This file is indexed.

/usr/share/pyshared/statsmodels/miscmodels/count.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 26 08:34:59 2010

Author: josef-pktd

changes:
added offset and zero-inflated version of Poisson
 - kind of ok, need better test cases,
 - a nan in ZIP bse, need to check hessian calculations
 - found error in ZIP loglike
 - all tests pass with

Issues
------
* If true model is not zero-inflated then numerical Hessian for ZIP has zeros
  for the inflation probability and is not invertible.
  -> hessian inverts and bse look ok if row and column are dropped, pinv also works
* GenericMLE: still get somewhere (where?)
   "CacheWriteWarning: The attribute 'bse' cannot be overwritten"
* bfgs is too fragile, doesn't come back
* `nm` is slow but seems to work
* need good start_params and their use in genericmle needs to be checked for
  consistency, set as attribute or method (called as attribute)
* numerical hessian needs better scaling

* check taking parts out of the loop, e.g. factorial(endog) could be precalculated


"""

import numpy as np
from scipy import stats
from scipy.misc import factorial
import statsmodels.api as sm
from statsmodels.base.model import GenericLikelihoodModel

def maxabs(arr1, arr2):
    return np.max(np.abs(arr1 - arr2))

def maxabsrel(arr1, arr2):
    return np.max(np.abs(arr2 / arr1 - 1))

class NonlinearDeltaCov(object):
    '''Asymptotic covariance by Deltamethod

    the function is designed for 2d array, with rows equal to
    the number of equations and columns equal to the number
    of parameters. 1d params work by chance ?

    fun: R^{m*k) -> R^{m}  where m is number of equations and k is
    the number of parameters.

    equations follow Greene

    '''
    def __init__(self, fun, params, cov_params):
        self.fun = fun
        self.params = params
        self.cov_params = cov_params

    def grad(self, params=None, **kwds):
        if params is None:
            params = self.params
        kwds.setdefault('epsilon', 1e-4)
        from statsmodels.sandbox.regression.numdiff import approx_fprime1
        return approx_fprime1(params, self.fun, **kwds)

    def cov(self):
        g = self.grad()
        covar = np.dot(np.dot(g, self.cov_params), g.T)
        return covar

    def expected(self):
        # rename: misnomer, this is the MLE of the fun
        return self.fun(self.params)

    def wald(self, value):
        m = self.expected()
        v = self.cov()
        df = np.size(m)
        diff = m - value
        lmstat = np.dot(np.dot(diff.T, np.linalg.inv(v)), diff)
        return lmstat, stats.chi2.sf(lmstat, df)




class PoissonGMLE(GenericLikelihoodModel):
    '''Maximum Likelihood Estimation of Poisson Model

    This is an example for generic MLE which has the same
    statistical model as discretemod.Poisson.

    Except for defining the negative log-likelihood method, all
    methods and results are generic. Gradients and Hessian
    and all resulting statistics are based on numerical
    differentiation.

    '''

    # copied from discretemod.Poisson
    def nloglikeobs(self, params):
        """
        Loglikelihood of Poisson model

        Parameters
        ----------
        params : array-like
            The parameters of the model.

        Returns
        -------
        The log likelihood of the model evaluated at `params`

        Notes
        --------
        .. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
        """
        XB = np.dot(self.exog, params)
        endog = self.endog
        return np.exp(XB) -  endog*XB + np.log(factorial(endog))

    def predict_distribution(self, exog):
        '''return frozen scipy.stats distribution with mu at estimated prediction
        '''
        if not hasattr(self, result):
            raise
        else:
            mu = np.exp(np.dot(exog, params))
            return stats.poisson(mu, loc=0)



class PoissonOffsetGMLE(GenericLikelihoodModel):
    '''Maximum Likelihood Estimation of Poisson Model

    This is an example for generic MLE which has the same
    statistical model as discretemod.Poisson but adds offset

    Except for defining the negative log-likelihood method, all
    methods and results are generic. Gradients and Hessian
    and all resulting statistics are based on numerical
    differentiation.

    '''

    def __init__(self, endog, exog=None, offset=None, **kwds):
        # let them be none in case user wants to use inheritance
        if not offset is None:
            if offset.ndim == 1:
                offset = offset[:,None] #need column
            self.offset = offset.ravel()
        else:
            self.offset = 0.
        super(PoissonOffsetGMLE, self).__init__(endog, exog, **kwds)

#this was added temporarily for bug-hunting, but shouldn't be needed
#    def loglike(self, params):
#        return -self.nloglikeobs(params).sum(0)

    # original copied from discretemod.Poisson
    def nloglikeobs(self, params):
        """
        Loglikelihood of Poisson model

        Parameters
        ----------
        params : array-like
            The parameters of the model.

        Returns
        -------
        The log likelihood of the model evaluated at `params`

        Notes
        --------
        .. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
        """

        XB = self.offset + np.dot(self.exog, params)
        endog = self.endog
        nloglik = np.exp(XB) -  endog*XB + np.log(factorial(endog))
        return nloglik

class PoissonZiGMLE(GenericLikelihoodModel):
    '''Maximum Likelihood Estimation of Poisson Model

    This is an example for generic MLE which has the same statistical model
    as discretemod.Poisson but adds offset and zero-inflation.

    Except for defining the negative log-likelihood method, all
    methods and results are generic. Gradients and Hessian
    and all resulting statistics are based on numerical
    differentiation.

    There are numerical problems if there is no zero-inflation.

    '''

    def __init__(self, endog, exog=None, offset=None, **kwds):
        # let them be none in case user wants to use inheritance

        super(PoissonZiGMLE, self).__init__(endog, exog, **kwds)
        if not offset is None:
            if offset.ndim == 1:
                offset = offset[:,None] #need column
            self.offset = offset.ravel()  #which way?
        else:
            self.offset = 0.
        if exog is None:
            self.exog = np.ones((self.nobs,1))
        self.nparams = self.exog.shape[1]
        #what's the shape in regression for exog if only constant
        self.start_params = np.hstack((np.ones(self.nparams), 0))
        self.cloneattr = ['start_params']


    # original copied from discretemod.Poisson
    def nloglikeobs(self, params):
        """
        Loglikelihood of Poisson model

        Parameters
        ----------
        params : array-like
            The parameters of the model.

        Returns
        -------
        The log likelihood of the model evaluated at `params`

        Notes
        --------
        .. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right]
        """
        beta = params[:-1]
        gamm = 1 / (1 + np.exp(params[-1]))  #check this
        # replace with np.dot(self.exogZ, gamma)
        #print np.shape(self.offset), self.exog.shape, beta.shape
        XB = self.offset + np.dot(self.exog, beta)
        endog = self.endog
        nloglik = -np.log(1-gamm) + np.exp(XB) -  endog*XB + np.log(factorial(endog))
        nloglik[endog==0] = - np.log(gamm + np.exp(-nloglik[endog==0]))

        return nloglik



if __name__ == '__main__':

    #Example:
    np.random.seed(98765678)
    nobs = 1000
    rvs = np.random.randn(nobs,6)
    data_exog = rvs
    data_exog = sm.add_constant(data_exog)
    xbeta = 1 + 0.1*rvs.sum(1)
    data_endog = np.random.poisson(np.exp(xbeta))
    #print data_endog

    modp = MyPoisson(data_endog, data_exog)
    resp = modp.fit()
    print resp.params
    print resp.bse

    from statsmodels.discretemod import Poisson
    resdp = Poisson(data_endog, data_exog).fit()
    print '\ncompare with discretemod'
    print 'compare params'
    print resdp.params - resp.params
    print 'compare bse'
    print resdp.bse - resp.bse

    gmlp = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
    resgp = gmlp.fit()
    ''' this creates a warning, bug bse is double defined ???
    c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\decorators.py:105: CacheWriteWarning: The attribute 'bse' cannot be overwritten
      warnings.warn(errmsg, CacheWriteWarning)
    '''
    print '\ncompare with GLM'
    print 'compare params'
    print resgp.params - resp.params
    print 'compare bse'
    print resgp.bse - resp.bse

    lam = np.exp(np.dot(data_exog, resp.params))
    '''mean of Poisson distribution'''
    predmean = stats.poisson.stats(lam,moments='m')
    print np.max(np.abs(predmean - lam))

    fun = lambda params: np.exp(np.dot(data_exog.mean(0), params))

    lamcov = NonlinearDeltaCov(fun, resp.params, resdp.cov_params())
    print lamcov.cov().shape
    print lamcov.cov()

    print 'analytical'
    xm = data_exog.mean(0)
    print np.dot(np.dot(xm, resdp.cov_params()), xm.T) * \
            np.exp(2*np.dot(data_exog.mean(0), resp.params))

    ''' cov of linear transformation of params
    >>> np.dot(np.dot(xm, resdp.cov_params()), xm.T)
    0.00038904130127582825
    >>> resp.cov_params(xm)
    0.00038902428119179394
    >>> np.dot(np.dot(xm, resp.cov_params()), xm.T)
    0.00038902428119179394
    '''

    print lamcov.wald(1.)
    print lamcov.wald(2.)
    print lamcov.wald(2.6)

    do_bootstrap = False
    if do_bootstrap:
        m,s,r = resp.bootstrap(method='newton')
        print m
        print s
        print resp.bse


    print '\ncomparison maxabs, masabsrel'
    print 'discr params', maxabs(resdp.params, resp.params), maxabsrel(resdp.params, resp.params)
    print 'discr bse   ', maxabs(resdp.bse, resp.bse), maxabsrel(resdp.bse, resp.bse)
    print 'discr bsejac', maxabs(resdp.bse, resp.bsejac), maxabsrel(resdp.bse, resp.bsejac)
    print 'discr bsejhj', maxabs(resdp.bse, resp.bsejhj), maxabsrel(resdp.bse, resp.bsejhj)
    print
    print 'glm params  ', maxabs(resdp.params, resp.params), maxabsrel(resdp.params, resp.params)
    print 'glm bse     ', maxabs(resdp.bse, resp.bse), maxabsrel(resdp.bse, resp.bse)