This file is indexed.

/usr/share/pyshared/statsmodels/nonparametric/kde.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
"""
Univariate Kernel Density Estimators

References
----------
Racine, Jeff. (2008) "Nonparametric Econometrics: A Primer," Foundation and
    Trends in Econometrics: Vol 3: No 1, pp1-88.
    http://dx.doi.org/10.1561/0800000009

http://en.wikipedia.org/wiki/Kernel_%28statistics%29

Silverman, B.W.  Density Estimation for Statistics and Data Anaylsis.
"""
import numpy as np
from scipy import integrate, stats
from statsmodels.sandbox.nonparametric import kernels
from statsmodels.tools.decorators import (cache_readonly,
                                                    resettable_cache)
import bandwidths
from kdetools import (forrt, revrt, silverman_transform, counts)
try:
    from fast_linbin import linbin
except ImportError:
    from kdetools import linbin

#### Kernels Switch for estimators ####

kernel_switch = dict(gau=kernels.Gaussian, epa=kernels.Epanechnikov,
                    uni=kernels.Uniform, tri=kernels.Triangular,
                    biw=kernels.Biweight, triw=kernels.Triweight,
                    cos=kernels.Cosine)

def _checkisfit(self):
    try:
        self.density
    except:
        raise ValueError("Call fit to fit the density first")


#### Kernel Density Estimator Class ###

class KDE(object):
    """
    Kernel Density Estimator

    Parameters
    ----------
    endog : array-like
        The variable for which the density estimate is desired.

    Notes
    -----
    If cdf, sf, cumhazard, or entropy are computed, they are computed based on
    the definition of the kernel rather than the FFT approximation, even if
    the density is fit with FFT = True.
    """
    _cache = resettable_cache()

    def __init__(self, endog):
        self.endog = np.asarray(endog)

    def fit(self, kernel="gau", bw="scott", fft=True, weights=None,
            gridsize=None, adjust=1, cut=3, clip=(-np.inf, np.inf)):
        """
        Attach the density estimate to the KDE class.

        Parameters
        ----------
        kernel : str
            The Kernel to be used. Choices are:

            - "biw" for biweight
            - "cos" for cosine
            - "epa" for Epanechnikov
            - "gau" for Gaussian.
            - "tri" for triangular
            - "triw" for triweight
            - "uni" for uniform

        bw : str, float
            The bandwidth to use. Choices are:

            - "scott" - 1.059 * A * nobs ** (-1/5.), where A is
              `min(std(X),IQR/1.34)`
            - "silverman" - .9 * A * nobs ** (-1/5.), where A is
              `min(std(X),IQR/1.34)`
            - If a float is given, it is the bandwidth.

        fft : bool
            Whether or not to use FFT. FFT implementation is more
            computationally efficient. However, only the Gaussian kernel
            is implemented. If FFT is False, then a 'nobs' x 'gridsize'
            intermediate array is created.
        gridsize : int
            If gridsize is None, max(len(X), 50) is used.
        cut : float
            Defines the length of the grid past the lowest and highest values
            of X so that the kernel goes to zero. The end points are
            -/+ cut*bw*{min(X) or max(X)}
        adjust : float
            An adjustment factor for the bw. Bandwidth becomes bw * adjust.
        """
        try:
            bw = float(bw)
            self.bw_method = "user-given"
        except:
            self.bw_method = bw
        endog = self.endog

        if fft:
            if kernel != "gau":
                msg = "Only gaussian kernel is available for fft"
                raise NotImplementedError(msg)
            if weights is not None:
                msg = "Weights are not implemented for fft"
                raise NotImplementedError(msg)
            density, grid, bw = kdensityfft(endog, kernel=kernel, bw=bw,
                    adjust=adjust, weights=weights, gridsize=gridsize,
                    clip=clip, cut=cut)
        else:
            density, grid, bw = kdensity(endog, kernel=kernel, bw=bw,
                    adjust=adjust, weights=weights, gridsize=gridsize,
                    clip=clip, cut=cut)
        self.density = density
        self.support = grid
        self.bw = bw
        self.kernel = kernel_switch[kernel](h=bw) # we instantiate twice,
                                                # should this passed to funcs?

    @cache_readonly
    def cdf(self):
        """
        Returns the cumulative distribution function evaluated at the support.

        Notes
        -----
        Will not work if fit has not been called.
        """
        _checkisfit(self)
        density = self.density
        kern = self.kernel
        if kern.domain is None: # TODO: test for grid point at domain bound
            a,b = -np.inf,np.inf
        else:
            a,b = kern.domain
        func = lambda x,s: kern.density(s,x)

        support = self.support
        support = np.r_[a,support]
        gridsize = len(support)
        endog = self.endog
        probs = [integrate.quad(func, support[i-1], support[i],
                    args=endog)[0] for i in xrange(1,gridsize)]
        return np.cumsum(probs)

    @cache_readonly
    def cumhazard(self):
        """
        Returns the hazard function evaluated at the support.

        Notes
        -----
        Will not work if fit has not been called.

        """
        _checkisfit(self)
        return -np.log(self.sf)

    @cache_readonly
    def sf(self):
        """
        Returns the survival function evaluated at the support.

        Notes
        -----
        Will not work if fit has not been called.
        """
        _checkisfit(self)
        return 1 - self.cdf

    @cache_readonly
    def entropy(self):
        """
        Returns the differential entropy evaluated at the support

        Notes
        -----
        Will not work if fit has not been called. 1e-12 is added to each
        probability to ensure that log(0) is not called.
        """
        _checkisfit(self)

        def entr(x,s):
            pdf = kern.density(s,x)
            return pdf*np.log(pdf+1e-12)

        pdf = self.density
        kern = self.kernel

        if kern.domain is not None:
            a,b = self.domain
        else:
            a,b = -np.inf,np.inf
        endog = self.endog
        #TODO: below could run into integr problems, cf. stats.dist._entropy
        return -integrate.quad(entr, a,b, args=(endog,))[0]

    @cache_readonly
    def icdf(self):
        """
        Inverse Cumulative Distribution (Quantile) Function

        Notes
        -----
        Will not work if fit has not been called. Uses
        `scipy.stats.mstats.mquantiles`.
        """
        _checkisfit(self)
        gridsize = len(self.density)
        return stats.mstats.mquantiles(self.endog, np.linspace(0,1,
                    gridsize))

    def evaluate(self, point):
        """
        Evaluate density at a single point.

        Parameters
        ----------
        point : float
            Point at which to evaluate the density.
        """
        _checkisfit(self)
        return self.kernel.density(self.endog, point)

#### Kernel Density Estimator Functions ####

def kdensity(X, kernel="gau", bw="scott", weights=None, gridsize=None,
             adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True):
    """
    Rosenblatz-Parzen univariate kernel desnity estimator

    Parameters
    ----------
    X : array-like
        The variable for which the density estimate is desired.
    kernel : str
        The Kernel to be used. Choices are
        - "biw" for biweight
        - "cos" for cosine
        - "epa" for Epanechnikov
        - "gau" for Gaussian.
        - "tri" for triangular
        - "triw" for triweight
        - "uni" for uniform
    bw : str, float
        "scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
        "silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
        If a float is given, it is the bandwidth.
    weights : array or None
        Optional  weights. If the X value is clipped, then this weight is
        also dropped.
    gridsize : int
        If gridsize is None, max(len(X), 50) is used.
    adjust : float
        An adjustment factor for the bw. Bandwidth becomes bw * adjust.
    clip : tuple
        Observations in X that are outside of the range given by clip are
        dropped. The number of observations in X is then shortened.
    cut : float
        Defines the length of the grid past the lowest and highest values of X
        so that the kernel goes to zero. The end points are
        -/+ cut*bw*{min(X) or max(X)}
    retgrid : bool
        Whether or not to return the grid over which the density is estimated.

    Returns
    -------
    density : array
        The densities estimated at the grid points.
    grid : array, optional
        The grid points at which the density is estimated.

    Notes
    -----
    Creates an intermediate (`gridsize` x `nobs`) array. Use FFT for a more
    computationally efficient version.
    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = X[:,None]
    clip_x = np.logical_and(X>clip[0], X<clip[1])
    X = X[clip_x]

    nobs = float(len(X)) # after trim

    if gridsize == None:
        gridsize = max(nobs,50) # don't need to resize if no FFT

        # handle weights
    if weights is None:
        weights = np.ones(nobs)
        q = nobs
    else:
        if len(weights) != len(clip_x):
            msg = "The length of the weights must be the same as the given X."
            raise ValueError(msg)
        weights = weights[clip_x.squeeze()]
        q = weights.sum()

    # if bw is None, select optimal bandwidth for kernel
    try:
        bw = float(bw)
    except:
        bw = bandwidths.select_bandwidth(X, bw, kernel)
    bw *= adjust

    a = np.min(X,axis=0) - cut*bw
    b = np.max(X,axis=0) + cut*bw
    grid = np.linspace(a, b, gridsize)

    k = (X.T - grid[:,None])/bw  # uses broadcasting to make a gridsize x nobs

    # instantiate kernel class
    kern = kernel_switch[kernel](h=bw)
    # truncate to domain
    if kern.domain is not None: # won't work for piecewise kernels like parzen
        z_lo, z_high = kern.domain
        domain_mask = (k < z_lo) | (k > z_high)
        k = kern(k) # estimate density
        k[domain_mask] = 0
    else:
        k = kern(k) # estimate density

    k[k<0] = 0 # get rid of any negative values, do we need this?

    dens = np.dot(k,weights)/(q*bw)

    if retgrid:
        return dens, grid, bw
    else:
        return dens, bw

def kdensityfft(X, kernel="gau", bw="scott", weights=None, gridsize=None,
                adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True):
    """
    Rosenblatz-Parzen univariate kernel desnity estimator

    Parameters
    ----------
    X : array-like
        The variable for which the density estimate is desired.
    kernel : str
        ONLY GAUSSIAN IS CURRENTLY IMPLEMENTED.
        "bi" for biweight
        "cos" for cosine
        "epa" for Epanechnikov, default
        "epa2" for alternative Epanechnikov
        "gau" for Gaussian.
        "par" for Parzen
        "rect" for rectangular
        "tri" for triangular
    bw : str, float
        "scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
        "silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34)
        If a float is given, it is the bandwidth.
    weights : array or None
        WEIGHTS ARE NOT CURRENTLY IMPLEMENTED.
        Optional  weights. If the X value is clipped, then this weight is
        also dropped.
    gridsize : int
        If gridsize is None, min(len(X), 512) is used. Note that the provided
        number is rounded up to the next highest power of 2.
    adjust : float
        An adjustment factor for the bw. Bandwidth becomes bw * adjust.
        clip : tuple
        Observations in X that are outside of the range given by clip are
        dropped. The number of observations in X is then shortened.
    cut : float
        Defines the length of the grid past the lowest and highest values of X
        so that the kernel goes to zero. The end points are
        -/+ cut*bw*{X.min() or X.max()}
    retgrid : bool
        Whether or not to return the grid over which the density is estimated.

    Returns
    -------
    density : array
        The densities estimated at the grid points.
    grid : array, optional
        The grid points at which the density is estimated.

    Notes
    -----
    Only the default kernel is implemented. Weights aren't implemented yet.
    This follows Silverman (1982) with changes suggested by Jones and Lotwick
    (1984). However, the discretization step is replaced by linear binning
    of Fan and Marron (1994). This should be extended to accept the parts
    that are dependent only on the data to speed things up for
    cross-validation.

    References
    ---------- ::

    Fan, J. and J.S. Marron. (1994) `Fast implementations of nonparametric
        curve estimators`. Journal of Computational and Graphical Statistics.
        3.1, 35-56.
    Jones, M.C. and H.W. Lotwick. (1984) `Remark AS R50: A Remark on Algorithm
        AS 176. Kernal Density Estimation Using the Fast Fourier Transform`.
        Journal of the Royal Statistical Society. Series C. 33.1, 120-2.
    Silverman, B.W. (1982) `Algorithm AS 176. Kernel density estimation using
        the Fast Fourier Transform. Journal of the Royal Statistical Society.
        Series C. 31.2, 93-9.
    """
    X = np.asarray(X)
    X = X[np.logical_and(X>clip[0], X<clip[1])] # won't work for two columns.
                                                # will affect underlying data?
    try:
        bw = float(bw)
    except:
        bw = bandwidths.select_bandwidth(X, bw, kernel) # will cross-val fit this pattern?
    bw *= adjust

    nobs = float(len(X)) # after trim

    # 1 Make grid and discretize the data
    if gridsize == None:
        gridsize = np.max((nobs,512.))
    gridsize = 2**np.ceil(np.log2(gridsize)) # round to next power of 2

    a = np.min(X)-cut*bw
    b = np.max(X)+cut*bw
    grid,delta = np.linspace(a,b,gridsize,retstep=True)
    RANGE = b-a

#TODO: Fix this?
# This is the Silverman binning function, but I believe it's buggy (SS)
# weighting according to Silverman
#    count = counts(X,grid)
#    binned = np.zeros_like(grid)    #xi_{k} in Silverman
#    j = 0
#    for k in range(int(gridsize-1)):
#        if count[k]>0: # there are points of X in the grid here
#            Xingrid = X[j:j+count[k]] # get all these points
#            # get weights at grid[k],grid[k+1]
#            binned[k] += np.sum(grid[k+1]-Xingrid)
#            binned[k+1] += np.sum(Xingrid-grid[k])
#            j += count[k]
#    binned /= (nobs)*delta**2 # normalize binned to sum to 1/delta

#NOTE: THE ABOVE IS WRONG, JUST TRY WITH LINEAR BINNING
    binned = linbin(X,a,b,gridsize)/(delta*nobs)

    # step 2 compute FFT of the weights, using Munro (1976) FFT convention
    y = forrt(binned)

    # step 3 and 4 for optimal bw compute zstar and the density estimate f
    # don't have to redo the above if just changing bw, ie., for cross val

#NOTE: silverman_transform is the closed form solution of the FFT of the
#gaussian kernel. Not yet sure how to generalize it.
    zstar = silverman_transform(bw, gridsize, RANGE)*y # 3.49 in Silverman
                                                   # 3.50 w Gaussian kernel
    f = revrt(zstar)
    if retgrid:
        return f, grid, bw
    else:
        return f, bw

if __name__ == "__main__":
    import numpy as np
    np.random.seed(12345)
    xi = np.random.randn(100)
    f,grid, bw1 = kdensity(xi, kernel="gau", bw=.372735, retgrid=True)
    f2, bw2 = kdensityfft(xi, kernel="gau", bw="silverman",retgrid=False)

# do some checking vs. silverman algo.
# you need denes.f, http://lib.stat.cmu.edu/apstat/176
#NOTE: I (SS) made some changes to the Fortran
# and the FFT stuff from Munro http://lib.stat.cmu.edu/apstat/97o
# then compile everything and link to denest with f2py
#Make pyf file as usual, then compile shared object
#f2py denest.f -m denest2 -h denest.pyf
#edit pyf
#-c flag makes it available to other programs, fPIC builds a shared library
#/usr/bin/gfortran -Wall -c -fPIC fft.f
#f2py -c denest.pyf ./fft.o denest.f

    try:
        from denest2 import denest
        a = -3.4884382032045504
        b = 4.3671504686785605
        RANGE = b - a
        bw = bandwidths.bw_silverman(xi)

        ft,smooth,ifault,weights,smooth1 = denest(xi,a,b,bw,np.zeros(512),np.zeros(512),0,
                np.zeros(512), np.zeros(512))
# We use a different binning algo, so only accurate up to 3 decimal places
        np.testing.assert_almost_equal(f2, smooth, 3)
#NOTE: for debugging
#        y2 = forrt(weights)
#        RJ = np.arange(512/2+1)
#        FAC1 = 2*(np.pi*bw/RANGE)**2
#        RJFAC = RJ**2*FAC1
#        BC = 1 - RJFAC/(6*(bw/((b-a)/M))**2)
#        FAC = np.exp(-RJFAC)/BC
#        SMOOTH = np.r_[FAC,FAC[1:-1]] * y2

#        dens = revrt(SMOOTH)

    except:
#        ft = np.loadtxt('./ft_silver.csv')
#        smooth = np.loadtxt('./smooth_silver.csv')
        print "Didn't get the estimates from the Silverman algorithm"