This file is indexed.

/usr/share/pyshared/statsmodels/iolib/summary.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import numpy as np
from statsmodels.compatnp.iter_compat import zip_longest
from statsmodels.iolib.table import SimpleTable
from statsmodels.iolib.tableformatting import (gen_fmt, fmt_2,
                                                fmt_params, fmt_base, fmt_2cols)
#from statsmodels.iolib.summary2d import summary_params_2dflat
#from summary2d import summary_params_2dflat

def forg(x, prec=3):
    if prec == 3:
    #for 3 decimals
        if (abs(x) >= 1e4) or (abs(x) < 1e-4):
            return '%9.3g' % x
        else:
            return '%9.3f' % x
    elif prec == 4:
        if (abs(x) >= 1e4) or (abs(x) < 1e-4):
            return '%10.4g' % x
        else:
            return '%10.4f' % x
    else:
        raise NotImplementedError


def summary(self, yname=None, xname=None, title=0, alpha=.05,
            returns='text', model_info=None):
    """
    Parameters
    -----------
    yname : string
            optional, Default is `Y`
    xname : list of strings
            optional, Default is `X.#` for # in p the number of regressors
    Confidance interval : (0,1) not implimented
    title : string
            optional, Defualt is 'Generalized linear model'
    returns : string
              'text', 'table', 'csv', 'latex', 'html'

    Returns
    -------
    Defualt :
    returns='print'
            Prints the summarirized results

    Option :
    returns='text'
            Prints the summarirized results

    Option :
    returns='table'
             SimpleTable instance : summarizing the fit of a linear model.

    Option :
    returns='csv'
            returns a string of csv of the results, to import into a spreadsheet

    Option :
    returns='latex'
    Not implimented yet

    Option :
    returns='HTML'
    Not implimented yet


    Examples (needs updating)
    --------
    >>> import statsmodels as sm
    >>> data = sm.datasets.longley.load()
    >>> data.exog = sm.add_constant(data.exog)
    >>> ols_results = sm.OLS(data.endog, data.exog).results
    >>> print ols_results.summary()
    ...

    Notes
    -----
    conf_int calculated from normal dist.
    """
    import time as time



    #TODO Make sure all self.model.__class__.__name__ are listed
    model_types = {'OLS' : 'Ordinary least squares',
                   'GLS' : 'Generalized least squares',
                   'GLSAR' : 'Generalized least squares with AR(p)',
                   'WLS' : 'Weigthed least squares',
                   'RLM' : 'Robust linear model',
                   'GLM' : 'Generalized linear model'
                   }
    model_methods = {'OLS' : 'Least Squares',
                   'GLS' : 'Least Squares',
                   'GLSAR' : 'Least Squares',
                   'WLS' : 'Least Squares',
                   'RLM' : '?',
                   'GLM' : '?'
                   }
    if title==0:
        title = model_types[self.model.__class__.__name__]
    if yname is None:
        try:
            yname = self.model.endog_names
        except AttributeError:
            yname = 'y'
    if xname is None:
        try:
            xname = self.model.exog_names
        except AttributeError:
            xname = ['var_%d' % i for i in range(len(self.params))]
    time_now = time.localtime()
    time_of_day = [time.strftime("%H:%M:%S", time_now)]
    date = time.strftime("%a, %d %b %Y", time_now)
    modeltype = self.model.__class__.__name__
    #dist_family = self.model.family.__class__.__name__
    nobs = self.nobs
    df_model = self.df_model
    df_resid = self.df_resid

    #General part of the summary table, Applicable to all? models
    #------------------------------------------------------------
    #TODO: define this generically, overwrite in model classes
    #replace definition of stubs data by single list
    #e.g.
    gen_left =   [('Model type:', [modeltype]),
                  ('Date:', [date]),
                  ('Dependent Variable:', yname), #What happens with multiple names?
                  ('df model', [df_model])
                  ]
    gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col

    gen_title = title
    gen_header = None
##    gen_stubs_left = ('Model type:',
##                      'Date:',
##                      'Dependent Variable:',
##                      'df model'
##                  )
##    gen_data_left = [[modeltype],
##                     [date],
##                     yname, #What happens with multiple names?
##                     [df_model]
##                     ]
    gen_table_left = SimpleTable(gen_data_left,
                                 gen_header,
                                 gen_stubs_left,
                                 title = gen_title,
                                 txt_fmt = gen_fmt
                                 )

    gen_stubs_right = ('Method:',
                      'Time:',
                      'Number of Obs:',
                      'df resid'
                      )
    gen_data_right = ([modeltype], #was dist family need to look at more
                      time_of_day,
                      [nobs],
                      [df_resid]
                      )
    gen_table_right = SimpleTable(gen_data_right,
                                 gen_header,
                                 gen_stubs_right,
                                 title = gen_title,
                                 txt_fmt = gen_fmt
                                 )
    gen_table_left.extend_right(gen_table_right)
    general_table = gen_table_left

    #Parameters part of the summary table
    #------------------------------------
    #Note: this is not necessary since we standardized names, only t versus normal
    tstats = {'OLS' : self.t(),
            'GLS' : self.t(),
            'GLSAR' : self.t(),
            'WLS' : self.t(),
            'RLM' : self.t(),
            'GLM' : self.t()
            }
    prob_stats = {'OLS' : self.pvalues,
                 'GLS' : self.pvalues,
                 'GLSAR' : self.pvalues,
                 'WLS' : self.pvalues,
                 'RLM' : self.pvalues,
                 'GLM' : self.pvalues
                }
    #Dictionary to store the header names for the parameter part of the
    #summary table. look up by modeltype
    alp = str((1-alpha)*100)+'%'
    param_header = {
         'OLS'   : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
         'GLS'   : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
         'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
         'WLS'   : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'],
         'GLM'   : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution
         'RLM'   : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval']  #checke z
                   }
    params_stubs = xname
    params = self.params
    conf_int = self.conf_int(alpha)
    std_err = self.bse
    exog_len = xrange(len(xname))
    tstat = tstats[modeltype]
    prob_stat = prob_stats[modeltype]

    # Simpletable should be able to handle the formating
    params_data = zip(["%#6.4g" % (params[i]) for i in exog_len],
                       ["%#6.4f" % (std_err[i]) for i in exog_len],
                       ["%#6.4f" % (tstat[i]) for i in exog_len],
                       ["%#6.4f" % (prob_stat[i]) for i in exog_len],
                       ["(%#5g, %#5g)" % tuple(conf_int[i]) for i in \
                                                             exog_len]
                      )
    parameter_table = SimpleTable(params_data,
                                  param_header[modeltype],
                                  params_stubs,
                                  title = None,
                                  txt_fmt = fmt_2, #gen_fmt,
                                  )

    #special table
    #-------------
    #TODO: exists in linear_model, what about other models
    #residual diagnostics


    #output options
    #--------------
    #TODO: JP the rest needs to be fixed, similar to summary in linear_model

    def ols_printer():
        """
        print summary table for ols models
        """
        table = str(general_table)+'\n'+str(parameter_table)
        return table

    def ols_to_csv():
        """
        exports ols summary data to csv
        """
        pass
    def glm_printer():
        table = str(general_table)+'\n'+str(parameter_table)
        return table
        pass

    printers  = {'OLS': ols_printer,
                'GLM' : glm_printer
                }

    if returns=='print':
        try:
            return printers[modeltype]()
        except KeyError:
            return printers['OLS']()

def _getnames(self, yname=None, xname=None):
    '''extract names from model or construct names
    '''
    if yname is None:
        try:
            yname = self.model.endog_names
        except AttributeError:
            yname = 'y'
    if xname is None:
        try:
            xname = self.model.exog_names
        except AttributeError:
            xname = ['var_%d' % i for i in range(len(self.params))]

    return yname, xname



def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None):
    '''generate top table(s)


    TODO: this still uses predefined model_methods
    ? allow gleft, gright to be 1 element tuples instead of filling with None?

    '''
    #change of names ?
    gen_left, gen_right = gleft, gright

    #time and names are always included
    import time
    time_now = time.localtime()
    time_of_day = [time.strftime("%H:%M:%S", time_now)]
    date = time.strftime("%a, %d %b %Y", time_now)

    yname, xname = _getnames(results, yname=yname, xname=xname)

    #create dictionary with default
    #use lambdas because some values raise exception if they are not available
    #alternate spellings are commented out to force unique labels
    default_items = dict([
          ('Dependent Variable:', lambda: [yname]),
          ('Dep. Variable:', lambda: [yname]),
          ('Model:', lambda: [results.model.__class__.__name__]),
          #('Model type:', lambda: [results.model.__class__.__name__]),
          ('Date:', lambda: [date]),
          ('Time:', lambda: time_of_day),
          ('Number of Obs:', lambda: [results.nobs]),
          #('No. of Observations:', lambda: ["%#6d" % results.nobs]),
          ('No. Observations:', lambda: ["%#6d" % results.nobs]),
          #('Df model:', lambda: [results.df_model]),
          ('Df Model:', lambda: ["%#6d" % results.df_model]),
          #TODO: check when we have non-integer df
          ('Df Residuals:', lambda: ["%#6d" % results.df_resid]),
          #('Df resid:', lambda: [results.df_resid]),
          #('df resid:', lambda: [results.df_resid]), #check capitalization
          ('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) #doesn't exist for RLM - exception
          #('Method:', lambda: [???]), #no default for this
          ])

    if title is None:
        title = results.model.__class__.__name__ + 'Regression Results'

    if gen_left is None:
        #default: General part of the summary table, Applicable to all? models
        gen_left = [('Dep. Variable:', None),
                    ('Model type:', None),
                    ('Date:', None),
                    ('No. Observations:', None)
                    ('Df model:', None),
                    ('Df resid:', None)]

        try:
            llf = results.llf
            gen_left.append(('Log-Likelihood', None))
        except: #AttributeError, NotImplementedError
            pass

        gen_right = []


    gen_title = title
    gen_header = None

    #needed_values = [k for k,v in gleft + gright if v is None] #not used anymore
    #replace missing (None) values with default values
    gen_left_ = []
    for item, value in gen_left:
        if value is None:
            value = default_items[item]()  #let KeyErrors raise exception
        gen_left_.append((item, value))
    gen_left = gen_left_

    if gen_right:
        gen_right_ = []
        for item, value in gen_right:
            if value is None:
                value = default_items[item]()  #let KeyErrors raise exception
            gen_right_.append((item, value))
        gen_right = gen_right_

    #check
    missing_values = [k for k,v in gen_left + gen_right if v is None]
    assert missing_values == [], missing_values

    #pad both tables to equal number of rows
    if gen_right:
        if len(gen_right) < len(gen_left):
            #fill up with blank lines to same length
            gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right))
        elif len(gen_right) > len(gen_left):
            #fill up with blank lines to same length, just to keep it symmetric
            gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left))

        #padding in SimpleTable doesn't work like I want
        #force extra spacing and exact string length in right table
        gen_right = [('%-21s' % ('  '+k), v) for k,v in gen_right]
        gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col
        gen_table_right = SimpleTable(gen_data_right,
                                      gen_header,
                                      gen_stubs_right,
                                      title = gen_title,
                                      txt_fmt = fmt_2cols #gen_fmt
                                      )
    else:
        gen_table_right = []  #because .extend_right seems works with []


    #moved below so that we can pad if needed to match length of gen_right
    #transpose rows and columns, `unzip`
    gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col

    gen_table_left = SimpleTable(gen_data_left,
                                 gen_header,
                                 gen_stubs_left,
                                 title = gen_title,
                                 txt_fmt = fmt_2cols
                                 )

    gen_table_left.extend_right(gen_table_right)
    general_table = gen_table_left

    return general_table #, gen_table_left, gen_table_right



def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True,
                   skip_header=False):
    '''create a summary table for the parameters

    Parameters
    ----------
    res : results instance
        some required information is directly taken from the result
        instance
    yname : string or None
        optional name for the endogenous variable, default is "y"
    xname : list of strings or None
        optional names for the exogenous variables, default is "var_xx"
    alpha : float
        significance level for the confidence intervals
    use_t : bool
        indicator whether the p-values are based on the Student-t
        distribution (if True) or on the normal distribution (if False)
    skip_headers : bool
        If false (default), then the header row is added. If true, then no
        header row is added.

    Returns
    -------
    params_table : SimpleTable instance
    '''

    #Parameters part of the summary table
    #------------------------------------
    #Note: this is not necessary since we standardized names, only t versus normal

    if isinstance(results, tuple):
        #for multivariate endog
        #TODO: check whether I don't want to refactor this
        #we need to give parameter alpha to conf_int
        results, params, std_err, tvalues, pvalues, conf_int = results
    else:
        params = results.params
        std_err = results.bse
        tvalues = results.tvalues  #is this sometimes called zvalues
        pvalues = results.pvalues
        conf_int = results.conf_int(alpha)


    #Dictionary to store the header names for the parameter part of the
    #summary table. look up by modeltype
    alp = str((1-alpha)*100)+'%'
    if use_t:
        param_header = ['coef', 'std err', 't', 'P>|t|',
                        '[' + alp + ' Conf. Int.]']
    else:
        param_header = ['coef', 'std err', 'z', 'P>|z|',
                        '[' + alp + ' Conf. Int.]']

    if skip_header:
        param_header = None


    _, xname = _getnames(results, yname=yname, xname=xname)

    params_stubs = xname

    exog_idx = xrange(len(xname))

    #center confidence intervals if they are unequal lengths
#    confint = ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \
#                                                             exog_idx]
    confint = ["%s %s" % tuple(map(forg, conf_int[i])) for i in \
                                                             exog_idx]
    len_ci = map(len, confint)
    max_ci = max(len_ci)
    min_ci = min(len_ci)

    if min_ci < max_ci:
        confint = [ci.center(max_ci) for ci in confint]

    #explicit f/g formatting, now uses forg, f or g depending on values
#    params_data = zip(["%#6.4g" % (params[i]) for i in exog_idx],
#                       ["%#6.4f" % (std_err[i]) for i in exog_idx],
#                       ["%#6.3f" % (tvalues[i]) for i in exog_idx],
#                       ["%#6.3f" % (pvalues[i]) for i in exog_idx],
#                       confint
##                       ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \
##                                                             exog_idx]
#                      )

    params_data = zip([forg(params[i], prec=4) for i in exog_idx],
                       [forg(std_err[i]) for i in exog_idx],
                       [forg(tvalues[i]) for i in exog_idx],
                       ["%#6.3f" % (pvalues[i]) for i in exog_idx],
                       confint
#                       ["(%#6.3g, %#6.3g)" % tuple(conf_int[i]) for i in \
#                                                             exog_idx]
                      )
    parameter_table = SimpleTable(params_data,
                                  param_header,
                                  params_stubs,
                                  title = None,
                                  txt_fmt = fmt_params #gen_fmt #fmt_2, #gen_fmt,
                                  )

    return parameter_table

def summary_params_2d(result, extras=None, endog_names=None, exog_names=None,
                      title=None):
    '''create summary table of regression parameters with several equations

    This allows interleaving of parameters with bse and/or tvalues

    Parameter
    ---------
    result : result instance
        the result instance with params and attributes in extras
    extras : list of strings
        additional attributes to add below a parameter row, e.g. bse or tvalues
    endog_names : None or list of strings
        names for rows of the parameter array (multivariate endog)
    exog_names : None or list of strings
        names for columns of the parameter array (exog)
    alpha : float
        level for confidence intervals, default 0.95
    title : None or string

    Returns
    -------
    tables : list of SimpleTable
        this contains a list of all seperate Subtables
    table_all : SimpleTable
        the merged table with results concatenated for each row of the parameter
        array

    '''
    if endog_names is None:
        #TODO: note the [1:] is specific to current MNLogit
        endog_names = ['endog_%d' % i for i in
                            np.unique(result.model.endog)[1:]]
    if exog_names is None:
        exog_names = ['var%d' %i for i in range(len(result.params))]

    #TODO: check formatting options with different values
    #res_params = [['%10.4f'%item for item in row] for row in result.params]
    res_params = [[forg(item, prec=4) for item in row] for row in result.params]
    if extras: #not None or non-empty
        #maybe this should be a simple triple loop instead of list comprehension?
        #below_list = [[['%10s' % ('('+('%10.3f'%v).strip()+')')
        extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')')
                                for v in col]
                                for col in getattr(result, what)]
                                for what in extras
                                ]
        data = zip(res_params, *extras_list)
        data = [i for j in data for i in j]  #flatten
        stubs = zip(endog_names, *[['']*len(endog_names)]*len(extras))
        stubs = [i for j in stubs for i in j] #flatten
        #return SimpleTable(data, headers=exog_names, stubs=stubs)
    else:
        data = res_params
        stubs = endog_names
#        return SimpleTable(data, headers=exog_names, stubs=stubs,
#                       data_fmts=['%10.4f'])

    import copy
    txt_fmt = copy.deepcopy(fmt_params)
    txt_fmt.update(dict(data_fmts = ["%s"]*result.params.shape[1]))
    return SimpleTable(data, headers=exog_names,
                             stubs=stubs,
                             title=title,
#                             data_fmts = ["%s"]),
                             txt_fmt = txt_fmt)


def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.95,
                          use_t=True, keep_headers=True, endog_cols=False):
                          #skip_headers2=True):
    '''summary table for parameters that are 2d, e.g. multi-equation models

    Parameter
    ---------
    result : result instance
        the result instance with params, bse, tvalues and conf_int
    endog_names : None or list of strings
        names for rows of the parameter array (multivariate endog)
    exog_names : None or list of strings
        names for columns of the parameter array (exog)
    alpha : float
        level for confidence intervals, default 0.95
    use_t : bool
        indicator whether the p-values are based on the Student-t
        distribution (if True) or on the normal distribution (if False)
    keep_headers : bool
        If true (default), then sub-tables keep their headers. If false, then
        only the first headers are kept, the other headerse are blanked out
    endog_cols : bool
        If false (default) then params and other result statistics have
        equations by rows. If true, then equations are assumed to be in columns.
        Not implemented yet.

    Returns
    -------
    tables : list of SimpleTable
        this contains a list of all seperate Subtables
    table_all : SimpleTable
        the merged table with results concatenated for each row of the parameter
        array

    '''

    res = result
    params = res.params
    if params.ndim == 2: # we've got multiple equations
        n_equ = params.shape[1]
        if not len(endog_names) == params.shape[1]:
            raise ValueError('endog_names has wrong length')
    else:
        if not len(endog_names) == len(params):
            raise ValueError('endog_names has wrong length')
        n_equ = 1

    #VAR doesn't have conf_int
    #params = res.params.T # this is a convention for multi-eq models

    if not isinstance(endog_names, list):
        #this might be specific to multinomial logit type, move?
        if endog_names is None:
            endog_basename = 'endog'
        else:
            endog_basename = endog_names
        #TODO: note, the [1:] is specific to current MNLogit
        endog_names = res.model.endog_names[1:]

    #check if we have the right length of names

    tables = []
    for eq in range(n_equ):
        restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq],
                  res.pvalues[:,eq], res.conf_int(alpha)[eq])

        #not used anymore in current version
#        if skip_headers2:
#            skiph = (row != 0)
#        else:
#            skiph = False
        skiph = False
        tble = summary_params(restup, yname=endog_names[eq],
                              xname=exog_names, alpha=.05, use_t=use_t,
                              skip_header=skiph)

        tables.append(tble)

    #add titles, they will be moved to header lines in table_extend
    for i in range(len(endog_names)):
        tables[i].title = endog_names[i]

    table_all = table_extend(tables, keep_headers=keep_headers)

    return tables, table_all


def table_extend(tables, keep_headers=True):
    '''extend a list of SimpleTables, adding titles to header of subtables

    This function returns the merged table as a deepcopy, in contrast to the
    SimpleTable extend method.

    Parameter
    ---------
    tables : list of SimpleTable instances
    keep_headers : bool
        If true, then all headers are kept. If falls, then the headers of
        subtables are blanked out.

    Returns
    -------
    table_all : SimpleTable
        merged tables as a single SimpleTable instance

    '''
    from copy import deepcopy
    for ii, t in enumerate(tables[:]): #[1:]:
        t = deepcopy(t)

        #move title to first cell of header
        #TODO: check if we have multiline headers
        if t[0].datatype == 'header':
            t[0][0].data = t.title
            t[0][0]._datatype = None
            t[0][0].row = t[0][1].row
            if not keep_headers and (ii > 0):
                for c in t[0][1:]:
                    c.data = ''

        #add separating line and extend tables
        if ii == 0:
            table_all = t
        else:
            r1 = table_all[-1]
            r1.add_format('txt', row_dec_below='-')
            table_all.extend(t)

    table_all.title = None
    return table_all


def summary_return(tables, return_fmt='text'):
    ########  Return Summary Tables ########
        # join table parts then print
    if return_fmt == 'text':
        strdrop = lambda x: str(x).rsplit('\n',1)[0]
        #convert to string drop last line
        return '\n'.join(map(strdrop, tables[:-1]) + [str(tables[-1])])
    elif return_fmt == 'tables':
        return tables
    elif return_fmt == 'csv':
        return '\n'.join(map(lambda x: x.as_csv(), tables))
    elif return_fmt == 'latex':
        #TODO: insert \hline after updating SimpleTable
        import copy
        table = copy.deepcopy(tables[0])
        del table[-1]
        for part in tables[1:]:
            table.extend(part)
        return table.as_latex_tabular()
    elif return_fmt == 'html':
        return "\n".join(table.as_html() for table in tables)
    else:
        raise ValueError('available output formats are text, csv, latex, html')


class Summary(object):
    '''class to hold tables for result summary presentation

    Construction does not take any parameters. Tables and text can be added
    with the add_... methods.

    Attributes
    ----------
    tables : list of tables
        Contains the list of SimpleTable instances, horizontally concatenated
        tables are not saved separately.
    extra_txt : string
        extra lines that are added to the text output, used for warnings and
        explanations.

    '''
    def __init__(self):
        self.tables = []
        self.extra_txt = None

    def __str__(self):
        return self.as_text()

    def __repr__(self):
        #return '<' + str(type(self)) + '>\n"""\n' + self.__str__() + '\n"""'
        return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""'

    def _repr_html_(self):
        '''Display as HTML in IPython notebook.'''
        return self.as_html()

    def add_table_2cols(self, res,  title=None, gleft=None, gright=None,
                            yname=None, xname=None):
        '''add a double table, 2 tables with one column merged horizontally

        Parameters
        ----------
        res : results instance
            some required information is directly taken from the result
            instance
        title : string or None
            if None, then a default title is used.
            ?how did I do no title?
        gleft : list of tuples
            elements for the left table, tuples are (name, value) pairs
            If gleft is None, then a default table is created
        gright : list of tuples or None
            elements for the right table, tuples are (name, value) pairs
        yname : string or None
            optional name for the endogenous variable, default is "y"
        xname : list of strings or None
            optional names for the exogenous variables, default is "var_xx"

        Returns
        -------
        None : tables are attached

        '''

        table = summary_top(res, title=title, gleft=gleft, gright=gright,
                            yname=yname, xname=xname)
        self.tables.append(table)

    def add_table_params(self, res, yname=None, xname=None, alpha=.05,
                         use_t=True):
        '''create and add a table for the parameter estimates

        Parameters
        ----------
        res : results instance
            some required information is directly taken from the result
            instance
        yname : string or None
            optional name for the endogenous variable, default is "y"
        xname : list of strings or None
            optional names for the exogenous variables, default is "var_xx"
        alpha : float
            significance level for the confidence intervals
        use_t : bool
            indicator whether the p-values are based on the Student-t
            distribution (if True) or on the normal distribution (if False)

        Returns
        -------
        None : table is attached

        '''
        if res.params.ndim == 1:
            table = summary_params(res, yname=yname, xname=xname, alpha=alpha,
                                   use_t=use_t)
        elif res.params.ndim == 2:
#            _, table = summary_params_2dflat(res, yname=yname, xname=xname,
#                                             alpha=alpha, use_t=use_t)
            _, table = summary_params_2dflat(res, endog_names=yname,
                                             exog_names=xname,
                                             alpha=alpha, use_t=use_t)
        else:
            raise ValueError('params has to be 1d or 2d')
        self.tables.append(table)

    def add_extra_txt(self, etext):
        '''add additional text that will be added at the end in text format

        Parameters
        ----------
        etext : string
            string with lines that are added to the text output.

        '''
        self.extra_txt = '\n'.join(etext)

    def as_text(self):
        '''return tables as string

        Returns
        -------
        txt : string
            summary tables and extra text as one string

        '''
        txt = summary_return(self.tables, return_fmt='text')
        if not self.extra_txt is None:
            txt = txt + '\n\n' + self.extra_txt
        return txt

    def as_latex(self):
        '''return tables as string

        Returns
        -------
        latex : string
            summary tables and extra text as string of Latex

        Notes
        -----
        This currently merges tables with different number of columns.
        It is recommended to use `as_latex_tabular` directly on the individual
        tables.

        '''
        return summary_return(self.tables, return_fmt='latex')

    def as_csv(self):
        '''return tables as string

        Returns
        -------
        csv : string
            concatenated summary tables in comma delimited format

        '''
        return summary_return(self.tables, return_fmt='csv')

    def as_html(self):
        '''return tables as string

        Returns
        -------
        html : string
            concatenated summary tables in HTML format

        '''
        return summary_return(self.tables, return_fmt='html')


if __name__ == "__main__":
    import statsmodels.api as sm
    data = sm.datasets.longley.load()
    data.exog = sm.add_constant(data.exog)
    res = sm.OLS(data.endog, data.exog).fit()
    #summary(