve the name into the actual
class object, which is expected to have been defined once the mapper
configuration is used::

    class User(Base):
        __tablename__ = 'users'

        id = Column(Integer, primary_key=True)
        name = Column(String(50))
        addresses = relationship("Address", backref="user")

    class Address(Base):
        __tablename__ = 'addresses'

        id = Column(Integer, primary_key=True)
        email = Column(String(50))
        user_id = Column(Integer, ForeignKey('users.id'))

Column constructs, since they are just that, are immediately usable,
as below where we define a primary join condition on the ``Address``
class using them::

    class Address(Base):
        __tablename__ = 'addresses'

        id = Column(Integer, primary_key=True)
        email = Column(String(50))
        user_id = Column(Integer, ForeignKey('users.id'))
        user = relationship(User, primaryjoin=user_id == User.id)

In addition to the main argument for :func:`~sqlalchemy.orm.relationship`,
other arguments which depend upon the columns present on an as-yet
undefined class may also be specified as strings.  These strings are
evaluated as Python expressions.  The full namespace available within
this evaluation includes all classes mapped for this declarative base,
as well as the contents of the ``sqlalchemy`` package, including
expression functions like :func:`~sqlalchemy.sql.expression.desc` and
:attr:`~sqlalchemy.sql.expression.func`::

    class User(Base):
        # ....
        addresses = relationship("Address",
                             order_by="desc(Address.email)",
                             primaryjoin="Address.user_id==User.id")

For the case where more than one module contains a class of the same name,
string class names can also be specified as module-qualified paths
within any of these string expressions::

    class User(Base):
        # ....
        addresses = relationship("myapp.model.address.Address",
                             order_by="desc(myapp.model.address.Address.email)",
                             primaryjoin="myapp.model.address.Address.user_id=="
                                            "myapp.model.user.User.id")

The qualified path can be any partial path that removes ambiguity between
the names.  For example, to disambiguate between
``myapp.model.address.Address`` and ``myapp.model.lookup.Address``,
we can specify ``address.Address`` or ``lookup.Address``::

    class User(Base):
        # ....
        addresses = relationship("address.Address",
                             order_by="desc(address.Address.email)",
                             primaryjoin="address.Address.user_id=="
                                            "User.id")

.. versionadded:: 0.8
   module-qualified paths can be used when specifying string arguments
   with Declarative, in order to specify specific modules.

Two alternatives also exist to using string-based attributes.  A lambda
can also be used, which will be evaluated after all mappers have been
configured::

    class User(Base):
        # ...
        addresses = relationship(lambda: Address,
                             order_by=lambda: desc(Address.email),
                             primaryjoin=lambda: Address.user_id==User.id)

Or, the relationship can be added to the class explicitly after the classes
are available::

    User.addresses = relationship(Address,
                              primaryjoin=Address.user_id==User.id)



.. _declarative_many_to_many:

Configuring Many-to-Many Relationships
======================================

Many-to-many relationships are also declared in the same way
with declarative as with traditional mappings. The
``secondary`` argument to
:func:`.relationship` is as usual passed a
:class:`.Table` object, which is typically declared in the
traditional way.  The :class:`.Table` usually shares
the :class:`.MetaData` object used by the declarative base::

    keywords = Table(
        'keywords', Base.metadata,
        Column('author_id', Integer, ForeignKey('authors.id')),
        Column('keyword_id', Integer, ForeignKey('keywords.id'))
        )

    class Author(Base):
        __tablename__ = 'authors'
        id = Column(Integer, primary_key=True)
        keywords = relationship("Keyword", secondary=keywords)

Like other :func:`~sqlalchemy.orm.relationship` arguments, a string is accepted
as well, passing the string name of the table as defined in the
``Base.metadata.tables`` collection::

    class Author(Base):
        __tablename__ = 'authors'
        id = Column(Integer, primary_key=True)
        keywords = relationship("Keyword", secondary="keywords")

As with traditional mapping, its generally not a good idea to use
a :class:`.Table` as the "secondary" argument which is also mapped to
a class, unless the :func:`.relationship` is declared with ``viewonly=True``.
Otherwise, the unit-of-work system may attempt duplicate INSERT and
DELETE statements against the underlying table.

.. _declarative_sql_expressions:

Defining SQL Expressions
========================

See :ref:`mapper_sql_expressions` for examples on declaratively
mapping attributes to SQL expressions.

.. _declarative_table_args:

Table Configuration
===================

Table arguments other than the name, metadata, and mapped Column
arguments are specified using the ``__table_args__`` class attribute.
This attribute accommodates both positional as well as keyword
arguments that are normally sent to the
:class:`~sqlalchemy.schema.Table` constructor.
The attribute can be specified in one of two forms. One is as a
dictionary::

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = {'mysql_engine':'InnoDB'}

The other, a tuple, where each argument is positional
(usually constraints)::

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = (
                ForeignKeyConstraint(['id'], ['remote_table.id']),
                UniqueConstraint('foo'),
                )

Keyword arguments can be specified with the above form by
specifying the last argument as a dictionary::

    class MyClass(Base):
        __tablename__ = 'sometable'
        __table_args__ = (
                ForeignKeyConstraint(['id'], ['remote_table.id']),
                UniqueConstraint('foo'),
                {'autoload':True}
                )

Using a Hybrid Approach with __table__
=======================================

As an alternative to ``__tablename__``, a direct
:class:`~sqlalchemy.schema.Table` construct may be used.  The
:class:`~sqlalchemy.schema.Column` objects, which in this case require
their names, will be added to the mapping just like a regular mapping
to a table::

    class MyClass(Base):
        __table__ = Table('my_table', Base.metadata,
            Column('id', Integer, primary_key=True),
            Column('name', String(50))
        )

``__table__`` provides a more focused point of control for establishing
table metadata, while still getting most of the benefits of using declarative.
An application that uses reflection might want to load table metadata elsewhere
and pass it to declarative classes::

    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base()
    Base.metadata.reflect(some_engine)

    class User(Base):
        __table__ = metadata.tables['user']

    class Address(Base):
        __table__ = metadata.tables['address']

Some configuration schemes may find it more appropriate to use ``__table__``,
such as those which already take advantage of the data-driven nature of
:class:`.Table` to customize and/or automate schema definition.

Note that when the ``__table__`` approach is used, the object is immediately
usable as a plain :class:`.Table` within the class declaration body itself,
as a Python class is only another syntactical block.  Below this is illustrated
by using the ``id`` column in the ``primaryjoin`` condition of a
:func:`.relationship`::

    class MyClass(Base):
        __table__ = Table('my_table', Base.metadata,
            Column('id', Integer, primary_key=True),
            Column('name', String(50))
        )

        widgets = relationship(Widget,
                    primaryjoin=Widget.myclass_id==__table__.c.id)

Similarly, mapped attributes which refer to ``__table__`` can be placed inline,
as below where we assign the ``name`` column to the attribute ``_name``,
generating a synonym for ``name``::

    from sqlalchemy.ext.declarative import synonym_for

    class MyClass(Base):
        __table__ = Table('my_table', Base.metadata,
            Column('id', Integer, primary_key=True),
            Column('name', String(50))
        )

        _name = __table__.c.name

        @synonym_for("_name")
        def name(self):
            return "Name: %s" % _name

Using Reflection with Declarative
=================================

It's easy to set up a :class:`.Table` that uses ``autoload=True``
in conjunction with a mapped class::

    class MyClass(Base):
        __table__ = Table('mytable', Base.metadata,
                        autoload=True, autoload_with=some_engine)

However, one improvement that can be made here is to not
require the :class:`.Engine` to be available when classes are
being first declared.   To achieve this, use the
:class:`.DeferredReflection` mixin, which sets up mappings
only after a special ``prepare(engine)`` step is called::

    from sqlalchemy.ext.declarative import declarative_base, DeferredReflection

    Base = declarative_base(cls=DeferredReflection)

    class Foo(Base):
        __tablename__ = 'foo'
        bars = relationship("Bar")

    class Bar(Base):
        __tablename__ = 'bar'

        # illustrate overriding of "bar.foo_id" to have
        # a foreign key constraint otherwise not
        # reflected, such as when using MySQL
        foo_id = Column(Integer, ForeignKey('foo.id'))

    Base.prepare(e)

.. versionadded:: 0.8
   Added :class:`.DeferredReflection`.

Mapper Configuration
====================

Declarative makes use of the :func:`~.orm.mapper` function internally
when it creates the mapping to the declared table.   The options
for :func:`~.orm.mapper` are passed directly through via the
``__mapper_args__`` class attribute.  As always, arguments which reference
locally mapped columns can reference them directly from within the
class declaration::

    from datetime import datetime

    class Widget(Base):
        __tablename__ = 'widgets'

        id = Column(Integer, primary_key=True)
        timestamp = Column(DateTime, nullable=False)

        __mapper_args__ = {
                        'version_id_col': timestamp,
                        'version_id_generator': lambda v:datetime.now()
                    }

.. _declarative_inheritance:

Inheritance Configuration
=========================

Declarative supports all three forms of inheritance as intuitively
as possible.  The ``inherits`` mapper keyword argument is not needed
as declarative will determine this from the class itself.   The various
"polymorphic" keyword arguments are specified using ``__mapper_args__``.

Joined Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~

Joined table inheritance is defined as a subclass that defines its own
table::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        id = Column(Integer, ForeignKey('people.id'), primary_key=True)
        primary_language = Column(String(50))

Note that above, the ``Engineer.id`` attribute, since it shares the
same attribute name as the ``Person.id`` attribute, will in fact
represent the ``people.id`` and ``engineers.id`` columns together,
with the "Engineer.id" column taking precedence if queried directly.
To provide the ``Engineer`` class with an attribute that represents
only the ``engineers.id`` column, give it a different attribute name::

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        engineer_id = Column('id', Integer, ForeignKey('people.id'),
                                                    primary_key=True)
        primary_language = Column(String(50))


.. versionchanged:: 0.7 joined table inheritance favors the subclass
   column over that of the superclass, such as querying above
   for ``Engineer.id``.  Prior to 0.7 this was the reverse.

.. _declarative_single_table:

Single Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~

Single table inheritance is defined as a subclass that does not have
its own table; you just leave out the ``__table__`` and ``__tablename__``
attributes::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        primary_language = Column(String(50))

When the above mappers are configured, the ``Person`` class is mapped
to the ``people`` table *before* the ``primary_language`` column is
defined, and this column will not be included in its own mapping.
When ``Engineer`` then defines the ``primary_language`` column, the
column is added to the ``people`` table so that it is included in the
mapping for ``Engineer`` and is also part of the table's full set of
columns.  Columns which are not mapped to ``Person`` are also excluded
from any other single or joined inheriting classes using the
``exclude_properties`` mapper argument.  Below, ``Manager`` will have
all the attributes of ``Person`` and ``Manager`` but *not* the
``primary_language`` attribute of ``Engineer``::

    class Manager(Person):
        __mapper_args__ = {'polymorphic_identity': 'manager'}
        golf_swing = Column(String(50))

The attribute exclusion logic is provided by the
``exclude_properties`` mapper argument, and declarative's default
behavior can be disabled by passing an explicit ``exclude_properties``
collection (empty or otherwise) to the ``__mapper_args__``.

Resolving Column Conflicts
^^^^^^^^^^^^^^^^^^^^^^^^^^

Note above that the ``primary_language`` and ``golf_swing`` columns
are "moved up" to be applied to ``Person.__table__``, as a result of their
declaration on a subclass that has no table of its own.   A tricky case
comes up when two subclasses want to specify *the same* column, as below::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        start_date = Column(DateTime)

    class Manager(Person):
        __mapper_args__ = {'polymorphic_identity': 'manager'}
        start_date = Column(DateTime)

Above, the ``start_date`` column declared on both ``Engineer`` and ``Manager``
will result in an error::

    sqlalchemy.exc.ArgumentError: Column 'start_date' on class
    <class '__main__.Manager'> conflicts with existing
    column 'people.start_date'

In a situation like this, Declarative can't be sure
of the intent, especially if the ``start_date`` columns had, for example,
different types.   A situation like this can be resolved by using
:class:`.declared_attr` to define the :class:`.Column` conditionally, taking
care to return the **existing column** via the parent ``__table__`` if it
already exists::

    from sqlalchemy.ext.declarative import declared_attr

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __mapper_args__ = {'polymorphic_identity': 'engineer'}

        @declared_attr
        def start_date(cls):
            "Start date column, if not present already."
            return Person.__table__.c.get('start_date', Column(DateTime))

    class Manager(Person):
        __mapper_args__ = {'polymorphic_identity': 'manager'}

        @declared_attr
        def start_date(cls):
            "Start date column, if not present already."
            return Person.__table__.c.get('start_date', Column(DateTime))

Above, when ``Manager`` is mapped, the ``start_date`` column is
already present on the ``Person`` class.  Declarative lets us return
that :class:`.Column` as a result in this case, where it knows to skip
re-assigning the same column. If the mapping is mis-configured such
that the ``start_date`` column is accidentally re-assigned to a
different table (such as, if we changed ``Manager`` to be joined
inheritance without fixing ``start_date``), an error is raised which
indicates an existing :class:`.Column` is trying to be re-assigned to
a different owning :class:`.Table`.

.. versionadded:: 0.8 :class:`.declared_attr` can be used on a non-mixin
   class, and the returned :class:`.Column` or other mapped attribute
   will be applied to the mapping as any other attribute.  Previously,
   the resulting attribute would be ignored, and also result in a warning
   being emitted when a subclass was created.

.. versionadded:: 0.8 :class:`.declared_attr`, when used either with a
   mixin or non-mixin declarative class, can return an existing
   :class:`.Column` already assigned to the parent :class:`.Table`,
   to indicate that the re-assignment of the :class:`.Column` should be
   skipped, however should still be mapped on the target class,
   in order to resolve duplicate column conflicts.

The same concept can be used with mixin classes (see
:ref:`declarative_mixins`)::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class HasStartDate(object):
        @declared_attr
        def start_date(cls):
            return cls.__table__.c.get('start_date', Column(DateTime))

    class Engineer(HasStartDate, Person):
        __mapper_args__ = {'polymorphic_identity': 'engineer'}

    class Manager(HasStartDate, Person):
        __mapper_args__ = {'polymorphic_identity': 'manager'}

The above mixin checks the local ``__table__`` attribute for the column.
Because we're using single table inheritance, we're sure that in this case,
``cls.__table__`` refers to ``People.__table__``.  If we were mixing joined-
and single-table inheritance, we might want our mixin to check more carefully
if ``cls.__table__`` is really the :class:`.Table` we're looking for.

Concrete Table Inheritance
~~~~~~~~~~~~~~~~~~~~~~~~~~

Concrete is defined as a subclass which has its own table and sets the
``concrete`` keyword argument to ``True``::

    class Person(Base):
        __tablename__ = 'people'
        id = Column(Integer, primary_key=True)
        name = Column(String(50))

    class Engineer(Person):
        __tablename__ = 'engineers'
        __mapper_args__ = {'concrete':True}
        id = Column(Integer, primary_key=True)
        primary_language = Column(String(50))
        name = Column(String(50))

Usage of an abstract base class is a little less straightforward as it
requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`,
which needs to be created with the :class:`.Table` objects
before the class is built::

    engineers = Table('engineers', Base.metadata,
                    Column('id', Integer, primary_key=True),
                    Column('name', String(50)),
                    Column('primary_language', String(50))
                )
    managers = Table('managers', Base.metadata,
                    Column('id', Integer, primary_key=True),
                    Column('name', String(50)),
                    Column('golf_swing', String(50))
                )

    punion = polymorphic_union({
        'engineer':engineers,
        'manager':managers
    }, 'type', 'punion')

    class Person(Base):
        __table__ = punion
        __mapper_args__ = {'polymorphic_on':punion.c.type}

    class Engineer(Person):
        __table__ = engineers
        __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}

    class Manager(Person):
        __table__ = managers
        __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}

.. _declarative_concrete_helpers:

Using the Concrete Helpers
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Helper classes provides a simpler pattern for concrete inheritance.
With these objects, the ``__declare_first__`` helper is used to configure the
"polymorphic" loader for the mapper after all subclasses have been declared.

.. versionadded:: 0.7.3

An abstract base can be declared using the
:class:`.AbstractConcreteBase` class::

    from sqlalchemy.ext.declarative import AbstractConcreteBase

    class Employee(AbstractConcreteBase, Base):
        pass

To have a concrete ``employee`` table, use :class:`.ConcreteBase` instead::

    from sqlalchemy.ext.declarative import ConcreteBase

    class Employee(ConcreteBase, Base):
        __tablename__ = 'employee'
        employee_id = Column(Integer, primary_key=True)
        name = Column(String(50))
        __mapper_args__ = {
                        'polymorphic_identity':'employee',
                        'concrete':True}


Either ``Employee`` base can be used in the normal fashion::

    class Manager(Employee):
        __tablename__ = 'manager'
        employee_id = Column(Integer, primary_key=True)
        name = Column(String(50))
        manager_data = Column(String(40))
        __mapper_args__ = {
                        'polymorphic_identity':'manager',
                        'concrete':True}

    class Engineer(Employee):
        __tablename__ = 'engineer'
        employee_id = Column(Integer, primary_key=True)
        name = Column(String(50))
        engineer_info = Column(String(40))
        __mapper_args__ = {'polymorphic_identity':'engineer',
                        'concrete':True}


The :class:`.AbstractConcreteBase` class is itself mapped, and can be
used as a target of relationships::

    class Company(Base):
        __tablename__ = 'company'

        id = Column(Integer, primary_key=True)
        employees = relationship("Employee",
                        primaryjoin="Company.id == Employee.company_id")


.. versionchanged:: 0.9.3 Support for use of :class:`.AbstractConcreteBase`
   as the target of a :func:`.relationship` has been improved.

It can also be queried directly::

    for employee in session.query(Employee).filter(Employee.name == 'qbert'):
        print(employee)


.. _declarative_mixins:

Mixin and Custom Base Classes
==============================

A common need when using :mod:`~sqlalchemy.ext.declarative` is to
share some functionality, such as a set of common columns, some common
table options, or other mapped properties, across many
classes.  The standard Python idioms for this is to have the classes
inherit from a base which includes these common features.

When using :mod:`~sqlalchemy.ext.declarative`, this idiom is allowed
via the usage of a custom declarative base class, as well as a "mixin" class
which is inherited from in addition to the primary base.  Declarative
includes several helper features to make this work in terms of how
mappings are declared.   An example of some commonly mixed-in
idioms is below::

    from sqlalchemy.ext.declarative import declared_attr

    class MyMixin(object):

        @declared_attr
        def __tablename__(cls):
            return cls.__name__.lower()

        __table_args__ = {'mysql_engine': 'InnoDB'}
        __mapper_args__= {'always_refresh': True}

        id =  Column(Integer, primary_key=True)

    class MyModel(MyMixin, Base):
        name = Column(String(1000))

Where above, the class ``MyModel`` will contain an "id" column
as the primary key, a ``__tablename__`` attribute that derives
from the name of the class itself, as well as ``__table_args__``
and ``__mapper_args__`` defined by the ``MyMixin`` mixin class.

There's no fixed convention over whether ``MyMixin`` precedes
``Base`` or not.  Normal Python method resolution rules apply, and
the above example would work just as well with::

    class MyModel(Base, MyMixin):
        name = Column(String(1000))

This works because ``Base`` here doesn't define any of the
variables that ``MyMixin`` defines, i.e. ``__tablename__``,
``__table_args__``, ``id``, etc.   If the ``Base`` did define
an attribute of the same name, the class placed first in the
inherits list would determine which attribute is used on the
newly defined class.

Augmenting the Base
~~~~~~~~~~~~~~~~~~~

In addition to using a pure mixin, most of the techniques in this
section can also be applied to the base class itself, for patterns that
should apply to all classes derived from a particular base.  This is achieved
using the ``cls`` argument of the :func:`.declarative_base` function::

    from sqlalchemy.ext.declarative import declared_attr

    class Base(object):
        @declared_attr
        def __tablename__(cls):
            return cls.__name__.lower()

        __table_args__ = {'mysql_engine': 'InnoDB'}

        id =  Column(Integer, primary_key=True)

    from sqlalchemy.ext.declarative import declarative_base

    Base = declarative_base(cls=Base)

    class MyModel(Base):
        name = Column(String(1000))

Where above, ``MyModel`` and all other classes that derive from ``Base`` will
have a table name derived from the class name, an ``id`` primary key column,
as well as the "InnoDB" engine for MySQL.

Mixing in Columns
~~~~~~~~~~~~~~~~~

The most basic way to specify a column on a mixin is by simple
declaration::

    class TimestampMixin(object):
        created_at = Column(DateTime, default=func.now())

    class MyModel(TimestampMixin, Base):
        __tablename__ = 'test'

        id =  Column(Integer, primary_key=True)
        name = Column(String(1000))

Where above, all declarative classes that include ``TimestampMixin``
will also have a column ``created_at`` that applies a timestamp to
all row insertions.

Those familiar with the SQLAlchemy expression language know that
the object identity of clause elements defines their role in a schema.
Two ``Table`` objects ``a`` and ``b`` may both have a column called
``id``, but the way these are differentiated is that ``a.c.id``
and ``b.c.id`` are two distinct Python objects, referencing their
parent tables ``a`` and ``b`` respectively.

In the case of the mixin column, it seems that only one
:class:`.Column` object is explicitly created, yet the ultimate
``created_at`` column above must exist as a distinct Python object
for each separate destination class.  To accomplish this, the declarative
extension creates a **copy** of each :class:`.Column` object encountered on
a class that is detected as a mixin.

This copy mechanism is limited to simple columns that have no foreign
keys, as a :class:`.ForeignKey` itself contains references to columns
which can't be properly recreated at this level.  For columns that
have foreign keys, as well as for the variety of mapper-level constructs
that require destination-explicit context, the
:class:`~.declared_attr` decorator is provided so that
patterns common to many classes can be defined as callables::

    from sqlalchemy.ext.declarative import declared_attr

    class ReferenceAddressMixin(object):
        @declared_attr
        def address_id(cls):
            return Column(Integer, ForeignKey('address.id'))

    class User(ReferenceAddressMixin, Base):
        __tablename__ = 'user'
        id = Column(Integer, primary_key=True)

Where above, the ``address_id`` class-level callable is executed at the
point at which the ``User`` class is constructed, and the declarative
extension can use the resulting :class:`.Column` object as returned by
the method without the need to copy it.

.. versionchanged:: > 0.6.5
    Rename 0.6.5 ``sqlalchemy.util.classproperty``
    into :class:`~.declared_attr`.

Columns generated by :class:`~.declared_attr` can also be
referenced by ``__mapper_args__`` to a limited degree, currently
by ``polymorphic_on`` and ``version_id_col``, by specifying the
classdecorator itself into the dictionary - the declarative extension
will resolve them at class construction time::

    class MyMixin:
        @declared_attr
        def type_(cls):
            return Column(String(50))

        __mapper_args__= {'polymorphic_on':type_}

    class MyModel(MyMixin, Base):
        __tablename__='test'
        id =  Column(Integer, primary_key=True)



Mixing in Relationships
~~~~~~~~~~~~~~~~~~~~~~~

Relationships created by :func:`~sqlalchemy.orm.relationship` are provided
with declarative mixin classes exclusively using the
:class:`.declared_attr` approach, eliminating any ambiguity
which could arise when copying a relationship and its possibly column-bound
contents. Below is an example which combines a foreign key column and a
relationship so that two classes ``Foo`` and ``Bar`` can both be configured to
reference a common target class via many-to-one::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship("Target")

    class Foo(RefTargetMixin, Base):
        __tablename__ = 'foo'
        id = Column(Integer, primary_key=True)

    class Bar(RefTargetMixin, Base):
        __tablename__ = 'bar'
        id = Column(Integer, primary_key=True)

    class Target(Base):
        __tablename__ = 'target'
        id = Column(Integer, primary_key=True)

Using Advanced Relationship Arguments (e.g. ``primaryjoin``, etc.)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`~sqlalchemy.orm.relationship` definitions which require explicit
primaryjoin, order_by etc. expressions should in all but the most
simplistic cases use **late bound** forms
for these arguments, meaning, using either the string form or a lambda.
The reason for this is that the related :class:`.Column` objects which are to
be configured using ``@declared_attr`` are not available to another
``@declared_attr`` attribute; while the methods will work and return new
:class:`.Column` objects, those are not the :class:`.Column` objects that
Declarative will be using as it calls the methods on its own, thus using
*different* :class:`.Column` objects.

The canonical example is the primaryjoin condition that depends upon
another mixed-in column::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship(Target,
                primaryjoin=Target.id==cls.target_id   # this is *incorrect*
            )

Mapping a class using the above mixin, we will get an error like::

    sqlalchemy.exc.InvalidRequestError: this ForeignKey's parent column is not
    yet associated with a Table.

This is because the ``target_id`` :class:`.Column` we've called upon in our
``target()`` method is not the same :class:`.Column` that declarative is
actually going to map to our table.

The condition above is resolved using a lambda::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship(Target,
                primaryjoin=lambda: Target.id==cls.target_id
            )

or alternatively, the string form (which ultimately generates a lambda)::

    class RefTargetMixin(object):
        @declared_attr
        def target_id(cls):
            return Column('target_id', ForeignKey('target.id'))

        @declared_attr
        def target(cls):
            return relationship("Target",
                primaryjoin="Target.id==%s.target_id" % cls.__name__
            )

Mixing in deferred(), column_property(), and other MapperProperty classes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Like :func:`~sqlalchemy.orm.relationship`, all
:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as
:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`,
etc. ultimately involve references to columns, and therefore, when
used with declarative mixins, have the :class:`.declared_attr`
requirement so that no reliance on copying is needed::

    class SomethingMixin(object):

        @declared_attr
        def dprop(cls):
            return deferred(Column(Integer))

    class Something(SomethingMixin, Base):
        __tablename__ = "something"

Mixing in Association Proxy and Other Attributes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mixins can specify user-defined attributes as well as other extension
units such as :func:`.association_proxy`.   The usage of
:class:`.declared_attr` is required in those cases where the attribute must
be tailored specifically to the target subclass.   An example is when
constructing multiple :func:`.association_proxy` attributes which each
target a different type of child object.  Below is an
:func:`.association_proxy` / mixin example which provides a scalar list of
string values to an implementing class::

    from sqlalchemy import Column, Integer, ForeignKey, String
    from sqlalchemy.orm import relationship
    from sqlalchemy.ext.associationproxy import association_proxy
    from sqlalchemy.ext.declarative import declarative_base, declared_attr

    Base = declarative_base()

    class HasStringCollection(object):
        @declared_attr
        def _strings(cls):
            class StringAttribute(Base):
                __tablename__ = cls.string_table_name
                id = Column(Integer, primary_key=True)
                value = Column(String(50), nullable=False)
                parent_id = Column(Integer,
                                ForeignKey('%s.id' % cls.__tablename__),
                                nullable=False)
                def __init__(self, value):
                    self.value = value

            return relationship(StringAttribute)

        @declared_attr
        def strings(cls):
            return association_proxy('_strings', 'value')

    class TypeA(HasStringCollection, Base):
        __tablename__ = 'type_a'
        string_table_name = 'type_a_strings'
        id = Column(Integer(), primary_key=True)

    class TypeB(HasStringCollection, Base):
        __tablename__ = 'type_b'
        string_table_name = 'type_b_strings'
        id = Column(Integer(), primary_key=True)

Above, the ``HasStringCollection`` mixin produces a :func:`.relationship`
which refers to a newly generated class called ``StringAttribute``.  The
``StringAttribute`` class is generated with its own :class:`.Table`
definition which is local to the parent class making usage of the
``HasStringCollection`` mixin.  It also produces an :func:`.association_proxy`
object which proxies references to the ``strings`` attribute onto the ``value``
attribute of each ``StringAttribute`` instance.

``TypeA`` or ``TypeB`` can be instantiated given the constructor
argument ``strings``, a list of strings::

    ta = TypeA(strings=['foo', 'bar'])
    tb = TypeA(strings=['bat', 'bar'])

This list will generate a collection
of ``StringAttribute`` objects, which are persisted into a table that's
local to either the ``type_a_strings`` or ``type_b_strings`` table::

    >>> print ta._strings
    [<__main__.StringAttribute object at 0x10151cd90>,
        <__main__.StringAttribute object at 0x10151ce10>]

When constructing the :func:`.association_proxy`, the
:class:`.declared_attr` decorator must be used so that a distinct
:func:`.association_proxy` object is created for each of the ``TypeA``
and ``TypeB`` classes.

.. versionadded:: 0.8 :class:`.declared_attr` is usable with non-mapped
   attributes, including user-defined attributes as well as
   :func:`.association_proxy`.


Controlling table inheritance with mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``__tablename__`` attribute in conjunction with the hierarchy of
classes involved in a declarative mixin scenario controls what type of
table inheritance, if any,
is configured by the declarative extension.

If the ``__tablename__`` is computed by a mixin, you may need to
control which classes get the computed attribute in order to get the
type of table inheritance you require.

For example, if you had a mixin that computes ``__tablename__`` but
where you wanted to use that mixin in a single table inheritance
hierarchy, you can explicitly specify ``__tablename__`` as ``None`` to
indicate that the class should not have a table mapped::

    from sqlalchemy.ext.declarative import declared_attr

    class Tablename:
        @declared_attr
        def __tablename__(cls):
            return cls.__name__.lower()

    class Person(Tablename, Base):
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        __tablename__ = None
        __mapper_args__ = {'polymorphic_identity': 'engineer'}
        primary_language = Column(String(50))

Alternatively, you can make the mixin intelligent enough to only
return a ``__tablename__`` in the event that no table is already
mapped in the inheritance hierarchy. To help with this, a
:func:`~sqlalchemy.ext.declarative.has_inherited_table` helper
function is provided that returns ``True`` if a parent class already
has a mapped table.

As an example, here's a mixin that will only allow single table
inheritance::

    from sqlalchemy.ext.declarative import declared_attr
    from sqlalchemy.ext.declarative import has_inherited_table

    class Tablename(object):
        @declared_attr
        def __tablename__(cls):
            if has_inherited_table(cls):
                return None
            return cls.__name__.lower()

    class Person(Tablename, Base):
        id = Column(Integer, primary_key=True)
        discriminator = Column('type', String(50))
        __mapper_args__ = {'polymorphic_on': discriminator}

    class Engineer(Person):
        primary_language = Column(String(50))
        __mapper_args__ = {'polymorphic_identity': 'engineer'}


Combining Table/Mapper Arguments from Multiple Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In the case of ``__table_args__`` or ``__mapper_args__``
specified with declarative mixins, you may want to combine
some parameters from several mixins with those you wish to
define on the class iteself. The
:class:`.declared_attr` decorator can be used
here to create user-defined collation routines that pull
from multiple collections::

    from sqlalchemy.ext.declarative import declared_attr

    class MySQLSettings(object):
        __table_args__ = {'mysql_engine':'InnoDB'}

    class MyOtherMixin(object):
        __table_args__ = {'info':'foo'}

    class MyModel(MySQLSettings, MyOtherMixin, Base):
        __tablename__='my_model'

        @declared_attr
        def __table_args__(cls):
            args = dict()
            args.update(MySQLSettings.__table_args__)
            args.update(MyOtherMixin.__table_args__)
            return args

        id =  Column(Integer, primary_key=True)

Creating Indexes with Mixins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To define a named, potentially multicolumn :class:`.Index` that applies to all
tables derived from a mixin, use the "inline" form of :class:`.Index` and
establish it as part of ``__table_args__``::

    class MyMixin(object):
        a =  Column(Integer)
        b =  Column(Integer)

        @declared_attr
        def __table_args__(cls):
            return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),)

    class MyModel(MyMixin, Base):
        __tablename__ = 'atable'
        c =  Column(Integer,primary_key=True)

Special Directives
==================

``__declare_last__()``
~~~~~~~~~~~~~~~~~~~~~~

The ``__declare_last__()`` hook allows definition of
a class level function that is automatically called by the
:meth:`.MapperEvents.after_configured` event, which occurs after mappings are
assumed to be completed and the 'configure' step has finished::

    class MyClass(Base):
        @classmethod
        def __declare_last__(cls):
            ""
            # do something with mappings

.. versionadded:: 0.7.3

``__declare_first__()``
~~~~~~~~~~~~~~~~~~~~~~~

Like ``__declare_last__()``, but is called at the beginning of mapper
configuration via the :meth:`.MapperEvents.before_configured` event::

    class MyClass(Base):
        @classmethod
        def __declare_first__(cls):
            ""
            # do something before mappings are configured

.. versionadded:: 0.9.3

.. _declarative_abstract:

``__abstract__``
~~~~~~~~~~~~~~~~~~~

``__abstract__`` causes declarative to skip the production
of a table or mapper for the class entirely.  A class can be added within a
hierarchy in the same way as mixin (see :ref:`declarative_mixins`), allowing
subclasses to extend just from the special class::

    class SomeAbstractBase(Base):
        __abstract__ = True

        def some_helpful_method(self):
            ""

        @declared_attr
        def __mapper_args__(cls):
            return {"helpful mapper arguments":True}

    class MyMappedClass(SomeAbstractBase):
        ""

One possible use of ``__abstract__`` is to use a distinct
:class:`.MetaData` for different bases::

    Base = declarative_base()

    class DefaultBase(Base):
        __abstract__ = True
        metadata = MetaData()

    class OtherBase(Base):
        __abstract__ = True
        metadata = MetaData()

Above, classes which inherit from ``DefaultBase`` will use one
:class:`.MetaData` as the registry of tables, and those which inherit from
``OtherBase`` will use a different one. The tables themselves can then be
created perhaps within distinct databases::

    DefaultBase.metadata.create_all(some_engine)
    OtherBase.metadata_create_all(some_other_engine)

.. versionadded:: 0.7.3

Class Constructor
=================

As a convenience feature, the :func:`declarative_base` sets a default
constructor on classes which takes keyword arguments, and assigns them
to the named attributes::

    e = Engineer(primary_language='python')

Sessions
========

Note that ``declarative`` does nothing special with sessions, and is
only intended as an easier way to configure mappers and
:class:`~sqlalchemy.schema.Table` objects.  A typical application
setup using :class:`~sqlalchemy.orm.scoping.scoped_session` might look like::

    engine = create_engine('postgresql://scott:tiger@localhost/test')
    Session = scoped_session(sessionmaker(autocommit=False,
                                          autoflush=False,
                                          bind=engine))
    Base = declarative_base()

Mapped instances then make usage of
:class:`~sqlalchemy.orm.session.Session` in the usual way.

"""

from .api import declarative_base, synonym_for, comparable_using, \
    instrument_declarative, ConcreteBase, AbstractConcreteBase, \
    DeclarativeMeta, DeferredReflection, has_inherited_table,\
    declared_attr, as_declarative


__all__ = ['declarative_base', 'synonym_for', 'has_inherited_table',
           'comparable_using', 'instrument_declarative', 'declared_attr',
           'ConcreteBase', 'AbstractConcreteBase', 'DeclarativeMeta',
           'DeferredReflection']