This file is indexed.

/usr/share/pyshared/statsmodels/robust/scale.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Support and standalone functions for Robust Linear Models

References
----------
PJ Huber.  'Robust Statistics' John Wiley and Sons, Inc., New York, 1981.

R Venables, B Ripley. 'Modern Applied Statistics in S'
    Springer, New York, 2002.
"""

import numpy as np
from scipy.stats import norm as Gaussian
import norms
from statsmodels.tools import tools

def mad(a, c=Gaussian.ppf(3/4.), axis=0):  # c \approx .6745
    """
    The Median Absolute Deviation along given axis of an array

    Parameters
    ----------
    a : array-like
        Input array.
    c : float, optional
        The normalization constant.  Defined as scipy.stats.norm.ppf(3/4.),
        which is approximately .6745.
    axis : int, optional
        The defaul is 0.

    Returns
    -------
    mad : float
        `mad` = median(abs(`a`))/`c`
    """
    a = np.asarray(a)
    return np.median((np.fabs(a))/c, axis=axis)

def stand_mad(a, c=Gaussian.ppf(3/4.), axis=0):
    """
    The standardized Median Absolute Deviation along given axis of an array.

    Parameters
    ----------
    a : array-like
        Input array.
    c : float, optional
        The normalization constant.  Defined as scipy.stats.norm.ppf(3/4.),
        which is approximately .6745.
    axis : int, optional
        The defaul is 0.

    Returns
    -------
    mad : float
        `mad` = median(abs(`a`-median(`a`))/`c`
    """

    a = np.asarray(a)
    d = np.median(a, axis = axis)
    d = tools.unsqueeze(d, axis, a.shape)
    return np.median(np.fabs(a - d)/c, axis = axis)

class Huber(object):
    """
    Huber's proposal 2 for estimating location and scale jointly.

    Parameters
    ----------
    c : float, optional
        Threshold used in threshold for chi=psi**2.  Default value is 1.5.
    tol : float, optional
        Tolerance for convergence.  Default value is 1e-08.
    maxiter : int, optional0
        Maximum number of iterations.  Default value is 30.
    norm : statsmodels.robust.norms.RobustNorm, optional
        A robust norm used in M estimator of location. If None,
        the location estimator defaults to a one-step
        fixed point version of the M-estimator using Huber's T.

    call
        Return joint estimates of Huber's scale and location.

    Examples
    --------
    >>> import numpy as np
    >>> import statsmodels.api as sm
    >>> chem_data = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03,
    ...        3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7,
    ...        3.77, 5.28, 28.95])
    >>> sm.robust.scale.huber(chem_data)
    (array(3.2054980819923693), array(0.67365260010478967))
    """

    def __init__(self, c=1.5, tol=1.0e-08, maxiter=30, norm=None):
        self.c = c
        self.maxiter = maxiter
        self.tol = tol
        self.norm = norm
        tmp = 2 * Gaussian.cdf(c) - 1
        self.gamma = tmp + c**2 * (1 - tmp) - 2 * c * Gaussian.pdf(c)

    def __call__(self, a, mu=None, initscale=None, axis=0):
        """
        Compute Huber's proposal 2 estimate of scale, using an optional
        initial value of scale and an optional estimate of mu. If mu
        is supplied, it is not reestimated.

        Parameters
        ----------
        a : array
            1d array
        mu : float or None, optional
            If the location mu is supplied then it is not reestimated.
            Default is None, which means that it is estimated.
        initscale : float or None, optional
            A first guess on scale.  If initscale is None then the standardized
            median absolute deviation of a is used.

        Notes
        -----
        `Huber` minimizes the function

        sum(psi((a[i]-mu)/scale)**2)

        as a function of (mu, scale), where

        psi(x) = np.clip(x, -self.c, self.c)
        """
        a = np.asarray(a)
        if mu is None:
            n = a.shape[0] - 1
            mu = np.median(a, axis=axis)
            est_mu = True
        else:
            n = a.shape[0]
            mu = mu
            est_mu = False

        if initscale is None:
            scale = stand_mad(a, axis=axis)
        else:
            scale = initscale
        scale = tools.unsqueeze(scale, axis, a.shape)
        mu = tools.unsqueeze(mu, axis, a.shape)
        return self._estimate_both(a, scale, mu, axis, est_mu, n)

    def _estimate_both(self, a, scale, mu, axis, est_mu, n):
        """
        Estimate scale and location simultaneously with the following
        pseudo_loop:

        while not_converged:
            mu, scale = estimate_location(a, scale, mu), estimate_scale(a, scale, mu)

        where estimate_location is an M-estimator and estimate_scale implements
        the check used in Section 5.5 of Venables & Ripley
        """
        for _ in range(self.maxiter):
            # Estimate the mean along a given axis
            if est_mu:
                if self.norm is None:
                    # This is a one-step fixed-point estimator
                    # if self.norm == norms.HuberT
                    # It should be faster than using norms.HuberT
                    nmu = np.clip(a, mu-self.c*scale,
                        mu+self.c*scale).sum(axis) / a.shape[axis]
                else:
                    nmu = norms.estimate_location(a, scale, self.norm, axis, mu,
                            self.maxiter, self.tol)
            else:
                # Effectively, do nothing
                nmu = mu.squeeze()
            nmu = tools.unsqueeze(nmu, axis, a.shape)

            subset = np.less_equal(np.fabs((a - mu)/scale), self.c)
            card = subset.sum(axis)

            nscale = np.sqrt(np.sum(subset * (a - nmu)**2, axis) \
                    / (n * self.gamma - (a.shape[axis] - card) * self.c**2))
            nscale = tools.unsqueeze(nscale, axis, a.shape)

            test1 = np.alltrue(np.less_equal(np.fabs(scale - nscale),
                        nscale * self.tol))
            test2 = np.alltrue(np.less_equal(np.fabs(mu - nmu), nscale*self.tol))
            if not (test1 and test2):
                mu = nmu; scale = nscale
            else:
                return nmu.squeeze(), nscale.squeeze()
        raise ValueError('joint estimation of location and scale failed to converge in %d iterations' % self.maxiter)

huber = Huber()

class HuberScale(object):
    """
    Huber's scaling for fitting robust linear models.

    Huber's scale is intended to be used as the scale estimate in the
    IRLS algorithm and is slightly different than the `Huber` class.

    Parameters
    ----------
    d : float, optional
        d is the tuning constant for Huber's scale.  Default is 2.5
    tol : float, optional
        The convergence tolerance
    maxiter : int, optiona
        The maximum number of iterations.  The default is 30.

    Methods
    -------
    call
        Return's Huber's scale computed as below

    Notes
    --------
    Huber's scale is the iterative solution to

    scale_(i+1)**2 = 1/(n*h)*sum(chi(r/sigma_i)*sigma_i**2

    where the Huber function is

    chi(x) = (x**2)/2       for \|x\| < d
    chi(x) = (d**2)/2       for \|x\| >= d

    and the Huber constant h = (n-p)/n*(d**2 + (1-d**2)*\
            scipy.stats.norm.cdf(d) - .5 - d*sqrt(2*pi)*exp(-0.5*d**2)
    """
    def __init__(self, d=2.5, tol=1e-08, maxiter=30):
        self.d = d
        self.tol = tol
        self.maxiter = maxiter

    def __call__(self, df_resid, nobs, resid):
        h = (df_resid)/nobs*(self.d**2 + (1-self.d**2)*\
                    Gaussian.cdf(self.d)-.5 - self.d/(np.sqrt(2*np.pi))*\
                    np.exp(-.5*self.d**2))
        s = stand_mad(resid)
        subset = lambda x: np.less(np.fabs(resid/x),self.d)
        chi = lambda s: subset(s)*(resid/s)**2/2+(1-subset(s))*(self.d**2/2)
        scalehist = [np.inf,s]
        niter = 1
        while (np.abs(scalehist[niter-1] - scalehist[niter])>self.tol \
                and niter < self.maxiter):
            nscale = np.sqrt(1/(nobs*h)*np.sum(chi(scalehist[-1]))*\
                    scalehist[-1]**2)
            scalehist.append(nscale)
            niter += 1
            if niter == self.maxiter:
                raise ValueError("Huber's scale failed to converge")
        return scalehist[-1]

hubers_scale = HuberScale()