/usr/share/pyshared/statsmodels-0.4.2.egg-info/PKG-INFO is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | Metadata-Version: 1.1
Name: statsmodels
Version: 0.4.2
Summary: Statistical computations and models for use with SciPy
Home-page: http://statsmodels.sourceforge.net/
Author: Skipper Seabold, Josef Perktold
Author-email: pystatsmodels@googlegroups.com
License: BSD License
Description: What it is
==========
Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.
Main Features
=============
* linear regression models: Generalized least squares (including weighted least squares and
least squares with autoregressive errors), ordinary least squares.
* glm: Generalized linear models with support for all of the one-parameter
exponential family distributions.
* discrete: regression with discrete dependent variables, including Logit, Probit, MNLogit, Poisson, based on maximum likelihood estimators
* rlm: Robust linear models with support for several M-estimators.
* tsa: models for time series analysis
- univariate time series analysis: AR, ARIMA
- vector autoregressive models, VAR and structural VAR
- descriptive statistics and process models for time series analysis
* nonparametric : (Univariate) kernel density estimators
* datasets: Datasets to be distributed and used for examples and in testing.
* stats: a wide range of statistical tests
- diagnostics and specification tests
- goodness-of-fit and normality tests
- functions for multiple testing
- various additional statistical tests
* iolib
- Tools for reading Stata .dta files into numpy arrays.
- printing table output to ascii, latex, and html
* miscellaneous models
* sandbox: statsmodels contains a sandbox folder with code in various stages of
developement and testing which is not considered "production ready".
This covers among others Mixed (repeated measures) Models, GARCH models, general method
of moments (GMM) estimators, kernel regression, various extensions to scipy.stats.distributions,
panel data models, generalized additive models and information theoretic measures.
Where to get it
===============
The master branch on GitHub is the most up to date code
https://www.github.com/statsmodels/statsmodels
Source download of release tags are available on GitHub
https://github.com/statsmodels/statsmodels/tags
Binaries and source distributions are available from PyPi
http://pypi.python.org/pypi/statsmodels/
Installation from sources
=========================
See INSTALL.txt for requirements or see the documentation
http://statsmodels.sf.net/devel/install.html
License
=======
Modified BSD (3-clause)
Documentation
=============
The official documentation is hosted on SourceForge
http://statsmodels.sf.net/
Windows Help
============
We are providing a Windows htmlhelp file (statsmodels.chm) that is now separately
distributed. It can be copied or moved to the installation directory of
statsmodels (site-packages\statsmodels in a typical installation), and can then
be opened from the python interpreter ::
>>> import statsmodels.api as sm
>>> sm.open_help()
Discussion and Development
==========================
Discussions take place on our mailing list.
http://groups.google.com/group/pystatsmodels
We are very interested in feedback about usability and suggestions for improvements.
Bug Reports
===========
Bug reports can be submitted to the issue tracker at
https://github.com/statsmodels/statsmodels/issues
Release History
===============
0.4.2
-----
This is a bug-fix release that affects mainly Big-Endian machines.
*Bug Fixes*
* discrete_model.MNLogit: fix summary method
* examples in documentation: correct file path
* tsa.filters.hp_filter: don't use umfpack on Big-Endian machine (scipy bug)
* the remaining fixes are in the test suite, either precision problems
on some machines or incorrect testing on Big-Endian machines.
0.4.1
-----
This is a backwards compatible (according to our test suite) release with
bug fixes and code cleanup.
*Bug Fixes*
* build and distribution fixes
* lowess correct distance calculation
* genmod correction CDFlink derivative
* adfuller _autolag correct calculation of optimal lag
* het_arch, het_lm : fix autolag and store options
* GLSAR: incorrect whitening for lag>1
*Other Changes*
* add lowess and other functions to api and documentation
* rename lowess module (old import path will be removed at next release)
* new robust sandwich covariance estimators, moved out of sandbox
* compatibility with pandas 0.8
* new plots in statsmodels.graphics
- ABLine plot
- interaction plot
0.4.0
-----
*Main Changes and Additions*
* Added pandas dependency.
* Cython source is built automatically if cython and compiler are present
* Support use of dates in timeseries models
* Improved plots
- Violin plots
- Bean Plots
- QQ Plots
* Added lowess function
* Support for pandas Series and DataFrame objects. Results instances return
pandas objects if the models are fit using pandas objects.
* Full Python 3 compatibility
* Fix bugs in genfromdta. Convert Stata .dta format to structured array
preserving all types. Conversion is much faster now.
* Improved documentation
* Models and results are pickleable via save/load, optionally saving the model
data.
* Kernel Density Estimation now uses Cython and is considerably faster.
* Diagnostics for outlier and influence statistics in OLS
* Added El Nino Sea Surface Temperatures dataset
* Numerous bug fixes
* Internal code refactoring
* Improved documentation including examples as part of HTML
*Changes that break backwards compatibility*
* Deprecated scikits namespace. The recommended import is now::
import statsmodels.api as sm
* model.predict methods signature is now (params, exog, ...) where before
it assumed that the model had been fit and omitted the params argument.
* For consistency with other multi-equation models, the parameters of MNLogit
are now transposed.
* tools.tools.ECDF -> distributions.ECDF
* tools.tools.monotone_fn_inverter -> distributions.monotone_fn_inverter
* tools.tools.StepFunction -> distributions.StepFunction
0.3.1
-----
* Removed academic-only WFS dataset.
* Fix easy_install issue on Windows.
0.3.0
-----
*Changes that break backwards compatibility*
Added api.py for importing. So the new convention for importing is::
import statsmodels.api as sm
Importing from modules directly now avoids unnecessary imports and increases
the import speed if a library or user only needs specific functions.
* sandbox/output.py -> iolib/table.py
* lib/io.py -> iolib/foreign.py (Now contains Stata .dta format reader)
* family -> families
* families.links.inverse -> families.links.inverse_power
* Datasets' Load class is now load function.
* regression.py -> regression/linear_model.py
* discretemod.py -> discrete/discrete_model.py
* rlm.py -> robust/robust_linear_model.py
* glm.py -> genmod/generalized_linear_model.py
* model.py -> base/model.py
* t() method -> tvalues attribute (t() still exists but raises a warning)
*Main changes and additions*
* Numerous bugfixes.
* Time Series Analysis model (tsa)
- Vector Autoregression Models VAR (tsa.VAR)
- Autogressive Models AR (tsa.AR)
- Autoregressive Moving Average Models ARMA (tsa.ARMA)
optionally uses Cython for Kalman Filtering
use setup.py install with option --with-cython
- Baxter-King band-pass filter (tsa.filters.bkfilter)
- Hodrick-Prescott filter (tsa.filters.hpfilter)
- Christiano-Fitzgerald filter (tsa.filters.cffilter)
* Improved maximum likelihood framework uses all available scipy.optimize solvers
* Refactor of the datasets sub-package.
* Added more datasets for examples.
* Removed RPy dependency for running the test suite.
* Refactored the test suite.
* Refactored codebase/directory structure.
* Support for offset and exposure in GLM.
* Removed data_weights argument to GLM.fit for Binomial models.
* New statistical tests, especially diagnostic and specification tests
* Multiple test correction
* General Method of Moment framework in sandbox
* Improved documentation
* and other additions
0.2.0
-----
*Main changes*
* renames for more consistency
RLM.fitted_values -> RLM.fittedvalues
GLMResults.resid_dev -> GLMResults.resid_deviance
* GLMResults, RegressionResults:
lazy calculations, convert attributes to properties with _cache
* fix tests to run without rpy
* expanded examples in examples directory
* add PyDTA to lib.io -- functions for reading Stata .dta binary files
and converting
them to numpy arrays
* made tools.categorical much more robust
* add_constant now takes a prepend argument
* fix GLS to work with only a one column design
*New*
* add four new datasets
- A dataset from the American National Election Studies (1996)
- Grunfeld (1950) investment data
- Spector and Mazzeo (1980) program effectiveness data
- A US macroeconomic dataset
* add four new Maximum Likelihood Estimators for models with a discrete
dependent variables with examples
- Logit
- Probit
- MNLogit (multinomial logit)
- Poisson
*Sandbox*
* add qqplot in sandbox.graphics
* add sandbox.tsa (time series analysis) and sandbox.regression (anova)
* add principal component analysis in sandbox.tools
* add Seemingly Unrelated Regression (SUR) and Two-Stage Least Squares
for systems of equations in sandbox.sysreg.Sem2SLS
* add restricted least squares (RLS)
0.1.0b1
-------
* initial release
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Programming Language :: Python :: 2.5
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.2
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Topic :: Scientific/Engineering
|