/usr/share/pyshared/statsmodels/sandbox/bspline.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | '''
Bspines and smoothing splines.
General references:
Craven, P. and Wahba, G. (1978) "Smoothing noisy data with spline functions.
Estimating the correct degree of smoothing by
the method of generalized cross-validation."
Numerische Mathematik, 31(4), 377-403.
Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical
Learning." Springer-Verlag. 536 pages.
Hutchison, M. and Hoog, F. "Smoothing noisy data with spline functions."
Numerische Mathematik, 47(1), 99-106.
'''
import numpy as np
import numpy.linalg as L
from scipy.linalg import solveh_banded
from scipy.optimize import golden
from models import _hbspline #removed because this was segfaulting
# Issue warning regarding heavy development status of this module
import warnings
_msg = "The bspline code is technology preview and requires significant work\
on the public API and documentation. The API will likely change in the future"
warnings.warn(_msg, UserWarning)
def _band2array(a, lower=0, symmetric=False, hermitian=False):
"""
Take an upper or lower triangular banded matrix and return a
numpy array.
INPUTS:
a -- a matrix in upper or lower triangular banded matrix
lower -- is the matrix upper or lower triangular?
symmetric -- if True, return the original result plus its transpose
hermitian -- if True (and symmetric False), return the original
result plus its conjugate transposed
"""
n = a.shape[1]
r = a.shape[0]
_a = 0
if not lower:
for j in range(r):
_b = np.diag(a[r-1-j],k=j)[j:(n+j),j:(n+j)]
_a += _b
if symmetric and j > 0: _a += _b.T
elif hermitian and j > 0: _a += _b.conjugate().T
else:
for j in range(r):
_b = np.diag(a[j],k=j)[0:n,0:n]
_a += _b
if symmetric and j > 0: _a += _b.T
elif hermitian and j > 0: _a += _b.conjugate().T
_a = _a.T
return _a
def _upper2lower(ub):
"""
Convert upper triangular banded matrix to lower banded form.
INPUTS:
ub -- an upper triangular banded matrix
OUTPUTS: lb
lb -- a lower triangular banded matrix with same entries
as ub
"""
lb = np.zeros(ub.shape, ub.dtype)
nrow, ncol = ub.shape
for i in range(ub.shape[0]):
lb[i,0:(ncol-i)] = ub[nrow-1-i,i:ncol]
lb[i,(ncol-i):] = ub[nrow-1-i,0:i]
return lb
def _lower2upper(lb):
"""
Convert lower triangular banded matrix to upper banded form.
INPUTS:
lb -- a lower triangular banded matrix
OUTPUTS: ub
ub -- an upper triangular banded matrix with same entries
as lb
"""
ub = np.zeros(lb.shape, lb.dtype)
nrow, ncol = lb.shape
for i in range(lb.shape[0]):
ub[nrow-1-i,i:ncol] = lb[i,0:(ncol-i)]
ub[nrow-1-i,0:i] = lb[i,(ncol-i):]
return ub
def _triangle2unit(tb, lower=0):
"""
Take a banded triangular matrix and return its diagonal and the
unit matrix: the banded triangular matrix with 1's on the diagonal,
i.e. each row is divided by the corresponding entry on the diagonal.
INPUTS:
tb -- a lower triangular banded matrix
lower -- if True, then tb is assumed to be lower triangular banded,
in which case return value is also lower triangular banded.
OUTPUTS: d, b
d -- diagonal entries of tb
b -- unit matrix: if lower is False, b is upper triangular
banded and its rows of have been divided by d,
else lower is True, b is lower triangular banded
and its columns have been divieed by d.
"""
if lower: d = tb[0].copy()
else: d = tb[-1].copy()
if lower: return d, (tb / d)
else:
l = _upper2lower(tb)
return d, _lower2upper(l / d)
def _trace_symbanded(a, b, lower=0):
"""
Compute the trace(ab) for two upper or banded real symmetric matrices
stored either in either upper or lower form.
INPUTS:
a, b -- two banded real symmetric matrices (either lower or upper)
lower -- if True, a and b are assumed to be the lower half
OUTPUTS: trace
trace -- trace(ab)
"""
if lower:
t = _zero_triband(a * b, lower=1)
return t[0].sum() + 2 * t[1:].sum()
else:
t = _zero_triband(a * b, lower=0)
return t[-1].sum() + 2 * t[:-1].sum()
def _zero_triband(a, lower=0):
"""
Explicitly zero out unused elements of a real symmetric banded matrix.
INPUTS:
a -- a real symmetric banded matrix (either upper or lower hald)
lower -- if True, a is assumed to be the lower half
"""
nrow, ncol = a.shape
if lower:
for i in range(nrow): a[i,(ncol-i):] = 0.
else:
for i in range(nrow): a[i,0:i] = 0.
return a
class BSpline(object):
'''
Bsplines of a given order and specified knots.
Implementation is based on description in Chapter 5 of
Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical
Learning." Springer-Verlag. 536 pages.
INPUTS:
knots -- a sorted array of knots with knots[0] the lower boundary,
knots[1] the upper boundary and knots[1:-1] the internal
knots.
order -- order of the Bspline, default is 4 which yields cubic
splines
M -- number of additional boundary knots, if None it defaults
to order
coef -- an optional array of real-valued coefficients for the Bspline
of shape (knots.shape + 2 * (M - 1) - order,).
x -- an optional set of x values at which to evaluate the
Bspline to avoid extra evaluation in the __call__ method
'''
# FIXME: update parameter names, replace single character names
# FIXME: `order` should be actual spline order (implemented as order+1)
## FIXME: update the use of spline order in extension code (evaluate is recursively called)
# FIXME: eliminate duplicate M and m attributes (m is order, M is related to tau size)
def __init__(self, knots, order=4, M=None, coef=None, x=None):
knots = np.squeeze(np.unique(np.asarray(knots)))
if knots.ndim != 1:
raise ValueError('expecting 1d array for knots')
self.m = order
if M is None:
M = self.m
self.M = M
self.tau = np.hstack([[knots[0]]*(self.M-1), knots, [knots[-1]]*(self.M-1)])
self.K = knots.shape[0] - 2
if coef is None:
self.coef = np.zeros((self.K + 2 * self.M - self.m), np.float64)
else:
self.coef = np.squeeze(coef)
if self.coef.shape != (self.K + 2 * self.M - self.m):
raise ValueError('coefficients of Bspline have incorrect shape')
if x is not None:
self.x = x
def _setx(self, x):
self._x = x
self._basisx = self.basis(self._x)
def _getx(self):
return self._x
x = property(_getx, _setx)
def __call__(self, *args):
"""
Evaluate the BSpline at a given point, yielding
a matrix B and return
B * self.coef
INPUTS:
args -- optional arguments. If None, it returns self._basisx,
the BSpline evaluated at the x values passed in __init__.
Otherwise, return the BSpline evaluated at the
first argument args[0].
OUTPUTS: y
y -- value of Bspline at specified x values
BUGS:
If self has no attribute x, an exception will be raised
because self has no attribute _basisx.
"""
if not args:
b = self._basisx.T
else:
x = args[0]
b = np.asarray(self.basis(x)).T
return np.squeeze(np.dot(b, self.coef))
def basis_element(self, x, i, d=0):
"""
Evaluate a particular basis element of the BSpline,
or its derivative.
INPUTS:
x -- x values at which to evaluate the basis element
i -- which element of the BSpline to return
d -- the order of derivative
OUTPUTS: y
y -- value of d-th derivative of the i-th basis element
of the BSpline at specified x values
"""
x = np.asarray(x, np.float64)
_shape = x.shape
if _shape == ():
x.shape = (1,)
x.shape = (np.product(_shape,axis=0),)
if i < self.tau.shape[0] - 1:
## TODO: OWNDATA flags...
v = _hbspline.evaluate(x, self.tau, self.m, d, i, i+1)
else:
return np.zeros(x.shape, np.float64)
if (i == self.tau.shape[0] - self.m):
v = np.where(np.equal(x, self.tau[-1]), 1, v)
v.shape = _shape
return v
def basis(self, x, d=0, lower=None, upper=None):
"""
Evaluate the basis of the BSpline or its derivative.
If lower or upper is specified, then only
the [lower:upper] elements of the basis are returned.
INPUTS:
x -- x values at which to evaluate the basis element
i -- which element of the BSpline to return
d -- the order of derivative
lower -- optional lower limit of the set of basis
elements
upper -- optional upper limit of the set of basis
elements
OUTPUTS: y
y -- value of d-th derivative of the basis elements
of the BSpline at specified x values
"""
x = np.asarray(x)
_shape = x.shape
if _shape == ():
x.shape = (1,)
x.shape = (np.product(_shape,axis=0),)
if upper is None:
upper = self.tau.shape[0] - self.m
if lower is None:
lower = 0
upper = min(upper, self.tau.shape[0] - self.m)
lower = max(0, lower)
d = np.asarray(d)
if d.shape == ():
v = _hbspline.evaluate(x, self.tau, self.m, int(d), lower, upper)
else:
if d.shape[0] != 2:
raise ValueError("if d is not an integer, expecting a jx2 \
array with first row indicating order \
of derivative, second row coefficient in front.")
v = 0
for i in range(d.shape[1]):
v += d[1,i] * _hbspline.evaluate(x, self.tau, self.m, d[0,i], lower, upper)
v.shape = (upper-lower,) + _shape
if upper == self.tau.shape[0] - self.m:
v[-1] = np.where(np.equal(x, self.tau[-1]), 1, v[-1])
return v
def gram(self, d=0):
"""
Compute Gram inner product matrix, storing it in lower
triangular banded form.
The (i,j) entry is
G_ij = integral b_i^(d) b_j^(d)
where b_i are the basis elements of the BSpline and (d) is the
d-th derivative.
If d is a matrix then, it is assumed to specify a differential
operator as follows: the first row represents the order of derivative
with the second row the coefficient corresponding to that order.
For instance:
[[2, 3],
[3, 1]]
represents 3 * f^(2) + 1 * f^(3).
INPUTS:
d -- which derivative to apply to each basis element,
if d is a matrix, it is assumed to specify
a differential operator as above
OUTPUTS: gram
gram -- the matrix of inner products of (derivatives)
of the BSpline elements
"""
d = np.squeeze(d)
if np.asarray(d).shape == ():
self.g = _hbspline.gram(self.tau, self.m, int(d), int(d))
else:
d = np.asarray(d)
if d.shape[0] != 2:
raise ValueError("if d is not an integer, expecting a jx2 \
array with first row indicating order \
of derivative, second row coefficient in front.")
if d.shape == (2,):
d.shape = (2,1)
self.g = 0
for i in range(d.shape[1]):
for j in range(d.shape[1]):
self.g += d[1,i]* d[1,j] * _hbspline.gram(self.tau, self.m, int(d[0,i]), int(d[0,j]))
self.g = self.g.T
self.d = d
return np.nan_to_num(self.g)
class SmoothingSpline(BSpline):
penmax = 30.
method = "target_df"
target_df = 5
default_pen = 1.0e-03
optimize = True
'''
A smoothing spline, which can be used to smooth scatterplots, i.e.
a list of (x,y) tuples.
See fit method for more information.
'''
def fit(self, y, x=None, weights=None, pen=0.):
"""
Fit the smoothing spline to a set of (x,y) pairs.
INPUTS:
y -- response variable
x -- if None, uses self.x
weights -- optional array of weights
pen -- constant in front of Gram matrix
OUTPUTS: None
The smoothing spline is determined by self.coef,
subsequent calls of __call__ will be the smoothing spline.
ALGORITHM:
Formally, this solves a minimization:
fhat = ARGMIN_f SUM_i=1^n (y_i-f(x_i))^2 + pen * int f^(2)^2
int is integral. pen is lambda (from Hastie)
See Chapter 5 of
Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical
Learning." Springer-Verlag. 536 pages.
for more details.
TODO:
Should add arbitrary derivative penalty instead of just
second derivative.
"""
banded = True
if x is None:
x = self._x
bt = self._basisx.copy()
else:
bt = self.basis(x)
if pen == 0.: # can't use cholesky for singular matrices
banded = False
if x.shape != y.shape:
raise ValueError('x and y shape do not agree, by default x are \
the Bspline\'s internal knots')
if pen >= self.penmax:
pen = self.penmax
if weights is not None:
self.weights = weights
else:
self.weights = 1.
_w = np.sqrt(self.weights)
bt *= _w
# throw out rows with zeros (this happens at boundary points!)
mask = np.flatnonzero(1 - np.alltrue(np.equal(bt, 0), axis=0))
bt = bt[:,mask]
y = y[mask]
self.df_total = y.shape[0]
bty = np.squeeze(np.dot(bt, _w * y))
self.N = y.shape[0]
if not banded:
self.btb = np.dot(bt, bt.T)
_g = _band2array(self.g, lower=1, symmetric=True)
self.coef, _, self.rank = L.lstsq(self.btb + pen*_g, bty)[0:3]
self.rank = min(self.rank, self.btb.shape[0])
del(_g)
else:
self.btb = np.zeros(self.g.shape, np.float64)
nband, nbasis = self.g.shape
for i in range(nbasis):
for k in range(min(nband, nbasis-i)):
self.btb[k,i] = (bt[i] * bt[i+k]).sum()
bty.shape = (1,bty.shape[0])
self.pen = pen
self.chol, self.coef = solveh_banded(self.btb +
pen*self.g,
bty, lower=1)
self.coef = np.squeeze(self.coef)
self.resid = y * self.weights - np.dot(self.coef, bt)
self.pen = pen
del(bty); del(mask); del(bt)
def smooth(self, y, x=None, weights=None):
if self.method == "target_df":
if hasattr(self, 'pen'):
self.fit(y, x=x, weights=weights, pen=self.pen)
else:
self.fit_target_df(y, x=x, weights=weights, df=self.target_df)
elif self.method == "optimize_gcv":
self.fit_optimize_gcv(y, x=x, weights=weights)
def gcv(self):
"""
Generalized cross-validation score of current fit.
Craven, P. and Wahba, G. "Smoothing noisy data with spline functions.
Estimating the correct degree of smoothing by
the method of generalized cross-validation."
Numerische Mathematik, 31(4), 377-403.
"""
norm_resid = (self.resid**2).sum()
return norm_resid / (self.df_total - self.trace())
def df_resid(self):
"""
Residual degrees of freedom in the fit.
self.N - self.trace()
where self.N is the number of observations of last fit.
"""
return self.N - self.trace()
def df_fit(self):
"""
How many degrees of freedom used in the fit?
self.trace()
"""
return self.trace()
def trace(self):
"""
Trace of the smoothing matrix S(pen)
TODO: addin a reference to Wahba, and whoever else I used.
"""
if self.pen > 0:
_invband = _hbspline.invband(self.chol.copy())
tr = _trace_symbanded(_invband, self.btb, lower=1)
return tr
else:
return self.rank
def fit_target_df(self, y, x=None, df=None, weights=None, tol=1.0e-03,
apen=0, bpen=1.0e-03):
"""
Fit smoothing spline with approximately df degrees of freedom
used in the fit, i.e. so that self.trace() is approximately df.
Uses binary search strategy.
In general, df must be greater than the dimension of the null space
of the Gram inner product. For cubic smoothing splines, this means
that df > 2.
INPUTS:
y -- response variable
x -- if None, uses self.x
df -- target degrees of freedom
weights -- optional array of weights
tol -- (relative) tolerance for convergence
apen -- lower bound of penalty for binary search
bpen -- upper bound of penalty for binary search
OUTPUTS: None
The smoothing spline is determined by self.coef,
subsequent calls of __call__ will be the smoothing spline.
"""
df = df or self.target_df
olddf = y.shape[0] - self.m
if hasattr(self, "pen"):
self.fit(y, x=x, weights=weights, pen=self.pen)
curdf = self.trace()
if np.fabs(curdf - df) / df < tol:
return
if curdf > df:
apen, bpen = self.pen, 2 * self.pen
else:
apen, bpen = 0., self.pen
while True:
curpen = 0.5 * (apen + bpen)
self.fit(y, x=x, weights=weights, pen=curpen)
curdf = self.trace()
if curdf > df:
apen, bpen = curpen, 2 * curpen
else:
apen, bpen = apen, curpen
if apen >= self.penmax:
raise ValueError("penalty too large, try setting penmax \
higher or decreasing df")
if np.fabs(curdf - df) / df < tol:
break
def fit_optimize_gcv(self, y, x=None, weights=None, tol=1.0e-03,
brack=(-100,20)):
"""
Fit smoothing spline trying to optimize GCV.
Try to find a bracketing interval for scipy.optimize.golden
based on bracket.
It is probably best to use target_df instead, as it is
sometimes difficult to find a bracketing interval.
INPUTS:
y -- response variable
x -- if None, uses self.x
df -- target degrees of freedom
weights -- optional array of weights
tol -- (relative) tolerance for convergence
brack -- an initial guess at the bracketing interval
OUTPUTS: None
The smoothing spline is determined by self.coef,
subsequent calls of __call__ will be the smoothing spline.
"""
def _gcv(pen, y, x):
self.fit(y, x=x, pen=np.exp(pen))
a = self.gcv()
return a
a = golden(_gcv, args=(y,x), brack=bracket, tol=tol)
|