/usr/share/pyshared/statsmodels/nonparametric/kde.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | """
Univariate Kernel Density Estimators
References
----------
Racine, Jeff. (2008) "Nonparametric Econometrics: A Primer," Foundation and
Trends in Econometrics: Vol 3: No 1, pp1-88.
http://dx.doi.org/10.1561/0800000009
http://en.wikipedia.org/wiki/Kernel_%28statistics%29
Silverman, B.W. Density Estimation for Statistics and Data Anaylsis.
"""
import numpy as np
from scipy import integrate, stats
from statsmodels.sandbox.nonparametric import kernels
from statsmodels.tools.decorators import (cache_readonly,
resettable_cache)
import bandwidths
from kdetools import (forrt, revrt, silverman_transform, counts)
try:
from fast_linbin import linbin
except ImportError:
from kdetools import linbin
#### Kernels Switch for estimators ####
kernel_switch = dict(gau=kernels.Gaussian, epa=kernels.Epanechnikov,
uni=kernels.Uniform, tri=kernels.Triangular,
biw=kernels.Biweight, triw=kernels.Triweight,
cos=kernels.Cosine)
def _checkisfit(self):
try:
self.density
except:
raise ValueError("Call fit to fit the density first")
#### Kernel Density Estimator Class ###
class KDE(object):
"""
Kernel Density Estimator
Parameters
----------
endog : array-like
The variable for which the density estimate is desired.
Notes
-----
If cdf, sf, cumhazard, or entropy are computed, they are computed based on
the definition of the kernel rather than the FFT approximation, even if
the density is fit with FFT = True.
"""
_cache = resettable_cache()
def __init__(self, endog):
self.endog = np.asarray(endog)
def fit(self, kernel="gau", bw="scott", fft=True, weights=None,
gridsize=None, adjust=1, cut=3, clip=(-np.inf, np.inf)):
"""
Attach the density estimate to the KDE class.
Parameters
----------
kernel : str
The Kernel to be used. Choices are:
- "biw" for biweight
- "cos" for cosine
- "epa" for Epanechnikov
- "gau" for Gaussian.
- "tri" for triangular
- "triw" for triweight
- "uni" for uniform
bw : str, float
The bandwidth to use. Choices are:
- "scott" - 1.059 * A * nobs ** (-1/5.), where A is
`min(std(X),IQR/1.34)`
- "silverman" - .9 * A * nobs ** (-1/5.), where A is
`min(std(X),IQR/1.34)`
- If a float is given, it is the bandwidth.
fft : bool
Whether or not to use FFT. FFT implementation is more
computationally efficient. However, only the Gaussian kernel
is implemented. If FFT is False, then a 'nobs' x 'gridsize'
intermediate array is created.
gridsize : int
If gridsize is None, max(len(X), 50) is used.
cut : float
Defines the length of the grid past the lowest and highest values
of X so that the kernel goes to zero. The end points are
-/+ cut*bw*{min(X) or max(X)}
adjust : float
An adjustment factor for the bw. Bandwidth becomes bw * adjust.
"""
try:
bw = float(bw)
self.bw_method = "user-given"
except:
self.bw_method = bw
endog = self.endog
if fft:
if kernel != "gau":
msg = "Only gaussian kernel is available for fft"
raise NotImplementedError(msg)
if weights is not None:
msg = "Weights are not implemented for fft"
raise NotImplementedError(msg)
density, grid, bw = kdensityfft(endog, kernel=kernel, bw=bw,
adjust=adjust, weights=weights, gridsize=gridsize,
clip=clip, cut=cut)
else:
density, grid, bw = kdensity(endog, kernel=kernel, bw=bw,
adjust=adjust, weights=weights, gridsize=gridsize,
clip=clip, cut=cut)
self.density = density
self.support = grid
self.bw = bw
self.kernel = kernel_switch[kernel](h=bw) # we instantiate twice,
# should this passed to funcs?
@cache_readonly
def cdf(self):
"""
Returns the cumulative distribution function evaluated at the support.
Notes
-----
Will not work if fit has not been called.
"""
_checkisfit(self)
density = self.density
kern = self.kernel
if kern.domain is None: # TODO: test for grid point at domain bound
a,b = -np.inf,np.inf
else:
a,b = kern.domain
func = lambda x,s: kern.density(s,x)
support = self.support
support = np.r_[a,support]
gridsize = len(support)
endog = self.endog
probs = [integrate.quad(func, support[i-1], support[i],
args=endog)[0] for i in xrange(1,gridsize)]
return np.cumsum(probs)
@cache_readonly
def cumhazard(self):
"""
Returns the hazard function evaluated at the support.
Notes
-----
Will not work if fit has not been called.
"""
_checkisfit(self)
return -np.log(self.sf)
@cache_readonly
def sf(self):
"""
Returns the survival function evaluated at the support.
Notes
-----
Will not work if fit has not been called.
"""
_checkisfit(self)
return 1 - self.cdf
@cache_readonly
def entropy(self):
"""
Returns the differential entropy evaluated at the support
Notes
-----
Will not work if fit has not been called. 1e-12 is added to each
probability to ensure that log(0) is not called.
"""
_checkisfit(self)
def entr(x,s):
pdf = kern.density(s,x)
return pdf*np.log(pdf+1e-12)
pdf = self.density
kern = self.kernel
if kern.domain is not None:
a,b = self.domain
else:
a,b = -np.inf,np.inf
endog = self.endog
#TODO: below could run into integr problems, cf. stats.dist._entropy
return -integrate.quad(entr, a,b, args=(endog,))[0]
@cache_readonly
def icdf(self):
"""
Inverse Cumulative Distribution (Quantile) Function
Notes
-----
Will not work if fit has not been called. Uses
`scipy.stats.mstats.mquantiles`.
"""
_checkisfit(self)
gridsize = len(self.density)
return stats.mstats.mquantiles(self.endog, np.linspace(0,1,
gridsize))
def evaluate(self, point):
"""
Evaluate density at a single point.
Parameters
----------
point : float
Point at which to evaluate the density.
"""
_checkisfit(self)
return self.kernel.density(self.endog, point)
#### Kernel Density Estimator Functions ####
def kdensity(X, kernel="gau", bw="scott", weights=None, gridsize=None,
adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True):
"""
Rosenblatz-Parzen univariate kernel desnity estimator
Parameters
----------
X : array-like
The variable for which the density estimate is desired.
kernel : str
The Kernel to be used. Choices are
- "biw" for biweight
- "cos" for cosine
- "epa" for Epanechnikov
- "gau" for Gaussian.
- "tri" for triangular
- "triw" for triweight
- "uni" for uniform
bw : str, float
"scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
"silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
If a float is given, it is the bandwidth.
weights : array or None
Optional weights. If the X value is clipped, then this weight is
also dropped.
gridsize : int
If gridsize is None, max(len(X), 50) is used.
adjust : float
An adjustment factor for the bw. Bandwidth becomes bw * adjust.
clip : tuple
Observations in X that are outside of the range given by clip are
dropped. The number of observations in X is then shortened.
cut : float
Defines the length of the grid past the lowest and highest values of X
so that the kernel goes to zero. The end points are
-/+ cut*bw*{min(X) or max(X)}
retgrid : bool
Whether or not to return the grid over which the density is estimated.
Returns
-------
density : array
The densities estimated at the grid points.
grid : array, optional
The grid points at which the density is estimated.
Notes
-----
Creates an intermediate (`gridsize` x `nobs`) array. Use FFT for a more
computationally efficient version.
"""
X = np.asarray(X)
if X.ndim == 1:
X = X[:,None]
clip_x = np.logical_and(X>clip[0], X<clip[1])
X = X[clip_x]
nobs = float(len(X)) # after trim
if gridsize == None:
gridsize = max(nobs,50) # don't need to resize if no FFT
# handle weights
if weights is None:
weights = np.ones(nobs)
q = nobs
else:
if len(weights) != len(clip_x):
msg = "The length of the weights must be the same as the given X."
raise ValueError(msg)
weights = weights[clip_x.squeeze()]
q = weights.sum()
# if bw is None, select optimal bandwidth for kernel
try:
bw = float(bw)
except:
bw = bandwidths.select_bandwidth(X, bw, kernel)
bw *= adjust
a = np.min(X,axis=0) - cut*bw
b = np.max(X,axis=0) + cut*bw
grid = np.linspace(a, b, gridsize)
k = (X.T - grid[:,None])/bw # uses broadcasting to make a gridsize x nobs
# instantiate kernel class
kern = kernel_switch[kernel](h=bw)
# truncate to domain
if kern.domain is not None: # won't work for piecewise kernels like parzen
z_lo, z_high = kern.domain
domain_mask = (k < z_lo) | (k > z_high)
k = kern(k) # estimate density
k[domain_mask] = 0
else:
k = kern(k) # estimate density
k[k<0] = 0 # get rid of any negative values, do we need this?
dens = np.dot(k,weights)/(q*bw)
if retgrid:
return dens, grid, bw
else:
return dens, bw
def kdensityfft(X, kernel="gau", bw="scott", weights=None, gridsize=None,
adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True):
"""
Rosenblatz-Parzen univariate kernel desnity estimator
Parameters
----------
X : array-like
The variable for which the density estimate is desired.
kernel : str
ONLY GAUSSIAN IS CURRENTLY IMPLEMENTED.
"bi" for biweight
"cos" for cosine
"epa" for Epanechnikov, default
"epa2" for alternative Epanechnikov
"gau" for Gaussian.
"par" for Parzen
"rect" for rectangular
"tri" for triangular
bw : str, float
"scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
"silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
If a float is given, it is the bandwidth.
weights : array or None
WEIGHTS ARE NOT CURRENTLY IMPLEMENTED.
Optional weights. If the X value is clipped, then this weight is
also dropped.
gridsize : int
If gridsize is None, min(len(X), 512) is used. Note that the provided
number is rounded up to the next highest power of 2.
adjust : float
An adjustment factor for the bw. Bandwidth becomes bw * adjust.
clip : tuple
Observations in X that are outside of the range given by clip are
dropped. The number of observations in X is then shortened.
cut : float
Defines the length of the grid past the lowest and highest values of X
so that the kernel goes to zero. The end points are
-/+ cut*bw*{X.min() or X.max()}
retgrid : bool
Whether or not to return the grid over which the density is estimated.
Returns
-------
density : array
The densities estimated at the grid points.
grid : array, optional
The grid points at which the density is estimated.
Notes
-----
Only the default kernel is implemented. Weights aren't implemented yet.
This follows Silverman (1982) with changes suggested by Jones and Lotwick
(1984). However, the discretization step is replaced by linear binning
of Fan and Marron (1994). This should be extended to accept the parts
that are dependent only on the data to speed things up for
cross-validation.
References
---------- ::
Fan, J. and J.S. Marron. (1994) `Fast implementations of nonparametric
curve estimators`. Journal of Computational and Graphical Statistics.
3.1, 35-56.
Jones, M.C. and H.W. Lotwick. (1984) `Remark AS R50: A Remark on Algorithm
AS 176. Kernal Density Estimation Using the Fast Fourier Transform`.
Journal of the Royal Statistical Society. Series C. 33.1, 120-2.
Silverman, B.W. (1982) `Algorithm AS 176. Kernel density estimation using
the Fast Fourier Transform. Journal of the Royal Statistical Society.
Series C. 31.2, 93-9.
"""
X = np.asarray(X)
X = X[np.logical_and(X>clip[0], X<clip[1])] # won't work for two columns.
# will affect underlying data?
try:
bw = float(bw)
except:
bw = bandwidths.select_bandwidth(X, bw, kernel) # will cross-val fit this pattern?
bw *= adjust
nobs = float(len(X)) # after trim
# 1 Make grid and discretize the data
if gridsize == None:
gridsize = np.max((nobs,512.))
gridsize = 2**np.ceil(np.log2(gridsize)) # round to next power of 2
a = np.min(X)-cut*bw
b = np.max(X)+cut*bw
grid,delta = np.linspace(a,b,gridsize,retstep=True)
RANGE = b-a
#TODO: Fix this?
# This is the Silverman binning function, but I believe it's buggy (SS)
# weighting according to Silverman
# count = counts(X,grid)
# binned = np.zeros_like(grid) #xi_{k} in Silverman
# j = 0
# for k in range(int(gridsize-1)):
# if count[k]>0: # there are points of X in the grid here
# Xingrid = X[j:j+count[k]] # get all these points
# # get weights at grid[k],grid[k+1]
# binned[k] += np.sum(grid[k+1]-Xingrid)
# binned[k+1] += np.sum(Xingrid-grid[k])
# j += count[k]
# binned /= (nobs)*delta**2 # normalize binned to sum to 1/delta
#NOTE: THE ABOVE IS WRONG, JUST TRY WITH LINEAR BINNING
binned = linbin(X,a,b,gridsize)/(delta*nobs)
# step 2 compute FFT of the weights, using Munro (1976) FFT convention
y = forrt(binned)
# step 3 and 4 for optimal bw compute zstar and the density estimate f
# don't have to redo the above if just changing bw, ie., for cross val
#NOTE: silverman_transform is the closed form solution of the FFT of the
#gaussian kernel. Not yet sure how to generalize it.
zstar = silverman_transform(bw, gridsize, RANGE)*y # 3.49 in Silverman
# 3.50 w Gaussian kernel
f = revrt(zstar)
if retgrid:
return f, grid, bw
else:
return f, bw
if __name__ == "__main__":
import numpy as np
np.random.seed(12345)
xi = np.random.randn(100)
f,grid, bw1 = kdensity(xi, kernel="gau", bw=.372735, retgrid=True)
f2, bw2 = kdensityfft(xi, kernel="gau", bw="silverman",retgrid=False)
# do some checking vs. silverman algo.
# you need denes.f, http://lib.stat.cmu.edu/apstat/176
#NOTE: I (SS) made some changes to the Fortran
# and the FFT stuff from Munro http://lib.stat.cmu.edu/apstat/97o
# then compile everything and link to denest with f2py
#Make pyf file as usual, then compile shared object
#f2py denest.f -m denest2 -h denest.pyf
#edit pyf
#-c flag makes it available to other programs, fPIC builds a shared library
#/usr/bin/gfortran -Wall -c -fPIC fft.f
#f2py -c denest.pyf ./fft.o denest.f
try:
from denest2 import denest
a = -3.4884382032045504
b = 4.3671504686785605
RANGE = b - a
bw = bandwidths.bw_silverman(xi)
ft,smooth,ifault,weights,smooth1 = denest(xi,a,b,bw,np.zeros(512),np.zeros(512),0,
np.zeros(512), np.zeros(512))
# We use a different binning algo, so only accurate up to 3 decimal places
np.testing.assert_almost_equal(f2, smooth, 3)
#NOTE: for debugging
# y2 = forrt(weights)
# RJ = np.arange(512/2+1)
# FAC1 = 2*(np.pi*bw/RANGE)**2
# RJFAC = RJ**2*FAC1
# BC = 1 - RJFAC/(6*(bw/((b-a)/M))**2)
# FAC = np.exp(-RJFAC)/BC
# SMOOTH = np.r_[FAC,FAC[1:-1]] * y2
# dens = revrt(SMOOTH)
except:
# ft = np.loadtxt('./ft_silver.csv')
# smooth = np.loadtxt('./smooth_silver.csv')
print "Didn't get the estimates from the Silverman algorithm"
|