/usr/share/pyshared/statsmodels/sandbox/pca.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | #Copyright (c) 2008 Erik Tollerud (etolleru@uci.edu)
import numpy as np
from math import pi
class Pca(object):
"""
A basic class for Principal Component Analysis (PCA).
p is the number of dimensions, while N is the number of data points
"""
_colors=('r','g','b','c','y','m','k') #defaults
def __calc(self):
A = self.A
M=A-np.mean(A,axis=0)
N=M/np.std(M,axis=0)
self.M = M
self.N = N
self._eig = None
def __init__(self,data,names=None):
"""
p X N matrix input
"""
from warnings import warn
A = np.array(data).T
n,p = A.shape
self.n,self.p = n,p
if p > n:
warn('p > n - intentional?')
self.A = A
self._origA=A.copy()
self.__calc()
self._colors= np.tile(self._colors,int((p-1)/len(self._colors))+1)[:p]
if names is not None and len(names) != p:
raise ValueError('names must match data dimension')
self.names = None if names is None else tuple([str(n) for n in names])
def getCovarianceMatrix(self):
"""
returns the covariance matrix for the dataset
"""
return np.cov(self.N.T)
def getEigensystem(self):
"""
returns a tuple of (eigenvalues,eigenvectors) for the data set.
"""
if self._eig is None:
res = np.linalg.eig(self.getCovarianceMatrix())
sorti=np.argsort(res[0])[::-1]
res=(res[0][sorti],res[1][:,sorti])
self._eig=res
return self._eig
def getEigenvalues(self):
return self.getEigensystem()[0]
def getEigenvectors(self):
return self.getEigensystem()[1]
def getEnergies(self):
"""
"energies" are just normalized eigenvectors
"""
v=self.getEigenvalues()
return v/np.sum(v)
def plot2d(self,ix=0,iy=1,clf=True):
"""
Generates a 2-dimensional plot of the data set and principle components
using matplotlib.
ix specifies which p-dimension to put on the x-axis of the plot
and iy specifies which to put on the y-axis (0-indexed)
"""
import matplotlib.pyplot as plt
x,y=self.N[:,ix],self.N[:,iy]
if clf:
plt.clf()
plt.scatter(x,y)
vals,evs=self.getEigensystem()
#evx,evy=evs[:,ix],evs[:,iy]
xl,xu=plt.xlim()
yl,yu=plt.ylim()
dx,dy=(xu-xl),(yu-yl)
for val,vec,c in zip(vals,evs.T,self._colors):
plt.arrow(0,0,val*vec[ix],val*vec[iy],head_width=0.05*(dx*dy/4)**0.5,fc=c,ec=c)
#plt.arrow(0,0,vals[ix]*evs[ix,ix],vals[ix]*evs[iy,ix],head_width=0.05*(dx*dy/4)**0.5,fc='g',ec='g')
#plt.arrow(0,0,vals[iy]*evs[ix,iy],vals[iy]*evs[iy,iy],head_width=0.05*(dx*dy/4)**0.5,fc='r',ec='r')
if self.names is not None:
plt.xlabel('$'+self.names[ix]+'/\\sigma$')
plt.ylabel('$'+self.names[iy]+'/\\sigma$')
def plot3d(self,ix=0,iy=1,iz=2,clf=True):
"""
Generates a 3-dimensional plot of the data set and principle components
using mayavi.
ix, iy, and iz specify which of the input p-dimensions to place on each of
the x,y,z axes, respectively (0-indexed).
"""
import enthought.mayavi.mlab as M
if clf:
M.clf()
z3=np.zeros(3)
v=(self.getEigenvectors()*self.getEigenvalues())
M.quiver3d(z3,z3,z3,v[ix],v[iy],v[iz],scale_factor=5)
M.points3d(self.N[:,ix],self.N[:,iy],self.N[:,iz],scale_factor=0.3)
if self.names:
M.axes(xlabel=self.names[ix]+'/sigma',ylabel=self.names[iy]+'/sigma',zlabel=self.names[iz]+'/sigma')
else:
M.axes()
def sigclip(self,sigs):
"""
clips out all data points that are more than a certain number
of standard deviations from the mean.
sigs can be either a single value or a length-p sequence that
specifies the number of standard deviations along each of the
p dimensions.
"""
if np.isscalar(sigs):
sigs=sigs*np.ones(self.N.shape[1])
sigs = sigs*np.std(self.N,axis=1)
n = self.N.shape[0]
m = np.all(np.abs(self.N) < sigs,axis=1)
self.A=self.A[m]
self.__calc()
return n-sum(m)
def reset(self):
self.A = self._origA.copy()
self.__calc()
def project(self,vals=None,enthresh=None,nPCs=None,cumen=None):
"""
projects the normalized values onto the components
enthresh, nPCs, and cumen determine how many PCs to use
if vals is None, the normalized data vectors are the values to project.
Otherwise, it should be convertable to a p x N array
returns n,p(>threshold) dimension array
"""
nonnones = sum([e != None for e in (enthresh,nPCs,cumen)])
if nonnones == 0:
m = slice(None)
elif nonnones > 1:
raise ValueError("can't specify more than one threshold")
else:
if enthresh is not None:
m = self.energies() > enthresh
elif nPCs is not None:
m = slice(None,nPCs)
elif cumen is not None:
m = np.cumsum(self.energies()) < cumen
else:
raise RuntimeError('Should be unreachable')
if vals is None:
vals = self.N.T
else:
vals = np.array(vals,copy=False)
if self.N.T.shape[0] != vals.shape[0]:
raise ValueError("shape for vals doesn't match")
proj = np.matrix(self.getEigenvectors()).T*vals
return proj[m].T
def deproject(self,A,normed=True):
"""
input is an n X q array, where q <= p
output is p X n
"""
A=np.atleast_2d(A)
n,q = A.shape
p = self.A.shape[1]
if q > p :
raise ValueError("q > p")
evinv=np.linalg.inv(np.matrix(self.getEigenvectors()).T)
zs = np.zeros((n,p))
zs[:,:q]=A
proj = evinv*zs.T
if normed:
return np.array(proj.T).T
else:
mns=np.mean(self.A,axis=0)
sds=np.std(self.M,axis=0)
return (np.array(proj.T)*sds+mns).T
def subtractPC(self,pc,vals=None):
"""
pc can be a scalar or any sequence of pc indecies
if vals is None, the source data is self.A, else whatever is in vals
(which must be p x m)
"""
if vals is None:
vals = self.A
else:
vals = vals.T
if vals.shape[1]!= self.A.shape[1]:
raise ValueError("vals don't have the correct number of components")
pcs=self.project()
zpcs=np.zeros_like(pcs)
zpcs[:,pc]=pcs[:,pc]
upc=self.deproject(zpcs,False)
A = vals.T-upc
B = A.T*np.std(self.M,axis=0)
return B+np.mean(self.A,axis=0)
|