This file is indexed.

/usr/share/pyshared/statsmodels/sandbox/survival2.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#Kaplan-Meier Estimator

import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from scipy import stats
from statsmodels.iolib.table import SimpleTable

class KaplanMeier(object):

    """
    KaplanMeier(...)
        KaplanMeier(data, endog, exog=None, censoring=None)

        Create an object of class KaplanMeier for estimating
        Kaplan-Meier survival curves.

        Parameters
        ----------
        data: array_like
            An array, with observations in each row, and
            variables in the columns

        endog: index (starting at zero) of the column
            containing the endogenous variable (time)

        exog: index of the column containing the exogenous
            variable (must be catagorical). If exog = None, this
            is equivalent to a single survival curve

        censoring: index of the column containing an indicator
            of whether an observation is an event, or a censored
            observation, with 0 for censored, and 1 for an event

        Attributes
        -----------
        censorings: List of censorings associated with each unique
            time, at each value of exog

        events: List of the number of events at each unique time
            for each value of exog

        results: List of arrays containing estimates of the value
            value of the survival function and its standard error
            at each unique time, for each value of exog

        ts: List of unique times for each value of exog

        Methods
        -------
        fit: Calcuate the Kaplan-Meier estimates of the survival
            function and its standard error at each time, for each
            value of exog

        plot: Plot the survival curves using matplotlib.plyplot

        summary: Display the results of fit in a table. Gives results
            for all (including censored) times

        test_diff: Test for difference between survival curves

        Examples
        --------
        >>> import statsmodels.api as sm
        >>> import matplotlib.pyplot as plt
        >>> import numpy as np
        >>> from statsmodels.sandbox.survival2 import KaplanMeier
        >>> dta = sm.datasets.strikes.load()
        >>> dta = dta.values()[-1]
        >>> dta[range(5),:]
        array([[  7.00000000e+00,   1.13800000e-02],
               [  9.00000000e+00,   1.13800000e-02],
               [  1.30000000e+01,   1.13800000e-02],
               [  1.40000000e+01,   1.13800000e-02],
               [  2.60000000e+01,   1.13800000e-02]])
        >>> km = KaplanMeier(dta,0)
        >>> km.fit()
        >>> km.plot()

        Doing

        >>> km.summary()

        will display a table of the estimated survival and standard errors
        for each time. The first few lines are

                  Kaplan-Meier Curve
        =====================================
         Time     Survival        Std. Err
        -------------------------------------
         1.0   0.983870967742 0.0159984306572
         2.0   0.91935483871  0.0345807888235
         3.0   0.854838709677 0.0447374942184
         4.0   0.838709677419 0.0467104592871
         5.0   0.822580645161 0.0485169952543

        Doing

        >>> plt.show()

        will plot the survival curve

        Mutliple survival curves:

        >>> km2 = KaplanMeier(dta,0,exog=1)
        >>> km2.fit()

        km2 will estimate a survival curve for each value of industrial
        production, the column of dta with index one (1).

        With censoring:

        >>> censoring = np.ones_like(dta[:,0])
        >>> censoring[dta[:,0] > 80] = 0
        >>> dta = np.c_[dta,censoring]
        >>> dta[range(5),:]
        array([[  7.00000000e+00,   1.13800000e-02,   1.00000000e+00],
               [  9.00000000e+00,   1.13800000e-02,   1.00000000e+00],
               [  1.30000000e+01,   1.13800000e-02,   1.00000000e+00],
               [  1.40000000e+01,   1.13800000e-02,   1.00000000e+00],
               [  2.60000000e+01,   1.13800000e-02,   1.00000000e+00]])

        >>> km3 = KaplanMeier(dta,0,exog=1,censoring=2)
        >>> km3.fit()

        Test for difference of survival curves

        >>> log_rank = km3.test_diff([0.0645,-0.03957])

        The zeroth element of log_rank is the chi-square test statistic
        for the difference between the survival curves for exog = 0.0645
        and exog = -0.03957, the index one element is the degrees of freedom for
        the test, and the index two element is the p-value for the test

        Groups with nan names

        >>> groups = np.ones_like(dta[:,1])
        >>> groups = groups.astype('S4')
        >>> groups[dta[:,1] > 0] = 'high'
        >>> groups[dta[:,1] <= 0] = 'low'
        >>> dta = dta.astype('S4')
        >>> dta[:,1] = groups
        >>> dta[range(5),:]
        array([['7.0', 'high', '1.0'],
               ['9.0', 'high', '1.0'],
               ['13.0', 'high', '1.0'],
               ['14.0', 'high', '1.0'],
               ['26.0', 'high', '1.0']],
              dtype='|S4')
        >>> km4 = KaplanMeier(dta,0,exog=1,censoring=2)
        >>> km4.fit()

    """

    def __init__(self, data, endog, exog=None, censoring=None):
        self.exog = exog
        self.censoring = censoring
        cols = [endog]
        self.endog = 0
        if exog != None:
            cols.append(exog)
            self.exog = 1
        if censoring != None:
            cols.append(censoring)
            if exog != None:
                self.censoring = 2
            else:
                self.censoring = 1
        data = data[:,cols]
        if data.dtype == float or data.dtype == int:
            self.data = data[~np.isnan(data).any(1)]
        else:
            t = (data[:,self.endog]).astype(float)
            if exog != None:
                evec = data[:,self.exog]
                evec = evec[~np.isnan(t)]
            if censoring != None:
                cvec = (data[:,self.censoring]).astype(float)
                cvec = cvec[~np.isnan(t)]
            t = t[~np.isnan(t)]
            if censoring != None:
                t = t[~np.isnan(cvec)]
                if exog != None:
                    evec = evec[~np.isnan(cvec)]
                cvec = cvec[~np.isnan(cvec)]
            cols = [t]
            if exog != None:
                cols.append(evec)
            if censoring != None:
                cols.append(cvec)
            data = (np.array(cols)).transpose()
            self.data = data

    def fit(self):
        """
        Calculate the Kaplan-Meier estimator of the survival function
        """
        self.results = []
        self.ts = []
        self.censorings = []
        self.event = []
        if self.exog == None:
            self.fitting_proc(self.data)
        else:
            groups = np.unique(self.data[:,self.exog])
            self.groups = groups
            for g in groups:
                group = self.data[self.data[:,self.exog] == g]
                self.fitting_proc(group)

    def plot(self):
        """
        Plot the estimated survival curves. After using this method
        do

        plt.show()

        to display the plot
        """
        plt.figure()
        if self.exog == None:
            self.plotting_proc(0)
        else:
            for g in range(len(self.groups)):
                self.plotting_proc(g)
        plt.ylim(ymax=1.05)
        plt.ylabel('Survival')
        plt.xlabel('Time')

    def summary(self):
        """
        Print a set of tables containing the estimates of the survival
        function, and its standard errors
        """
        if self.exog == None:
            self.summary_proc(0)
        else:
            for g in range(len(self.groups)):
                self.summary_proc(g)

    def fitting_proc(self, group):
        """
        For internal use
        """
        t = ((group[:,self.endog]).astype(float)).astype(int)
        if self.censoring == None:
            events = np.bincount(t)
            t = np.unique(t)
            events = events[:,list(t)]
            events = events.astype(float)
            eventsSum = np.cumsum(events)
            eventsSum = np.r_[0,eventsSum]
            n = len(group) - eventsSum[:-1]
        else:
            censoring = ((group[:,self.censoring]).astype(float)).astype(int)
            reverseCensoring = -1*(censoring - 1)
            events = np.bincount(t,censoring)
            censored = np.bincount(t,reverseCensoring)
            t = np.unique(t)
            censored = censored[:,list(t)]
            censored = censored.astype(float)
            censoredSum = np.cumsum(censored)
            censoredSum = np.r_[0,censoredSum]
            events = events[:,list(t)]
            events = events.astype(float)
            eventsSum = np.cumsum(events)
            eventsSum = np.r_[0,eventsSum]
            n = len(group) - eventsSum[:-1] - censoredSum[:-1]
            (self.censorings).append(censored)
        survival = np.cumprod(1-events/n)
        var = ((survival*survival) *
               np.cumsum(events/(n*(n-events))))
        se = np.sqrt(var)
        (self.results).append(np.array([survival,se]))
        (self.ts).append(t)
        (self.event).append(events)

    def plotting_proc(self, g):
        """
        For internal use
        """
        survival = self.results[g][0]
        t = self.ts[g]
        e = (self.event)[g]
        if self.censoring != None:
            c = self.censorings[g]
            csurvival = survival[c != 0]
            ct = t[c != 0]
            if len(ct) != 0:
                plt.vlines(ct,csurvival+0.02,csurvival-0.02)
        x = np.repeat(t[e != 0], 2)
        y = np.repeat(survival[e != 0], 2)
        if self.ts[g][-1] in t[e != 0]:
            x = np.r_[0,x]
            y = np.r_[1,1,y[:-1]]
        else:
            x = np.r_[0,x,self.ts[g][-1]]
            y = np.r_[1,1,y]
        plt.plot(x,y)

    def summary_proc(self, g):
        """
        For internal use
        """
        if self.exog != None:
            myTitle = ('exog = ' + str(self.groups[g]) + '\n')
        else:
            myTitle = "Kaplan-Meier Curve"
        table = np.transpose(self.results[g])
        table = np.c_[np.transpose(self.ts[g]),table]
        table = SimpleTable(table, headers=['Time','Survival','Std. Err'],
                            title = myTitle)
        print(table)

    def test_diff(self, groups, rho=None, weight=None):

        """
        test_diff(groups, rho=0)

        Test for difference between survival curves

        Parameters
        ----------
        groups: A list of the values for exog to test for difference.
        tests the null hypothesis that the survival curves for all
        values of exog in groups are equal

        rho: compute the test statistic with weight S(t)^rho, where
        S(t) is the pooled estimate for the Kaplan-Meier survival function.
        If rho = 0, this is the logrank test, if rho = 0, this is the
        Peto and Peto modification to the Gehan-Wilcoxon test.

        weight: User specified function that accepts as its sole arguement
        an array of times, and returns an array of weights for each time
        to be used in the test

        Returns
        -------
        An array whose zeroth element is the chi-square test statistic for
        the global null hypothesis, that all survival curves are equal,
        the index one element is degrees of freedom for the test, and the
        index two element is the p-value for the test.

        Examples
        --------

        >>> import statsmodels.api as sm
        >>> import matplotlib.pyplot as plt
        >>> import numpy as np
        >>> from statsmodels.sandbox.survival2 import KaplanMeier
        >>> dta = sm.datasets.strikes.load()
        >>> dta = dta.values()[-1]
        >>> censoring = np.ones_like(dta[:,0])
        >>> censoring[dta[:,0] > 80] = 0
        >>> dta = np.c_[dta,censoring]
        >>> km = KaplanMeier(dta,0,exog=1,censoring=2)
        >>> km.fit()

        Test for difference of survival curves

        >>> log_rank = km3.test_diff([0.0645,-0.03957])

        The zeroth element of log_rank is the chi-square test statistic
        for the difference between the survival curves using the log rank test
        for exog = 0.0645 and exog = -0.03957, the index one element
        is the degrees of freedom for the test, and the index two element
        is the p-value for the test

        >>> wilcoxon = km.test_diff([0.0645,-0.03957], rho=1)

        wilcoxon is the equivalent information as log_rank, but for the
        Peto and Peto modification to the Gehan-Wilcoxon test.

        User specified weight functions

        >>> log_rank = km3.test_diff([0.0645,-0.03957], weight=np.ones_like)

        This is equivalent to the log rank test

        More than two groups

        >>> log_rank = km.test_diff([0.0645,-0.03957,0.01138])

        The test can be performed with arbitrarily many groups, so long as
        they are all in the column exog
        """
        groups = np.asarray(groups)
        if self.exog == None:
            raise ValueError("Need an exogenous variable for logrank test")

        elif (np.in1d(groups,self.groups)).all():
            data = self.data[np.in1d(self.data[:,self.exog],groups)]
            t = ((data[:,self.endog]).astype(float)).astype(int)
            tind = np.unique(t)
            NK = []
            N = []
            D = []
            Z = []
            if rho != None and weight != None:
                raise ValueError("Must use either rho or weights, not both")

            elif rho != None:
                s = KaplanMeier(data,self.endog,censoring=self.censoring)
                s.fit()
                s = (s.results[0][0]) ** (rho)
                s = np.r_[1,s[:-1]]

            elif weight != None:
                s = weight(tind)

            else:
                s = np.ones_like(tind)

            if self.censoring == None:
                for g in groups:
                    dk = np.bincount((t[data[:,self.exog] == g]))
                    d = np.bincount(t)
                    if np.max(tind) != len(dk):
                        dif = np.max(tind) - len(dk) + 1
                        dk = np.r_[dk,[0]*dif]
                    dk = dk[:,list(tind)]
                    d = d[:,list(tind)]
                    dk = dk.astype(float)
                    d = d.astype(float)
                    dkSum = np.cumsum(dk)
                    dSum = np.cumsum(d)
                    dkSum = np.r_[0,dkSum]
                    dSum = np.r_[0,dSum]
                    nk = len(data[data[:,self.exog] == g]) - dkSum[:-1]
                    n = len(data) - dSum[:-1]
                    d = d[n>1]
                    dk = dk[n>1]
                    nk = nk[n>1]
                    n = n[n>1]
                    s = s[n>1]
                    ek = (nk * d)/(n)
                    Z.append(np.sum(s * (dk - ek)))
                    NK.append(nk)
                    N.append(n)
                    D.append(d)
            else:
                for g in groups:
                    censoring = ((data[:,self.censoring]).astype(float)).astype(int)
                    reverseCensoring = -1*(censoring - 1)
                    censored = np.bincount(t,reverseCensoring)
                    ck = np.bincount((t[data[:,self.exog] == g]),
                                     reverseCensoring[data[:,self.exog] == g])
                    dk = np.bincount((t[data[:,self.exog] == g]),
                                     censoring[data[:,self.exog] == g])
                    d = np.bincount(t,censoring)
                    if np.max(tind) != len(dk):
                        dif = np.max(tind) - len(dk) + 1
                        dk = np.r_[dk,[0]*dif]
                        ck = np.r_[ck,[0]*dif]
                    dk = dk[:,list(tind)]
                    ck = ck[:,list(tind)]
                    d = d[:,list(tind)]
                    dk = dk.astype(float)
                    d = d.astype(float)
                    ck = ck.astype(float)
                    dkSum = np.cumsum(dk)
                    dSum = np.cumsum(d)
                    ck = np.cumsum(ck)
                    ck = np.r_[0,ck]
                    dkSum = np.r_[0,dkSum]
                    dSum = np.r_[0,dSum]
                    censored = censored[:,list(tind)]
                    censored = censored.astype(float)
                    censoredSum = np.cumsum(censored)
                    censoredSum = np.r_[0,censoredSum]
                    nk = (len(data[data[:,self.exog] == g]) - dkSum[:-1]
                          - ck[:-1])
                    n = len(data) - dSum[:-1] - censoredSum[:-1]
                    d = d[n>1]
                    dk = dk[n>1]
                    nk = nk[n>1]
                    n = n[n>1]
                    s = s[n>1]
                    ek = (nk * d)/(n)
                    Z.append(np.sum(s * (dk - ek)))
                    NK.append(nk)
                    N.append(n)
                    D.append(d)
            Z = np.array(Z)
            N = np.array(N)
            D = np.array(D)
            NK = np.array(NK)
            sigma = -1 * np.dot((NK/N) * ((N - D)/(N - 1)) * D
                                * np.array([(s ** 2)]*len(D))
                            ,np.transpose(NK/N))
            np.fill_diagonal(sigma, np.diagonal(np.dot((NK/N)
                                                  * ((N - D)/(N - 1)) * D
                                                       * np.array([(s ** 2)]*len(D))
                                                  ,np.transpose(1 - (NK/N)))))
            chisq = np.dot(np.transpose(Z),np.dot(la.pinv(sigma), Z))
            df = len(groups) - 1
            return np.array([chisq, df, stats.chi2.sf(chisq,df)])
        else:
            raise ValueError("groups must be in column exog")