/usr/share/pyshared/statsmodels/sandbox/descstats.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | '''
Glue for returning descriptive statistics.
'''
import numpy as np
from scipy import stats
import os
#############################################
#
#============================================
# Univariate Descriptive Statistics
#============================================
#
def sign_test(samp,mu0=0):
'''
Signs test with mu0=0 by default (though
the median is often used in practice)
Parameters
----------
samp
mu0
Returns
---------
M, p-value
where
M=(N(+) - N(-))/2, N(+) is the number of values above Mu0,
N(-) is the number of values below. Values equal to Mu0
are discarded.
The p-value for M is calculated using the binomial distrubution
and can be intrepreted the same as for a t-test.
See Also
---------
scipy.stats.wilcoxon
'''
pos=np.sum(samp>mu0)
neg=np.sum(samp<mu0)
M=(pos-neg)/2.
p=stats.binom_test(min(pos,neg),pos+neg,.5)
return M, p
def descstats(data, cols=None, axis=0):
'''
Prints descriptive statistics for one or multiple variables.
Parameters
------------
data: numpy array
`x` is the data
v: list, optional
A list of the column number or field names (for a recarray) of variables.
Default is all columns.
axis: 1 or 0
axis order of data. Default is 0 for column-ordered data.
Examples
--------
>>> descstats(data.exog,v=['x_1','x_2','x_3'])
'''
x = np.array(data) # or rather, the data we're interested in
if cols is None:
# if isinstance(x, np.recarray):
# cols = np.array(len(x.dtype.names))
if not isinstance(x, np.recarray) and x.ndim == 1:
x = x[:,None]
if x.shape[1] == 1:
desc = '''
---------------------------------------------
Univariate Descriptive Statistics
---------------------------------------------
Var. Name %(name)12s
----------
Obs. %(nobs)22i Range %(range)22s
Sum of Wts. %(sum)22s Coeff. of Variation %(coeffvar)22.4g
Mode %(mode)22.4g Skewness %(skewness)22.4g
Repeats %(nmode)22i Kurtosis %(kurtosis)22.4g
Mean %(mean)22.4g Uncorrected SS %(uss)22.4g
Median %(median)22.4g Corrected SS %(ss)22.4g
Variance %(variance)22.4g Sum Observations %(sobs)22.4g
Std. Dev. %(stddev)22.4g
''' % {'name': cols, 'sum': 'N/A', 'nobs': len(x), 'mode': \
stats.mode(x)[0][0], 'nmode': stats.mode(x)[1][0], \
'mean': x.mean(), 'median': np.median(x), 'range': \
'('+str(x.min())+', '+str(x.max())+')', 'variance': \
x.var(), 'stddev': x.std(), 'coeffvar': \
stats.variation(x), 'skewness': stats.skew(x), \
'kurtosis': stats.kurtosis(x), 'uss': stats.ss(x),\
'ss': stats.ss(x-x.mean()), 'sobs': np.sum(x)}
# ''' % {'name': cols[0], 'sum': 'N/A', 'nobs': len(x[cols[0]]), 'mode': \
# stats.mode(x[cols[0]])[0][0], 'nmode': stats.mode(x[cols[0]])[1][0], \
# 'mean': x[cols[0]].mean(), 'median': np.median(x[cols[0]]), 'range': \
# '('+str(x[cols[0]].min())+', '+str(x[cols[0]].max())+')', 'variance': \
# x[cols[0]].var(), 'stddev': x[cols[0]].std(), 'coeffvar': \
# stats.variation(x[cols[0]]), 'skewness': stats.skew(x[cols[0]]), \
# 'kurtosis': stats.kurtosis(x[cols[0]]), 'uss': stats.ss(x[cols[0]]),\
# 'ss': stats.ss(x[cols[0]]-x[cols[0]].mean()), 'sobs': np.sum(x[cols[0]])}
desc+= '''
Percentiles
-------------
1 %% %12.4g
5 %% %12.4g
10 %% %12.4g
25 %% %12.4g
50 %% %12.4g
75 %% %12.4g
90 %% %12.4g
95 %% %12.4g
99 %% %12.4g
''' % tuple([stats.scoreatpercentile(x,per) for per in (1,5,10,25,
50,75,90,95,99)])
t,p_t=stats.ttest_1samp(x,0)
M,p_M=sign_test(x)
S,p_S=stats.wilcoxon(np.squeeze(x))
desc+= '''
Tests of Location (H0: Mu0=0)
-----------------------------
Test Statistic Two-tailed probability
-----------------+-----------------------------------------
Student's t | t %7.5f Pr > |t| <%.4f
Sign | M %8.2f Pr >= |M| <%.4f
Signed Rank | S %8.2f Pr >= |S| <%.4f
''' % (t,p_t,M,p_M,S,p_S)
# Should this be part of a 'descstats'
# in any event these should be split up, so that they can be called
# individually and only returned together if someone calls summary
# or something of the sort
elif x.shape[1] > 1:
desc ='''
Var. Name | Obs. Mean Std. Dev. Range
------------+--------------------------------------------------------'''+\
os.linesep
# for recarrays with columns passed as names
# if isinstance(cols[0],str):
# for var in cols:
# desc += "%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g \
#%(range)20s" % {'name': var, 'obs': len(x[var]), 'mean': x[var].mean(),
# 'stddev': x[var].std(), 'range': '('+str(x[var].min())+', '\
# +str(x[var].max())+')'+os.linesep}
# else:
for var in range(x.shape[1]):
desc += "%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g \
%(range)20s" % {'name': var, 'obs': len(x[:,var]), 'mean': x[:,var].mean(),
'stddev': x[:,var].std(), 'range': '('+str(x[:,var].min())+', '+\
str(x[:,var].max())+')'+os.linesep}
else:
raise ValueError, "data not understood"
return desc
#if __name__=='__main__':
# test descstats
# import os
# loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv'
# relpath=(load_dataset(loc))
# dta=np.recfromcsv(relpath)
# descstats(dta,['stpop'])
# raw_input('Hit enter for multivariate test')
# descstats(dta,['stpop','avginc','vio'])
# with plain arrays
# import string2dummy as s2d
# dts=s2d.string2dummy(dta)
# ndts=np.vstack(dts[col] for col in dts.dtype.names)
# observations in columns and data in rows
# is easier for the call to stats
# what to make of
# ndts=np.column_stack(dts[col] for col in dts.dtype.names)
# ntda=ntds.swapaxis(1,0)
# ntda is ntds returns false?
# or now we just have detailed information about the different strings
# would this approach ever be inappropriate for a string typed variable
# other than dates?
# descstats(ndts, [1])
# raw_input("Enter to try second part")
# descstats(ndts, [1,20,3])
if __name__ == '__main__':
import statsmodels.api as sm
import os
data = sm.datasets.longley.load()
data.exog = sm.add_constant(data.exog)
sum1 = descstats(data.exog)
sum1a = descstats(data.exog[:,:1])
# loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv'
# dta=np.recfromcsv(loc)
# summary2 = descstats(dta,['stpop'])
# summary3 = descstats(dta,['stpop','avginc','vio'])
#TODO: needs a by argument
# summary4 = descstats(dta) this fails
# this is a bug
# p = dta[['stpop']]
# p.view(dtype = np.float, type = np.ndarray)
# this works
# p.view(dtype = np.int, type = np.ndarray)
### This is *really* slow ###
if os.path.isfile('./Econ724_PS_I_Data.csv'):
data2 = np.recfromcsv('./Econ724_PS_I_Data.csv')
sum2 = descstats(data2.ahe)
sum3 = descstats(np.column_stack((data2.ahe,data2.yrseduc)))
sum4 = descstats(np.column_stack(([data2[_] for \
_ in data2.dtype.names])))
|