/usr/share/pyshared/statsmodels/base/model.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 | import numpy as np
from scipy import optimize, stats
from statsmodels.base.data import handle_data
from statsmodels.tools.tools import recipr
from statsmodels.stats.contrast import ContrastResults
from statsmodels.tools.decorators import (resettable_cache,
cache_readonly)
import statsmodels.base.wrapper as wrap
from statsmodels.sandbox.regression.numdiff import approx_fprime1
class Model(object):
"""
A (predictive) statistical model. The class Model itself is not to be used.
Model lays out the methods expected of any subclass.
Parameters
----------
endog : array-like
Endogenous response variable.
exog : array-like
Exogenous design.
Notes
-----
`endog` and `exog` are references to any data provided. So if the data is
already stored in numpy arrays and it is changed then `endog` and `exog`
will change as well.
"""
def __init__(self, endog, exog=None):
self._data = handle_data(endog, exog)
self.exog = self._data.exog
self.endog = self._data.endog
self._data_attr = []
self._data_attr.extend(['exog', 'endog', '_data.exog', '_data.endog',
'_data._orig_endog', '_data._orig_exog'])
@property
def endog_names(self):
return self._data.ynames
@property
def exog_names(self):
return self._data.xnames
def fit(self):
"""
Fit a model to data.
"""
raise NotImplementedError
def predict(self, params, exog=None, *args, **kwargs):
"""
After a model has been fit predict returns the fitted values.
This is a placeholder intended to be overwritten by individual models.
"""
raise NotImplementedError
class LikelihoodModel(Model):
"""
Likelihood model is a subclass of Model.
"""
def __init__(self, endog, exog=None):
super(LikelihoodModel, self).__init__(endog, exog)
self.initialize()
def initialize(self):
"""
Initialize (possibly re-initialize) a Model instance. For
instance, the design matrix of a linear model may change
and some things must be recomputed.
"""
pass
# TODO: if the intent is to re-initialize the model with new data then this
# method needs to take inputs...
def loglike(self, params):
"""
Log-likelihood of model.
"""
raise NotImplementedError
def score(self, params):
"""
Score vector of model.
The gradient of logL with respect to each parameter.
"""
raise NotImplementedError
def information(self, params):
"""
Fisher information matrix of model
Returns -Hessian of loglike evaluated at params.
"""
raise NotImplementedError
def hessian(self, params):
"""
The Hessian matrix of the model
"""
raise NotImplementedError
def fit(self, start_params=None, method='newton', maxiter=100,
full_output=True, disp=True, fargs=(), callback=None, retall=False,
**kwargs):
"""
Fit method for likelihood based models
Parameters
----------
start_params : array-like, optional
Initial guess of the solution for the loglikelihood maximization.
The default is an array of zeros.
method : str {'newton','nm','bfgs','powell','cg', or 'ncg'}
Method can be 'newton' for Newton-Raphson, 'nm' for Nelder-Mead,
'bfgs' for Broyden-Fletcher-Goldfarb-Shanno, 'powell' for modified
Powell's method, 'cg' for conjugate gradient, or 'ncg' for Newton-
conjugate gradient. `method` determines which solver from
scipy.optimize is used. The explicit arguments in `fit` are passed
to the solver. Each solver has several optional arguments that are
not the same across solvers. See the notes section below (or
scipy.optimize) for the available arguments.
maxiter : int
The maximum number of iterations to perform.
full_output : bool
Set to True to have all available output in the Results object's
mle_retvals attribute. The output is dependent on the solver.
See LikelihoodModelResults notes section for more information.
disp : bool
Set to True to print convergence messages.
fargs : tuple
Extra arguments passed to the likelihood function, i.e.,
loglike(x,*args)
callback : callable callback(xk)
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
retall : bool
Set to True to return list of solutions at each iteration.
Available in Results object's mle_retvals attribute.
Notes
-----
Optional arguments for the solvers (available in Results.mle_settings):
'newton'
tol : float
Relative error in params acceptable for convergence.
'nm' -- Nelder Mead
xtol : float
Relative error in params acceptable for convergence
ftol : float
Relative error in loglike(params) acceptable for
convergence
maxfun : int
Maximum number of function evaluations to make.
'bfgs'
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of norm (np.Inf is max, -np.Inf is min)
epsilon
If fprime is approximated, use this value for the step
size. Only relevant if LikelihoodModel.score is None.
'cg'
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of norm (np.Inf is max, -np.Inf is min)
epsilon : float
If fprime is approximated, use this value for the step
size. Can be scalar or vector. Only relevant if
Likelihoodmodel.score is None.
'ncg'
fhess_p : callable f'(x,*args)
Function which computes the Hessian of f times an arbitrary
vector, p. Should only be supplied if
LikelihoodModel.hessian is None.
avextol : float
Stop when the average relative error in the minimizer
falls below this amount.
epsilon : float or ndarray
If fhess is approximated, use this value for the step size.
Only relevant if Likelihoodmodel.hessian is None.
'powell'
xtol : float
Line-search error tolerance
ftol : float
Relative error in loglike(params) for acceptable for
convergence.
maxfun : int
Maximum number of function evaluations to make.
start_direc : ndarray
Initial direction set.
"""
Hinv = None # JP error if full_output=0, Hinv not defined
methods = ['newton', 'nm', 'bfgs', 'powell', 'cg', 'ncg']
if start_params is None:
if hasattr(self, 'start_params'):
start_params = self.start_params
elif self.exog is not None:
# fails for shape (K,)?
start_params = [0] * self.exog.shape[1]
else:
raise ValueError("If exog is None, then start_params should "
"be specified")
if method.lower() not in methods:
raise ValueError("Unknown fit method %s" % method)
method = method.lower()
# TODO: separate args from nonarg taking score and hessian, ie.,
# user-supplied and numerically evaluated estimate frprime doesn't take
# args in most (any?) of the optimize function
f = lambda params, *args: -self.loglike(params, *args)
score = lambda params: -self.score(params)
try:
hess = lambda params: -self.hessian(params)
except:
hess = None
fit_funcs = {
'newton': _fit_mle_newton,
'nm': _fit_mle_nm, # Nelder-Mead
'bfgs': _fit_mle_bfgs,
'cg': _fit_mle_cg,
'ncg': _fit_mle_ncg,
'powell': _fit_mle_powell
}
if method == 'newton':
score = lambda params: self.score(params)
hess = lambda params: self.hessian(params)
func = fit_funcs[method]
xopt, retvals = func(f, score, start_params, fargs, kwargs,
disp=disp, maxiter=maxiter, callback=callback,
retall=retall, full_output=full_output,
hess=hess)
if not full_output:
xopt = retvals
# NOTE: better just to use the Analytic Hessian here, as approximation
# isn't great
# if method == 'bfgs' and full_output:
# Hinv = retvals.setdefault('Hinv', 0)
elif method == 'newton' and full_output:
Hinv = np.linalg.inv(-retvals['Hessian'])
else:
try:
Hinv = np.linalg.inv(-1 * self.hessian(xopt))
except:
#might want custom warning ResultsWarning? NumericalWarning?
from warnings import warn
warndoc = ('Inverting hessian failed, no bse or '
'cov_params available')
warn(warndoc, Warning)
Hinv = None
#TODO: add Hessian approximation and change the above if needed
mlefit = LikelihoodModelResults(self, xopt, Hinv, scale=1.)
#TODO: hardcode scale?
if isinstance(retvals, dict):
mlefit.mle_retvals = retvals
optim_settings = {'optimizer': method, 'start_params': start_params,
'maxiter': maxiter, 'full_output': full_output,
'disp': disp, 'fargs': fargs, 'callback': callback,
'retall': retall}
optim_settings.update(kwargs)
mlefit.mle_settings = optim_settings
return mlefit
def _fit_mle_newton(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
tol = kwargs.setdefault('tol', 1e-8)
iterations = 0
oldparams = np.inf
newparams = np.asarray(start_params)
if retall:
history = [oldparams, newparams]
while (iterations < maxiter and np.any(np.abs(newparams -
oldparams) > tol)):
H = hess(newparams)
oldparams = newparams
newparams = oldparams - np.dot(np.linalg.inv(H),
score(oldparams))
if retall:
history.append(newparams)
if callback is not None:
callback(newparams)
iterations += 1
fval = f(newparams, *fargs) # this is the negative likelihood
if iterations == maxiter:
warnflag = 1
if disp:
print ("Warning: Maximum number of iterations has been "
"exceeded.")
print " Current function value: %f" % fval
print " Iterations: %d" % iterations
else:
warnflag = 0
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations %d" % iterations
if full_output:
(xopt, fopt, niter,
gopt, hopt) = (newparams, f(newparams, *fargs),
iterations, score(newparams),
hess(newparams))
converged = not warnflag
retvals = {'fopt': fopt, 'iterations': niter, 'score': gopt,
'Hessian': hopt, 'warnflag': warnflag,
'converged': converged}
if retall:
retvals.update({'allvecs': history})
else:
return newparams
return xopt, retvals
def _fit_mle_bfgs(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05)
norm = kwargs.setdefault('norm', np.Inf)
epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08)
retvals = optimize.fmin_bfgs(f, start_params, score, args=fargs,
gtol=gtol, norm=norm, epsilon=epsilon,
maxiter=maxiter, full_output=full_output,
disp=disp, retall=retall, callback=callback)
if full_output:
if not retall:
xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag = retvals
else:
(xopt, fopt, gopt, Hinv, fcalls,
gcalls, warnflag, allvecs) = retvals
converged = not warnflag
retvals = {'fopt': fopt, 'gopt': gopt, 'Hinv': Hinv,
'fcalls': fcalls, 'gcalls': gcalls, 'warnflag':
warnflag, 'converged': converged}
if retall:
retvals.update({'allvecs': allvecs})
return xopt, retvals
def _fit_mle_nm(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
xtol = kwargs.setdefault('xtol', 0.0001)
ftol = kwargs.setdefault('ftol', 0.0001)
maxfun = kwargs.setdefault('maxfun', None)
retvals = optimize.fmin(f, start_params, args=fargs, xtol=xtol,
ftol=ftol, maxiter=maxiter, maxfun=maxfun,
full_output=full_output, disp=disp, retall=retall,
callback=callback)
if full_output:
if not retall:
xopt, fopt, niter, fcalls, warnflag = retvals
else:
xopt, fopt, niter, fcalls, warnflag, allvecs = retvals
converged = not warnflag
retvals = {'fopt': fopt, 'iterations': niter,
'fcalls': fcalls, 'warnflag': warnflag,
'converged': converged}
if retall:
retvals.update({'allvecs': allvecs})
return xopt, retvals
def _fit_mle_cg(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05)
norm = kwargs.setdefault('norm', np.Inf)
epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08)
retvals = optimize.fmin_cg(f, start_params, score, gtol=gtol, norm=norm,
epsilon=epsilon, maxiter=maxiter,
full_output=full_output, disp=disp,
retall=retall, callback=callback)
if full_output:
if not retall:
xopt, fopt, fcalls, gcalls, warnflag = retvals
else:
xopt, fopt, fcalls, gcalls, warnflag, allvecs = retvals
converged = not warnflag
retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls,
'warnflag': warnflag, 'converged': converged}
if retall:
retvals.update({'allvecs': allvecs})
return xopt, retvals
def _fit_mle_ncg(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
fhess_p = kwargs.setdefault('fhess_p', None)
avextol = kwargs.setdefault('avextol', 1.0000000000000001e-05)
epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08)
retvals = optimize.fmin_ncg(f, start_params, score, fhess_p=fhess_p,
fhess=hess, args=fargs, avextol=avextol,
epsilon=epsilon, maxiter=maxiter,
full_output=full_output, disp=disp,
retall=retall, callback=callback)
if full_output:
if not retall:
xopt, fopt, fcalls, gcalls, hcalls, warnflag = retvals
else:
xopt, fopt, fcalls, gcalls, hcalls, warnflag, allvecs =\
retvals
converged = not warnflag
retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls,
'hcalls': hcalls, 'warnflag': warnflag,
'converged': converged}
if retall:
retvals.update({'allvecs': allvecs})
return xopt, retvals
def _fit_mle_powell(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
xtol = kwargs.setdefault('xtol', 0.0001)
ftol = kwargs.setdefault('ftol', 0.0001)
maxfun = kwargs.setdefault('maxfun', None)
start_direc = kwargs.setdefault('start_direc', None)
retvals = optimize.fmin_powell(f, start_params, args=fargs, xtol=xtol,
ftol=ftol, maxiter=maxiter, maxfun=maxfun,
full_output=full_output, disp=disp,
retall=retall, callback=callback,
direc=start_direc)
if full_output:
if not retall:
xopt, fopt, direc, niter, fcalls, warnflag = retvals
else:
xopt, fopt, direc, niter, fcalls, warnflag, allvecs =\
retvals
converged = not warnflag
retvals = {'fopt': fopt, 'direc': direc, 'iterations': niter,
'fcalls': fcalls, 'warnflag': warnflag,
'converged': converged}
if retall:
retvals.update({'allvecs': allvecs})
return xopt, retvals
#TODO: the below is unfinished
class GenericLikelihoodModel(LikelihoodModel):
"""
Allows the fitting of any likelihood function via maximum likelihood.
A subclass needs to specify at least the log-likelihood
If the log-likelihood is specified for each observation, then results that
require the Jacobian will be available. (The other case is not tested yet.)
Notes
-----
Optimization methods that require only a likelihood function are 'nm' and
'powell'
Optimization methods that require a likelihood function and a
score/gradient are 'bfgs', 'cg', and 'ncg'. A function to compute the
Hessian is optional for 'ncg'.
Optimization method that require a likelihood function, a score/gradient,
and a Hessian is 'newton'
If they are not overwritten by a subclass, then numerical gradient,
Jacobian and Hessian of the log-likelihood are caclulated by numerical
forward differentiation. This might results in some cases in precision
problems, and the Hessian might not be positive definite. Even if the
Hessian is not positive definite the covariance matrix of the parameter
estimates based on the outer product of the Jacobian might still be valid.
Examples
--------
see also subclasses in directory miscmodels
import statsmodels.api as sm
data = sm.datasets.spector.load()
data.exog = sm.add_constant(data.exog)
# in this dir
from model import GenericLikelihoodModel
probit_mod = sm.Probit(data.endog, data.exog)
probit_res = probit_mod.fit()
loglike = probit_mod.loglike
score = probit_mod.score
mod = GenericLikelihoodModel(data.endog, data.exog, loglike, score)
res = mod.fit(method="nm", maxiter = 500)
import numpy as np
np.allclose(res.params, probit_res.params)
"""
def __init__(self, endog, exog=None, loglike=None, score=None,
hessian=None):
# let them be none in case user wants to use inheritance
if loglike:
self.loglike = loglike
if score:
self.score = score
if hessian:
self.hessian = hessian
self.confint_dist = stats.norm
# TODO: data structures?
# this won't work for ru2nmnl, maybe np.ndim of a dict?
if exog is not None:
#try:
self.nparams = self.df_model = (exog.shape[1]
if np.ndim(exog) == 2 else 1)
super(GenericLikelihoodModel, self).__init__(endog, exog)
#this is redundant and not used when subclassing
def initialize(self):
if not self.score: # right now score is not optional
self.score = approx_fprime1
if not self.hessian:
pass
else: # can use approx_hess_p if we have a gradient
if not self.hessian:
pass
def expandparams(self, params):
'''
expand to full parameter array when some parameters are fixed
Parameters
----------
params : array
reduced parameter array
Returns
-------
paramsfull : array
expanded parameter array where fixed parameters are included
Notes
-----
Calling this requires that self.fixed_params and self.fixed_paramsmask
are defined.
*developer notes:*
This can be used in the log-likelihood to ...
this could also be replaced by a more general parameter
transformation.
'''
paramsfull = self.fixed_params.copy()
paramsfull[self.fixed_paramsmask] = params
return paramsfull
def reduceparams(self, params):
return params[self.fixed_paramsmask]
def loglike(self, params):
return self.loglikeobs(params).sum(0)
def nloglike(self, params):
return -self.loglikeobs(params).sum(0)
def loglikeobs(self, params):
return -self.nloglikeobs(params)
def score(self, params):
'''
Gradient of log-likelihood evaluated at params
'''
return approx_fprime1(params, self.loglike, epsilon=1e-4).ravel()
def jac(self, params, **kwds):
'''
Jacobian/Gradient of log-likelihood evaluated at params for each
observation.
'''
kwds.setdefault('epsilon', 1e-4)
return approx_fprime1(params, self.loglikeobs, **kwds)
def hessian(self, params):
'''
Hessian of log-likelihood evaluated at params
'''
from statsmodels.sandbox.regression.numdiff import approx_hess
# need options for hess (epsilon)
return approx_hess(params, self.loglike)[0]
def fit(self, start_params=None, method='nm', maxiter=500, full_output=1,
disp=1, callback=None, retall=0, **kwargs):
"""
Fit the model using maximum likelihood.
The rest of the docstring is from
statsmodels.LikelihoodModel.fit
"""
if start_params is None:
if hasattr(self, 'start_params'):
start_params = self.start_params
else:
start_params = 0.1 * np.ones(self.nparams)
fit_method = super(GenericLikelihoodModel, self).fit
mlefit = fit_method(start_params=start_params,
method=method, maxiter=maxiter,
full_output=full_output,
disp=disp, callback=callback, **kwargs)
genericmlefit = GenericLikelihoodModelResults(self, mlefit)
return genericmlefit
#fit.__doc__ += LikelihoodModel.fit.__doc__
#------------------------------
#TODO: the following have been moved to the result mixin class
# check if anything is still using them from here
@cache_readonly
def jacv(self):
if not hasattr(self, '_results'):
raise ValueError('need to call fit first')
return self.jac(self._results.params)
@cache_readonly
def hessv(self):
if not hasattr(self, '_results'):
raise ValueError('need to call fit first')
return self.hessian(self._results.params)
# the following could be moved to results
@cache_readonly
def covjac(self):
'''
covariance of parameters based on loglike outer product of jacobian
'''
## if not hasattr(self, '_results'):
## raise ValueError('need to call fit first')
## #self.fit()
## self.jacv = jacv = self.jac(self._results.params)
jacv = self.jacv
return np.linalg.inv(np.dot(jacv.T, jacv))
@cache_readonly
def covjhj(self):
jacv = self.jacv
## hessv = self.hessv
## hessinv = np.linalg.inv(hessv)
## self.hessinv = hessinv
hessinv = self._results.cov_params()
return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv))
@cache_readonly
def bsejhj(self):
return np.sqrt(np.diag(self.covjhj))
@cache_readonly
def bsejac(self):
return np.sqrt(np.diag(self.covjac))
class Results(object):
"""
Class to contain model results
Parameters
----------
model : class instance
the previously specified model instance
params : array
parameter estimates from the fit model
"""
def __init__(self, model, params, **kwd):
self.__dict__.update(kwd)
self.initialize(model, params, **kwd)
self._data_attr = []
def initialize(self, model, params, **kwd):
self.params = params
self.model = model
def predict(self, exog=None, *args, **kwargs):
return self.model.predict(self.params, exog, *args, **kwargs)
#TODO: public method?
class LikelihoodModelResults(Results):
"""
Class to contain results from likelihood models
Parameters
-----------
model : LikelihoodModel instance or subclass instance
LikelihoodModelResults holds a reference to the model that is fit.
params : 1d array_like
parameter estimates from estimated model
normalized_cov_params : 2d array
Normalized (before scaling) covariance of params. (dot(X.T,X))**-1
scale : float
For (some subset of models) scale will typically be the
mean square error from the estimated model (sigma^2)
Returns
-------
**Attributes**
mle_retvals : dict
Contains the values returned from the chosen optimization method if
full_output is True during the fit. Available only if the model
is fit by maximum likelihood. See notes below for the output from
the different methods.
mle_settings : dict
Contains the arguments passed to the chosen optimization method.
Available if the model is fit by maximum likelihood. See
LikelihoodModel.fit for more information.
model : model instance
LikelihoodResults contains a reference to the model that is fit.
params : ndarray
The parameters estimated for the model.
scale : float
The scaling factor of the model given during instantiation.
tvalues : array
The t-values of the standard errors.
Notes
--------
The covariance of params is given by scale times normalized_cov_params.
Return values by solver if full_ouput is True during fit:
'newton'
fopt : float
The value of the (negative) loglikelihood at its
minimum.
iterations : int
Number of iterations performed.
score : ndarray
The score vector at the optimum.
Hessian : ndarray
The Hessian at the optimum.
warnflag : int
1 if maxiter is exceeded. 0 if successful convergence.
converged : bool
True: converged. False: did not converge.
allvecs : list
List of solutions at each iteration.
'nm'
fopt : float
The value of the (negative) loglikelihood at its
minimum.
iterations : int
Number of iterations performed.
warnflag : int
1: Maximum number of function evaluations made.
2: Maximum number of iterations reached.
converged : bool
True: converged. False: did not converge.
allvecs : list
List of solutions at each iteration.
'bfgs'
fopt : float
Value of the (negative) loglikelihood at its minimum.
gopt : float
Value of gradient at minimum, which should be near 0.
Hinv : ndarray
value of the inverse Hessian matrix at minimum. Note
that this is just an approximation and will often be
different from the value of the analytic Hessian.
fcalls : int
Number of calls to loglike.
gcalls : int
Number of calls to gradient/score.
warnflag : int
1: Maximum number of iterations exceeded. 2: Gradient
and/or function calls are not changing.
converged : bool
True: converged. False: did not converge.
allvecs : list
Results at each iteration.
'powell'
fopt : float
Value of the (negative) loglikelihood at its minimum.
direc : ndarray
Current direction set.
iterations : int
Number of iterations performed.
fcalls : int
Number of calls to loglike.
warnflag : int
1: Maximum number of function evaluations. 2: Maximum number
of iterations.
converged : bool
True : converged. False: did not converge.
allvecs : list
Results at each iteration.
'cg'
fopt : float
Value of the (negative) loglikelihood at its minimum.
fcalls : int
Number of calls to loglike.
gcalls : int
Number of calls to gradient/score.
warnflag : int
1: Maximum number of iterations exceeded. 2: Gradient and/
or function calls not changing.
converged : bool
True: converged. False: did not converge.
allvecs : list
Results at each iteration.
'ncg'
fopt : float
Value of the (negative) loglikelihood at its minimum.
fcalls : int
Number of calls to loglike.
gcalls : int
Number of calls to gradient/score.
hcalls : int
Number of calls to hessian.
warnflag : int
1: Maximum number of iterations exceeded.
converged : bool
True: converged. False: did not converge.
allvecs : list
Results at each iteration.
"""
def __init__(self, model, params, normalized_cov_params=None, scale=1.):
super(LikelihoodModelResults, self).__init__(model, params)
self.normalized_cov_params = normalized_cov_params
self.scale = scale
def normalized_cov_params(self):
raise NotImplementedError
#JP: add methods that are valid generically higher up in class hierarchy
@cache_readonly
def llf(self):
return self.model.loglike(self.params)
@cache_readonly
def bse(self):
return np.sqrt(np.diag(self.cov_params()))
def t(self, column=None):
"""
deprecated: Return the t-statistic for a given parameter estimate.
FutureWarning: use attribute tvalues instead, t will be removed
in the next release
Parameters
----------
column : array-like
The columns for which you would like the t-value.
Note that this uses Python's indexing conventions.
See also
---------
Use t_test for more complicated t-statistics.
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> results.tvalues
array([ 0.17737603, -1.06951632, -4.13642736, -4.82198531, -0.22605114,
4.01588981, -3.91080292])
>>> results.tvalues[[1,2,4]]
array([-1.06951632, -4.13642736, -0.22605114])
>>> import numpy as np
>>> results.tvalues[np.array([1,2,4]]
array([-1.06951632, -4.13642736, -0.22605114])
"""
import warnings
warnings.warn("`t` will be removed in the next release, use attribute"
"`tvalues` instead", FutureWarning)
if self.normalized_cov_params is None:
raise ValueError('need covariance of parameters for computing T '
'statistics')
if column is None:
column = range(self.params.shape[0])
column = np.asarray(column)
_params = self.params[column]
_cov = self.cov_params(column=column)
if _cov.ndim == 2:
_cov = np.diag(_cov)
_t = _params * recipr(np.sqrt(_cov))
# repicr drops precision for MNLogit?
_t = _params / np.sqrt(_cov)
return _t
@cache_readonly
def tvalues(self):
"""
Return the t-statistic for a given parameter estimate.
"""
return self.params / self.bse
@cache_readonly
def pvalues(self):
return stats.norm.sf(np.abs(self.tvalues)) * 2
def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None,
other=None):
"""
Returns the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast
of the estimates of params or all params multiplied by scale which
will usually be an estimate of sigma^2. Scale is assumed to be
a scalar.
Parameters
----------
r_matrix : array-like
Can be 1d, or 2d. Can be used alone or with other.
column : array-like, optional
Must be used on its own. Can be 0d or 1d see below.
scale : float, optional
Can be specified or not. Default is None, which means that
the scale argument is taken from the model.
other : array-like, optional
Can be used when r_matrix is specified.
Returns
-------
(The below are assumed to be in matrix notation.)
cov : ndarray
If no argument is specified returns the covariance matrix of a model
(scale)*(X.T X)^(-1)
If contrast is specified it pre and post-multiplies as follows
(scale) * r_matrix (X.T X)^(-1) r_matrix.T
If contrast and other are specified returns
(scale) * r_matrix (X.T X)^(-1) other.T
If column is specified returns
(scale) * (X.T X)^(-1)[column,column] if column is 0d
OR
(scale) * (X.T X)^(-1)[column][:,column] if column is 1d
"""
if cov_p is None and self.normalized_cov_params is None:
raise ValueError('need covariance of parameters for computing '
'(unnormalized) covariances')
if column is not None and (r_matrix is not None or other is not None):
raise ValueError('Column should be specified without other '
'arguments.')
if other is not None and r_matrix is None:
raise ValueError('other can only be specified with r_matrix')
if cov_p is None:
if scale is None:
scale = self.scale
cov_p = self.normalized_cov_params * scale
if column is not None:
column = np.asarray(column)
if column.shape == ():
return cov_p[column, column]
else:
#return cov_p[column][:, column]
return cov_p[column[:, None], column]
elif r_matrix is not None:
r_matrix = np.asarray(r_matrix)
if r_matrix.shape == ():
raise ValueError("r_matrix should be 1d or 2d")
if other is None:
other = r_matrix
else:
other = np.asarray(other)
tmp = np.dot(r_matrix, np.dot(cov_p, np.transpose(other)))
return tmp
else: #if r_matrix is None and column is None:
return cov_p
#TODO: make sure this works as needed for GLMs
def t_test(self, r_matrix, q_matrix=None, cov_p=None, scale=None):
"""
Compute a tcontrast/t-test for a row vector array of the form Rb = q
where R is r_matrix, b = the parameter vector, and q is q_matrix.
Parameters
----------
r_matrix : array-like
A length p row vector specifying the linear restrictions.
q_matrix : array-like or scalar, optional
Either a scalar or a length p row vector.
scale : float, optional
An optional `scale` to use. Default is the scale specified
by the model fit.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> r = np.zeros_like(results.params)
>>> r[4:6] = [1,-1]
>>> print r
[ 0. 0. 0. 0. 1. -1. 0.]
r tests that the coefficients on the 5th and 6th independent
variable are the same.
>>>T_Test = results.t_test(r)
>>>print T_test
<T contrast: effect=-1829.2025687192481, sd=455.39079425193762,
t=-4.0167754636411717, p=0.0015163772380899498, df_denom=9>
>>> T_test.effect
-1829.2025687192481
>>> T_test.sd
455.39079425193762
>>> T_test.t
-4.0167754636411717
>>> T_test.p
0.0015163772380899498
See also
---------
t : method to get simpler t values
f_test : for f tests
"""
r_matrix = np.atleast_2d(np.asarray(r_matrix))
num_ttests = r_matrix.shape[0]
num_params = r_matrix.shape[1]
if cov_p is None and self.normalized_cov_params is None:
raise ValueError('Need covariance of parameters for computing '
'T statistics')
if num_params != self.params.shape[0]:
raise ValueError('r_matrix and params are not aligned')
if q_matrix is None:
q_matrix = np.zeros(num_ttests)
else:
q_matrix = np.asarray(q_matrix)
if q_matrix.size > 1:
if q_matrix.shape[0] != num_ttests:
raise ValueError("r_matrix and q_matrix must have the same "
"number of rows")
_t = _sd = None
_effect = np.dot(r_matrix, self.params)
if num_ttests > 1:
_sd = np.sqrt(np.diag(self.cov_params(r_matrix=r_matrix,
cov_p=cov_p)))
else:
_sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p))
_t = (_effect - q_matrix) * recipr(_sd)
return ContrastResults(effect=_effect, t=_t, sd=_sd,
df_denom=self.model.df_resid)
#TODO: untested for GLMs?
def f_test(self, r_matrix, q_matrix=None, cov_p=None, scale=1.0,
invcov=None):
"""
Compute an Fcontrast/F-test for a contrast matrix.
Here, matrix `r_matrix` is assumed to be non-singular. More precisely,
r_matrix (pX pX.T) r_matrix.T
is assumed invertible. Here, pX is the generalized inverse of the
design matrix of the model. There can be problems in non-OLS models
where the rank of the covariance of the noise is not full.
Parameters
----------
r_matrix : array-like
q x p array where q is the number of restrictions to test and
p is the number of regressors in the full model fit.
If q is 1 then f_test(r_matrix).fvalue is equivalent to
the square of t_test(r_matrix).t
q_matrix : array-like
q x 1 array, that represents the sum of each linear restriction.
Default is all zeros for each restriction.
scale : float, optional
Default is 1.0 for no scaling.
invcov : array-like, optional
A qxq matrix to specify an inverse covariance
matrix based on a restrictions matrix.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> A = np.identity(len(results.params))
>>> A = A[:-1,:]
This tests that each coefficient is jointly statistically
significantly different from zero.
>>> print results.f_test(A)
<F contrast: F=330.28533923463488, p=4.98403052872e-10,
df_denom=9, df_num=6>
Compare this to
>>> results.F
330.2853392346658
>>> results.F_p
4.98403096572e-10
>>> B = np.array(([0,1,-1,0,0,0,0],[0,0,0,0,1,-1,0]))
This tests that the coefficient on the 2nd and 3rd regressors are
equal and jointly that the coefficient on the 5th and 6th regressors
are equal.
>>> print results.f_test(B)
<F contrast: F=9.740461873303655, p=0.00560528853174, df_denom=9,
df_num=2>
See also
--------
statsmodels.contrasts
statsmodels.model.t_test
"""
r_matrix = np.asarray(r_matrix)
r_matrix = np.atleast_2d(r_matrix)
if (self.normalized_cov_params is None and cov_p is None and
invcov is None):
raise ValueError('need covariance of parameters for computing '
'F statistics')
cparams = np.dot(r_matrix, self.params[:, None])
J = float(r_matrix.shape[0]) # number of restrictions
if q_matrix is None:
q_matrix = np.zeros(J)
else:
q_matrix = np.asarray(q_matrix)
if q_matrix.ndim == 1:
q_matrix = q_matrix[:, None]
if q_matrix.shape[0] != J:
raise ValueError("r_matrix and q_matrix must have the same "
"number of rows")
Rbq = cparams - q_matrix
if invcov is None:
invcov = np.linalg.inv(self.cov_params(r_matrix=r_matrix,
cov_p=cov_p))
F = np.dot(np.dot(Rbq.T, invcov), Rbq) / J
return ContrastResults(F=F, df_denom=self.model.df_resid,
df_num=invcov.shape[0])
def conf_int(self, alpha=.05, cols=None, method='default'):
"""
Returns the confidence interval of the fitted parameters.
Parameters
----------
alpha : float, optional
The `alpha` level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
cols : array-like, optional
`cols` specifies which confidence intervals to return
method : string
Not Implemented Yet
Method to estimate the confidence_interval.
"Default" : uses self.bse which is based on inverse Hessian for MLE
"jhj" :
"jac" :
"boot-bse"
"boot_quant"
"profile"
Returns
--------
conf_int : array
Each row contains [lower, upper] confidence interval
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> results = sm.OLS(data.endog, data.exog).fit()
>>> results.conf_int()
array([[ -1.77029035e+02, 2.07152780e+02],
[ -1.11581102e-01, 3.99427438e-02],
[ -3.12506664e+00, -9.15392966e-01],
[ -1.51794870e+00, -5.48505034e-01],
[ -5.62517214e-01, 4.60309003e-01],
[ 7.98787515e+02, 2.85951541e+03],
[ -5.49652948e+06, -1.46798779e+06]])
>>> results.conf_int(cols=(1,2))
array([[-0.1115811 , 0.03994274],
[-3.12506664, -0.91539297]])
Notes
-----
The confidence interval is based on the standard normal distribution.
Models wish to use a different distribution should overwrite this
method.
"""
bse = self.bse
dist = stats.norm
q = dist.ppf(1 - alpha / 2)
if cols is None:
lower = self.params - q * bse
upper = self.params + q * bse
else:
cols = np.asarray(cols)
lower = self.params[cols] - q * bse[cols]
upper = self.params[cols] + q * bse[cols]
return np.asarray(zip(lower, upper))
@cache_readonly
def llf(self):
return self.model.loglike(self.params)
def save(self, fname, remove_data=False):
'''
save a pickle of this instance
Parameters
----------
fname : string or filehandle
fname can be a string to a file path or filename, or a filehandle.
remove_data : bool
If False (default), then the instance is pickled without changes.
If True, then all arrays with length nobs are set to None before
pickling. See the remove_data method.
In some cases not all arrays will be set to None.
Notes
-----
If remove_data is true and the model result does not implement a
remove_data method then this will raise an exception.
'''
from statsmodels.iolib.smpickle import save_pickle
if remove_data:
self.remove_data()
save_pickle(self, fname)
@classmethod
def load(cls, fname):
'''
load a pickle, (class method)
Parameters
----------
fname : string or filehandle
fname can be a string to a file path or filename, or a filehandle.
Returns
-------
unpickled instance
'''
from statsmodels.iolib.smpickle import load_pickle
return load_pickle(fname)
def remove_data(self):
'''remove data arrays, all nobs arrays from result and model
This reduces the size of the instance, so it can be pickled with less
memory. Currently tested for use with predict from an unpickled
results and model instance.
.. warning:: Since data and some intermediate results have been removed
calculating new statistics that require them will raise exceptions.
The exception will occur the first time an attribute is accessed that
has been set to None.
Not fully tested for time series models, tsa, and might delete too much
for prediction or not all that would be possible.
The list of arrays to delete is maintained as an attribute of the
result and model instance, except for cached values. These lists could
be changed before calling remove_data.
'''
def wipe(obj, att):
#get to last element in attribute path
p = att.split('.')
att_ = p.pop(-1)
try:
obj_ = reduce(getattr, [obj] + p)
#print repr(obj), repr(att)
#print hasattr(obj_, att_)
if hasattr(obj_, att_):
#print 'removing3', att_
setattr(obj_, att_, None)
except AttributeError:
pass
model_attr = ['model.'+ i for i in self.model._data_attr]
for att in self._data_attr + model_attr:
#print 'removing', att
wipe(self, att)
data_in_cache = getattr(self, 'data_in_cache', [])
data_in_cache += ['fittedvalues', 'resid', 'wresid']
for key in data_in_cache:
try:
self._cache[key] = None
except (AttributeError, KeyError):
pass
class LikelihoodResultsWrapper(wrap.ResultsWrapper):
_attrs = {
'params': 'columns',
'bse': 'columns',
'pvalues': 'columns',
'tvalues': 'columns',
'resid': 'rows',
'fittedvalues': 'rows',
'normalized_cov_params': 'cov',
}
_wrap_attrs = _attrs
_wrap_methods = {
'cov_params': 'cov',
'conf_int': 'columns'
}
wrap.populate_wrapper(LikelihoodResultsWrapper,
LikelihoodModelResults)
class ResultMixin(object):
@cache_readonly
def df_modelwc(self):
# collect different ways of defining the number of parameters, used for
# aic, bic
if hasattr(self, 'df_model'):
if hasattr(self, 'hasconst'):
hasconst = self.hasconst
else:
# default assumption
hasconst = 1
return self.df_model + hasconst
else:
return self.params.size
@cache_readonly
def aic(self):
return -2 * self.llf + 2 * (self.df_modelwc)
@cache_readonly
def bic(self):
return -2 * self.llf + np.log(self.nobs) * (self.df_modelwc)
@cache_readonly
def jacv(self):
'''cached Jacobian of log-likelihood
'''
return self.model.jac(self.params)
@cache_readonly
def hessv(self):
'''cached Hessian of log-likelihood
'''
return self.model.hessian(self.params)
@cache_readonly
def covjac(self):
'''
covariance of parameters based on outer product of jacobian of
log-likelihood
'''
## if not hasattr(self, '_results'):
## raise ValueError('need to call fit first')
## #self.fit()
## self.jacv = jacv = self.jac(self._results.params)
jacv = self.jacv
return np.linalg.inv(np.dot(jacv.T, jacv))
@cache_readonly
def covjhj(self):
'''covariance of parameters based on HJJH
dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood
name should be covhjh
'''
jacv = self.jacv
## hessv = self.hessv
## hessinv = np.linalg.inv(hessv)
## self.hessinv = hessinv
hessinv = self.cov_params()
return np.dot(hessinv, np.dot(np.dot(jacv.T, jacv), hessinv))
@cache_readonly
def bsejhj(self):
'''standard deviation of parameter estimates based on covHJH
'''
return np.sqrt(np.diag(self.covjhj))
@cache_readonly
def bsejac(self):
'''standard deviation of parameter estimates based on covjac
'''
return np.sqrt(np.diag(self.covjac))
def bootstrap(self, nrep=100, method='nm', disp=0, store=1):
'''simple bootstrap to get mean and variance of estimator
see notes
Parameters
----------
nrep : int
number of bootstrap replications
method : str
optimization method to use
disp : bool
If true, then optimization prints results
store : bool
If true, then parameter estimates for all bootstrap iterations
are attached in self.bootstrap_results
Returns
-------
mean : array
mean of parameter estimates over bootstrap replications
std : array
standard deviation of parameter estimates over bootstrap
replications
Notes
-----
This was mainly written to compare estimators of the standard errors of
the parameter estimates. It uses independent random sampling from the
original endog and exog, and therefore is only correct if observations
are independently distributed.
This will be moved to apply only to models with independently
distributed observations.
'''
results = []
print self.model.__class__
hascloneattr = True if hasattr(self, 'cloneattr') else False
for i in xrange(nrep):
rvsind = np.random.randint(self.nobs - 1, size=self.nobs)
#this needs to set startparam and get other defining attributes
#need a clone method on model
fitmod = self.model.__class__(self.endog[rvsind],
self.exog[rvsind, :])
if hascloneattr:
for attr in self.model.cloneattr:
setattr(fitmod, attr, getattr(self.model, attr))
fitres = fitmod.fit(method=method, disp=disp)
results.append(fitres.params)
results = np.array(results)
if store:
self.bootstrap_results = results
return results.mean(0), results.std(0), results
def get_nlfun(self, fun):
#I think this is supposed to get the delta method that is currently
#in miscmodels count (as part of Poisson example)
pass
class GenericLikelihoodModelResults(LikelihoodModelResults, ResultMixin):
"""
A results class for the discrete dependent variable models.
..Warning :
The following description has not been updated to this version/class.
Where are AIC, BIC, ....? docstring looks like copy from discretemod
Parameters
----------
model : A DiscreteModel instance
mlefit : instance of LikelihoodResults
This contains the numerical optimization results as returned by
LikelihoodModel.fit(), in a superclass of GnericLikelihoodModels
Returns
-------
*Attributes*
Warning most of these are not available yet
aic : float
Akaike information criterion. -2*(`llf` - p) where p is the number
of regressors including the intercept.
bic : float
Bayesian information criterion. -2*`llf` + ln(`nobs`)*p where p is the
number of regressors including the intercept.
bse : array
The standard errors of the coefficients.
df_resid : float
See model definition.
df_model : float
See model definition.
fitted_values : array
Linear predictor XB.
llf : float
Value of the loglikelihood
llnull : float
Value of the constant-only loglikelihood
llr : float
Likelihood ratio chi-squared statistic; -2*(`llnull` - `llf`)
llr_pvalue : float
The chi-squared probability of getting a log-likelihood ratio
statistic greater than llr. llr has a chi-squared distribution
with degrees of freedom `df_model`.
prsquared : float
McFadden's pseudo-R-squared. 1 - (`llf`/`llnull`)
"""
def __init__(self, model, mlefit):
# super(DiscreteResults, self).__init__(model, params,
# np.linalg.inv(-hessian), scale=1.)
self.model = model
#self.df_model = model.df_model
#self.df_resid = model.df_resid
self.endog = model.endog
self.exog = model.exog
self.nobs = model.endog.shape[0]
self._cache = resettable_cache()
self.__dict__.update(mlefit.__dict__)
|