/usr/share/pyshared/statsmodels/sandbox/gam.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | """
Generalized additive models
Requirements for smoothers
--------------------------
smooth(y, weights=xxx) : ? no return ? alias for fit
predict(x=None) : smoothed values, fittedvalues or for new exog
df_fit() : degress of freedom of fit ?
Notes
-----
- using PolySmoother works for AdditiveModel, and GAM with Poisson and Binomial
- testfailure with Gamma, no other families tested
- there is still an indeterminacy in the split up of the constant across
components (smoothers) and alpha, sum, i.e. constant, looks good.
- role of offset, that I haven't tried to figure out yet
Refactoring
-----------
currently result is attached to model instead of other way around
split up Result in class for AdditiveModel and for GAM,
subclass GLMResults, needs verification that result statistics are appropriate
how much inheritance, double inheritance?
renamings and cleanup
interface to other smoothers, scipy splines
basic unittests as support for refactoring exist, but we should have a test
case for gamma and the others. Advantage of PolySmoother is that we can
benchmark against the parametric GLM results.
"""
# JP:
# changes: use PolySmoother instead of crashing bspline
# TODO: check/catalogue required interface of a smoother
# TODO: replace default smoother by corresponding function to initialize
# other smoothers
# TODO: fix iteration, don't define class with iterator methods, use looping;
# add maximum iteration and other optional stop criteria
# fixed some of the dimension problems in PolySmoother,
# now graph for example looks good
# NOTE: example script is now in examples folder
#update: I did some of the above, see module docstring
import numpy as np
from statsmodels.genmod import families
from statsmodels.sandbox.nonparametric.smoothers import PolySmoother
from statsmodels.genmod.generalized_linear_model import GLM
DEBUG = False
def default_smoother(x, s_arg=None):
'''
'''
# _x = x.copy()
# _x.sort()
_x = np.sort(x)
n = x.shape[0]
# taken form smooth.spline in R
#if n < 50:
if n < 500:
nknots = n
else:
a1 = np.log(50) / np.log(2)
a2 = np.log(100) / np.log(2)
a3 = np.log(140) / np.log(2)
a4 = np.log(200) / np.log(2)
if n < 200:
nknots = 2**(a1 + (a2 - a1) * (n - 50)/150.)
elif n < 800:
nknots = 2**(a2 + (a3 - a2) * (n - 200)/600.)
elif n < 3200:
nknots = 2**(a3 + (a4 - a3) * (n - 800)/2400.)
else:
nknots = 200 + (n - 3200.)**0.2
knots = _x[np.linspace(0, n-1, nknots).astype(np.int32)]
#s = SmoothingSpline(knots, x=x.copy())
#when I set order=2, I get nans in the GAM prediction
if s_arg is None:
order = 3 #what about knots? need smoother *args or **kwds
else:
order = s_arg
s = PolySmoother(order, x=x.copy()) #TODO: change order, why copy?
# s.gram(d=2)
# s.target_df = 5
return s
class Offset(object):
def __init__(self, fn, offset):
self.fn = fn
self.offset = offset
def __call__(self, *args, **kw):
return self.fn(*args, **kw) + self.offset
class Results(object):
def __init__(self, Y, alpha, exog, smoothers, family, offset):
self.nobs, self.k_vars = exog.shape #assumes exog is 2d
#weird: If I put the previous line after the definition of self.mu,
# then the attributed don't get added
self.Y = Y
self.alpha = alpha
self.smoothers = smoothers
self.offset = offset
self.family = family
self.exog = exog
self.offset = offset
self.mu = self.linkinversepredict(exog) #TODO: remove __call__
def __call__(self, exog):
'''expected value ? check new GLM, same as mu for given exog
maybe remove this
'''
return self.linkinversepredict(exog)
def linkinversepredict(self, exog): #TODO what's the name in GLM
'''expected value ? check new GLM, same as mu for given exog
'''
return self.family.link.inverse(self.predict(exog))
def predict(self, exog):
'''predict response, sum of smoothed components
TODO: What's this in the case of GLM, corresponds to X*beta ?
'''
#note: sum is here over axis=0,
#TODO: transpose in smoothed and sum over axis=1
#BUG: there is some inconsistent orientation somewhere
#temporary hack, won't work for 1d
#print dir(self)
#print 'self.nobs, self.k_vars', self.nobs, self.k_vars
exog_smoothed = self.smoothed(exog)
#print 'exog_smoothed.shape', exog_smoothed.shape
if exog_smoothed.shape[0] == self.k_vars:
import warnings
warnings.warn("old orientation, colvars, will go away",
FutureWarning)
return np.sum(self.smoothed(exog), axis=0) + self.alpha
if exog_smoothed.shape[1] == self.k_vars:
return np.sum(exog_smoothed, axis=1) + self.alpha
else:
raise ValueError('shape mismatch in predict')
def smoothed(self, exog):
'''get smoothed prediction for each component
'''
#bug: with exog in predict I get a shape error
#print 'smoothed', exog.shape, self.smoothers[0].predict(exog).shape
#there was a mistake exog didn't have column index i
return np.array([self.smoothers[i].predict(exog[:,i]) + self.offset[i]
#shouldn't be a mistake because exog[:,i] is attached to smoother, but
#it is for different exog
#return np.array([self.smoothers[i].predict() + self.offset[i]
for i in range(exog.shape[1])]).T
def smoothed_demeaned(self, exog):
components = self.smoothed(exog)
means = components.mean(0)
constant = means.sum() + self.alpha
components_demeaned = components - means
return components_demeaned, constant
class AdditiveModel(object):
'''additive model with non-parametric, smoothed components
Parameters
----------
exog : ndarray
smoothers : None or list of smoother instances
smoother instances not yet checked
weights : None or ndarray
family : None or family instance
I think only used because of shared results with GAM and subclassing.
If None, then Gaussian is used.
'''
def __init__(self, exog, smoothers=None, weights=None, family=None):
self.exog = exog
if not weights is None:
self.weights = weights
else:
self.weights = np.ones(self.exog.shape[0])
self.smoothers = smoothers or [default_smoother(exog[:,i]) for i in range(exog.shape[1])]
#TODO: why do we set here df, refactoring temporary?
for i in range(exog.shape[1]):
self.smoothers[i].df = 10
if family is None:
self.family = families.Gaussian()
else:
self.family = family
#self.family = families.Gaussian()
def _iter__(self):
'''initialize iteration ?, should be removed
'''
self.iter = 0
self.dev = np.inf
return self
def next(self):
'''internal calculation for one fit iteration
BUG: I think this does not improve, what is supposed to improve
offset doesn't seem to be used, neither an old alpha
The smoothers keep coef/params from previous iteration
'''
_results = self.results
Y = self.results.Y
mu = _results.predict(self.exog)
#TODO offset is never used ?
offset = np.zeros(self.exog.shape[1], np.float64)
alpha = (Y * self.weights).sum() / self.weights.sum()
for i in range(self.exog.shape[1]):
tmp = self.smoothers[i].predict()
#TODO: check what smooth needs to do
#smooth (alias for fit, fit given x to new y and attach
#print 'next shape', (Y - alpha - mu + tmp).shape
bad = np.isnan(Y - alpha - mu + tmp).any()
if bad: #temporary assert while debugging
print Y, alpha, mu, tmp
raise
#self.smoothers[i].smooth(Y - alpha - mu + tmp,
self.smoothers[i].smooth(Y - mu + tmp,
weights=self.weights)
tmp2 = self.smoothers[i].predict() #fittedvalues of previous smooth/fit
self.results.offset[i] = -(tmp2*self.weights).sum() / self.weights.sum()
#self.offset used in smoothed
if DEBUG:
print self.smoothers[i].params
mu += tmp2 - tmp
#change setting offset here: tests still pass, offset equal to constant
#in component ??? what's the effect of offset
offset = self.results.offset
#print self.iter
#self.iter += 1 #missing incrementing of iter counter NOT
return Results(Y, alpha, self.exog, self.smoothers, self.family, offset)
def cont(self):
'''condition to continue iteration loop
Parameters
----------
tol
Returns
-------
cont : bool
If true, then iteration should be continued.
'''
self.iter += 1 #moved here to always count, not necessary
if DEBUG:
print self.iter, self.results.Y.shape,
print self.results.predict(self.exog).shape, self.weights.shape
curdev = (((self.results.Y - self.results.predict(self.exog))**2) * self.weights).sum()
if self.iter > self.maxiter: #kill it, no max iterationoption
return False
if np.fabs((self.dev - curdev) / curdev) < self.rtol:
self.dev = curdev
return False
#self.iter += 1
self.dev = curdev
return True
def df_resid(self):
'''degrees of freedom of residuals, ddof is sum of all smoothers df
'''
return self.results.Y.shape[0] - np.array([self.smoothers[i].df_fit() for i in range(self.exog.shape[1])]).sum()
def estimate_scale(self):
'''estimate standard deviation of residuals
'''
#TODO: remove use of self.results.__call__
return ((self.results.Y - self.results(self.exog))**2).sum() / self.df_resid()
def fit(self, Y, rtol=1.0e-06, maxiter=30):
'''fit the model to a given endogenous variable Y
This needs to change for consistency with statsmodels
'''
self.rtol = rtol
self.maxiter = maxiter
#iter(self) # what does this do? anything?
self._iter__()
mu = 0
alpha = (Y * self.weights).sum() / self.weights.sum()
offset = np.zeros(self.exog.shape[1], np.float64)
for i in range(self.exog.shape[1]):
self.smoothers[i].smooth(Y - alpha - mu,
weights=self.weights)
tmp = self.smoothers[i].predict()
offset[i] = (tmp * self.weights).sum() / self.weights.sum()
tmp -= tmp.sum()
mu += tmp
self.results = Results(Y, alpha, self.exog, self.smoothers, self.family, offset)
while self.cont():
self.results = self.next()
if self.iter >= self.maxiter:
import warnings
warnings.warn('maximum number of iterations reached')
return self.results
class Model(GLM, AdditiveModel):
#class Model(AdditiveModel):
#TODO: what does GLM do? Is it actually used ?
#only used in __init__, dropping it doesn't change results
#but where gets family attached now? - weird, it's Gaussian in this case now
#also where is the link defined?
#AdditiveModel overwrites family and sets it to Gaussian - corrected
#I think both GLM and AdditiveModel subclassing is only used in __init__
#niter = 2
# def __init__(self, exog, smoothers=None, family=family.Gaussian()):
# GLM.__init__(self, exog, family=family)
# AdditiveModel.__init__(self, exog, smoothers=smoothers)
# self.family = family
def __init__(self, endog, exog, smoothers=None, family=families.Gaussian()):
#self.family = family
#TODO: inconsistent super __init__
AdditiveModel.__init__(self, exog, smoothers=smoothers, family=family)
GLM.__init__(self, endog, exog, family=family)
assert self.family is family #make sure we got the right family
def next(self):
_results = self.results
Y = _results.Y
if np.isnan(self.weights).all():
print "nanweights1"
_results.mu = self.family.link.inverse(_results.predict(self.exog))
#eta = _results.predict(self.exog)
#_results.mu = self.family.fitted(eta)
weights = self.family.weights(_results.mu)
if np.isnan(weights).all():
self.weights = weights
print "nanweights2"
self.weights = weights
if DEBUG:
print 'deriv isnan', np.isnan(self.family.link.deriv(_results.mu)).any()
#Z = _results.predict(self.exog) + \
Z = _results.predict(self.exog) + \
self.family.link.deriv(_results.mu) * (Y - _results.mu) #- _results.alpha #?added alpha
m = AdditiveModel(self.exog, smoothers=self.smoothers,
weights=self.weights, family=self.family)
#TODO: I don't know what the next two lines do, Z, Y ? which is endog?
#Y is original endog, Z is endog for the next step in the iterative solver
_results = m.fit(Z)
self.history.append([Z, _results.predict(self.exog)])
_results.Y = Y
_results.mu = self.family.link.inverse(_results.predict(self.exog))
self.iter += 1
self.results = _results
return _results
def estimate_scale(self, Y=None):
"""
Return Pearson\'s X^2 estimate of scale.
"""
if Y is None:
Y = self.Y
resid = Y - self.results.mu
return (np.power(resid, 2) / self.family.variance(self.results.mu)).sum() \
/ self.df_resid #TODO check this
#/ AdditiveModel.df_resid(self) #what is the class doing here?
def fit(self, Y, rtol=1.0e-06, maxiter=30):
self.rtol = rtol
self.maxiter = maxiter
self.Y = np.asarray(Y, np.float64)
self.history = []
#iter(self)
self._iter__()
#TODO code duplication with next?
alpha = self.Y.mean()
mu0 = self.family.starting_mu(Y)
#Z = self.family.link(alpha) + self.family.link.deriv(alpha) * (Y - alpha)
Z = self.family.link(alpha) + self.family.link.deriv(alpha) * (Y - mu0)
m = AdditiveModel(self.exog, smoothers=self.smoothers, family=self.family)
self.results = m.fit(Z)
self.results.mu = self.family.link.inverse(self.results.predict(self.exog))
self.results.Y = Y
while self.cont():
self.results = self.next()
self.scale = self.results.scale = self.estimate_scale()
if self.iter >= self.maxiter:
import warnings
warnings.warn('maximum number of iterations reached')
return self.results
|