/usr/share/pyshared/statsmodels/graphics/regressionplots.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | '''Partial Regression plot and residual plots to find misspecification
Author: Josef Perktold
License: BSD-3
Created: 2011-01-23
update
2011-06-05 : start to convert example to usable functions
2011-10-27 : docstrings
'''
import numpy as np
from statsmodels.regression.linear_model import OLS
from statsmodels.sandbox.regression.predstd import wls_prediction_std
from . import utils
__all__ = ['plot_fit', 'plot_regress_exog', 'plot_partregress', 'plot_ccpr',
'plot_regress_exog']
def plot_fit(res, exog_idx, exog_name='', y_true=None, ax=None, fontsize='small'):
"""Plot fit against one regressor.
This creates one graph with the scatterplot of observed values compared to
fitted values.
Parameters
----------
res : result instance
result instance with resid, model.endog and model.exog as attributes
exog_idx : int
index of regressor in exog matrix
y_true : array_like
(optional) If this is not None, then the array is added to the plot
ax : Matplotlib AxesSubplot instance, optional
If given, this subplot is used to plot in instead of a new figure being
created.
Returns
-------
fig : Matplotlib figure instance
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
Notes
-----
This is currently very simple, no options or varnames yet.
"""
fig, ax = utils.create_mpl_ax(ax)
if exog_name == '':
exog_name = 'variable %d' % exog_idx
#maybe add option for wendog, wexog
y = res.model.endog
x1 = res.model.exog[:, exog_idx]
x1_argsort = np.argsort(x1)
y = y[x1_argsort]
x1 = x1[x1_argsort]
ax.plot(x1, y, 'bo', label='observed')
if not y_true is None:
ax.plot(x1, y_true[x1_argsort], 'b-', label='true')
title = 'fitted versus regressor %s' % exog_name
else:
title = 'fitted versus regressor %s' % exog_name
prstd, iv_l, iv_u = wls_prediction_std(res)
ax.plot(x1, res.fittedvalues[x1_argsort], 'k-', label='fitted') #'k-o')
#ax.plot(x1, iv_u, 'r--')
#ax.plot(x1, iv_l, 'r--')
ax.fill_between(x1, iv_l[x1_argsort], iv_u[x1_argsort], alpha=0.1, color='k')
ax.set_title(title, fontsize=fontsize)
return fig
def plot_regress_exog(res, exog_idx, exog_name='', fig=None):
"""Plot regression results against one regressor.
This plots four graphs in a 2 by 2 figure: 'endog versus exog',
'residuals versus exog', 'fitted versus exog' and
'fitted plus residual versus exog'
Parameters
----------
res : result instance
result instance with resid, model.endog and model.exog as attributes
exog_idx : int
index of regressor in exog matrix
fig : Matplotlib figure instance, optional
If given, this figure is simply returned. Otherwise a new figure is
created.
Returns
-------
fig : matplotlib figure instance
Notes
-----
This is currently very simple, no options or varnames yet.
"""
fig = utils.create_mpl_fig(fig)
if exog_name == '':
exog_name = 'variable %d' % exog_idx
#maybe add option for wendog, wexog
#y = res.endog
x1 = res.model.exog[:,exog_idx]
ax = fig.add_subplot(2,2,1)
#namestr = ' for %s' % self.name if self.name else ''
ax.plot(x1, res.model.endog, 'o')
ax.set_title('endog versus exog', fontsize='small')# + namestr)
ax = fig.add_subplot(2,2,2)
#namestr = ' for %s' % self.name if self.name else ''
ax.plot(x1, res.resid, 'o')
ax.axhline(y=0)
ax.set_title('residuals versus exog', fontsize='small')# + namestr)
ax = fig.add_subplot(2,2,3)
#namestr = ' for %s' % self.name if self.name else ''
ax.plot(x1, res.fittedvalues, 'o')
ax.set_title('Fitted versus exog', fontsize='small')# + namestr)
ax = fig.add_subplot(2,2,4)
#namestr = ' for %s' % self.name if self.name else ''
ax.plot(x1, res.fittedvalues + res.resid, 'o')
ax.set_title('Fitted plus residuals versus exog', fontsize='small')# + namestr)
fig.suptitle('Regression Plots for %s' % exog_name)
return fig
def _partial_regression(endog, exog_i, exog_others):
"""Partial regression.
regress endog on exog_i conditional on exog_others
uses OLS
Parameters
----------
endog : array_like
exog : array_like
exog_others : array_like
Returns
-------
res1c : OLS results instance
(res1a, res1b) : tuple of OLS results instances
results from regression of endog on exog_others and of exog_i on
exog_others
"""
#FIXME: This function doesn't appear to be used.
res1a = OLS(endog, exog_others).fit()
res1b = OLS(exog_i, exog_others).fit()
res1c = OLS(res1a.resid, res1b.resid).fit()
return res1c, (res1a, res1b)
def plot_partregress_ax(endog, exog_i, exog_others, varname='',
title_fontsize=None, ax=None):
"""Plot partial regression for a single regressor.
Parameters
----------
endog : ndarray
endogenous or response variable
exog_i : ndarray
exogenous, explanatory variable
exog_others : ndarray
other exogenous, explanatory variables, the effect of these variables
will be removed by OLS regression
varname : str
name of the variable used in the title
ax : Matplotlib AxesSubplot instance, optional
If given, this subplot is used to plot in instead of a new figure being
created.
Returns
-------
fig : Matplotlib figure instance
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
See Also
--------
plot_partregress : Plot partial regression for a set of regressors.
"""
fig, ax = utils.create_mpl_ax(ax)
res1a = OLS(endog, exog_others).fit()
res1b = OLS(exog_i, exog_others).fit()
ax.plot(res1b.resid, res1a.resid, 'o')
res1c = OLS(res1a.resid, res1b.resid).fit()
ax.plot(res1b.resid, res1c.fittedvalues, '-', color='k')
ax.set_title('Partial Regression plot %s' % varname,
fontsize=title_fontsize)# + namestr)
return fig
def plot_partregress(endog, exog, exog_idx=None, grid=None, fig=None):
"""Plot partial regression for a set of regressors.
Parameters
----------
endog : ndarray
endogenous or response variable
exog : ndarray
exogenous, regressor variables
exog_idx : None or list of int
(column) indices of the exog used in the plot
grid : None or tuple of int (nrows, ncols)
If grid is given, then it is used for the arrangement of the subplots.
If grid is None, then ncol is one, if there are only 2 subplots, and
the number of columns is two otherwise.
fig : Matplotlib figure instance, optional
If given, this figure is simply returned. Otherwise a new figure is
created.
Returns
-------
fig : Matplotlib figure instance
If `fig` is None, the created figure. Otherwise `fig` itself.
Notes
-----
A subplot is created for each explanatory variable given by exog_idx.
The partial regression plot shows the relationship between the response
and the given explanatory variable after removing the effect of all other
explanatory variables in exog.
See Also
--------
plot_partregress_ax : Plot partial regression for a single regressor.
plot_ccpr
References
----------
See http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/partregr.htm
"""
fig = utils.create_mpl_fig(fig)
#maybe add option for using wendog, wexog instead
y = endog
if not grid is None:
nrows, ncols = grid
else:
if len(exog_idx) > 2:
nrows = int(np.ceil(len(exog_idx)/2.))
ncols = 2
title_fontsize = 'small'
else:
nrows = len(exog_idx)
ncols = 1
title_fontsize = None
k_vars = exog.shape[1]
#this function doesn't make sense if k_vars=1
for i,idx in enumerate(exog_idx):
others = range(k_vars)
others.pop(idx)
exog_others = exog[:, others]
ax = fig.add_subplot(nrows, ncols, i+1)
plot_partregress_ax(y, exog[:, idx], exog_others, ax=ax)
return fig
def plot_ccpr_ax(res, exog_idx=None, ax=None):
"""Plot CCPR against one regressor.
Generates a CCPR (component and component-plus-residual) plot.
Parameters
----------
res : result instance
uses exog and params of the result instance
exog_idx : int
(column) index of the exog used in the plot
ax : Matplotlib AxesSubplot instance, optional
If given, this subplot is used to plot in instead of a new figure being
created.
Returns
-------
fig : Matplotlib figure instance
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
See Also
--------
plot_ccpr : Creates CCPR plot for multiple regressors in a plot grid.
References
----------
See http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ccpr.htm
"""
fig, ax = utils.create_mpl_ax(ax)
x1 = res.model.exog[:,exog_idx]
#namestr = ' for %s' % self.name if self.name else ''
x1beta = x1*res.params[1]
ax.plot(x1, x1beta + res.resid, 'o')
ax.plot(x1, x1beta, '-')
ax.set_title('X_%d beta_%d plus residuals versus exog (CCPR)' % \
(exog_idx, exog_idx))
return fig
def plot_ccpr(res, exog_idx=None, grid=None, fig=None):
"""Generate CCPR plots against a set of regressors, plot in a grid.
Generates a grid of CCPR (component and component-plus-residual) plots.
Parameters
----------
res : result instance
uses exog and params of the result instance
exog_idx : None or list of int
(column) indices of the exog used in the plot
grid : None or tuple of int (nrows, ncols)
If grid is given, then it is used for the arrangement of the subplots.
If grid is None, then ncol is one, if there are only 2 subplots, and
the number of columns is two otherwise.
fig : Matplotlib figure instance, optional
If given, this figure is simply returned. Otherwise a new figure is
created.
Returns
-------
fig : Matplotlib figure instance
If `ax` is None, the created figure. Otherwise the figure to which
`ax` is connected.
Notes
-----
Partial residual plots are formed as::
Res + Betahat(i)*Xi versus Xi
and CCPR adds::
Betahat(i)*Xi versus Xi
See Also
--------
plot_ccpr_ax : Creates CCPR plot for a single regressor.
References
----------
See http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ccpr.htm
"""
fig = utils.create_mpl_fig(fig)
if grid is not None:
nrows, ncols = grid
else:
if len(exog_idx) > 2:
nrows = int(np.ceil(len(exog_idx)/2.))
ncols = 2
else:
nrows = len(exog_idx)
ncols = 1
for i, idx in enumerate(exog_idx):
ax = fig.add_subplot(nrows, ncols, i+1)
plot_ccpr_ax(res, exog_idx=idx, ax=ax)
return fig
def abline_plot(intercept=None, slope=None, horiz=None, vert=None,
model_results=None, ax=None, **kwargs):
"""
Plots a line given an intercept and slope.
intercept : float
The intercept of the line
slope : float
The slope of the line
horiz : float or array-like
Data for horizontal lines on the y-axis
vert : array-like
Data for verterical lines on the x-axis
model_results : statsmodels results instance
Any object that has a two-value `params` attribute. Assumed that it
is (intercept, slope)
ax : axes, optional
Matplotlib axes instance
kwargs
Options passed to matplotlib.pyplot.plt
Returns
-------
fig : Figure
The figure given by `ax.figure` or a new instance.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
>>> np.random.seed(12345)
>>> X = sm.add_constant(np.random.normal(0, 20, size=30), prepend=True)
>>> y = np.dot(X, [25, 3.5]) + np.random.normal(0, 30, size=30)
>>> mod = sm.OLS(y,X).fit()
>>> fig = abline_plot(model_results=mod)
>>> ax = fig.axes
>>> ax.scatter(X[:,1], y)
>>> ax.margins(.1)
>>> import matplotlib.pyplot as plt
>>> plt.show()
"""
fig,ax = utils.create_mpl_ax(ax)
if model_results:
intercept, slope = model_results.params
x = [model_results.model.exog[:,1].min(),
model_results.model.exog[:,1].max()]
else:
x = None
if not (intercept is not None and slope is not None):
raise ValueError("specify slope and intercepty or model_results")
if not x: # can't infer x limits
x = ax.get_xlim()
y = [x[0]*slope+intercept, x[1]*slope+intercept]
ax.set_xlim(x)
ax.set_ylim(y)
from matplotlib.lines import Line2D
class ABLine2D(Line2D):
def update_datalim(self, ax):
ax.set_autoscale_on(False)
children = ax.get_children()
abline = [children[i] for i in range(len(children))
if isinstance(children[i], ABLine2D)][0]
x = ax.get_xlim()
y = [x[0]*slope+intercept, x[1]*slope+intercept]
abline.set_data(x,y)
ax.figure.canvas.draw()
line = ABLine2D(x, y, **kwargs)
ax.add_line(line)
ax.callbacks.connect('xlim_changed', line.update_datalim)
ax.callbacks.connect('ylim_changed', line.update_datalim)
if horiz:
ax.hline(horiz)
if vert:
ax.vline(vert)
return fig
|