This file is indexed.

/usr/share/pyshared/statsmodels/stats/contrast.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
from scipy.stats import f as fdist
from scipy.stats import t as student_t
from statsmodels.tools.tools import clean0, rank, fullrank


#TODO: should this be public if it's just a container?
class ContrastResults(object):
    """
    Container class for looking at contrasts of coefficients in a model.

    The class does nothing, it is a container for the results from T and F.
    """

    def __init__(self, t=None, F=None, sd=None, effect=None, df_denom=None,
                 df_num=None):
        if F is not None:
            self.fvalue = F
            self.df_denom = df_denom
            self.df_num = df_num
            self.pvalue = fdist.sf(F, df_num, df_denom)
        else:
            self.tvalue = t
            self.sd = sd
            self.effect = effect
            self.df_denom = df_denom
            self.pvalue = student_t.sf(np.abs(t), df_denom)

    def __array__(self):
        if hasattr(self, "fvalue"):
            return self.fvalue
        else:
            return self.tvalue

    def __str__(self):
        if hasattr(self, 'fvalue'):
            return '<F test: F=%s, p=%s, df_denom=%d, df_num=%d>' % \
                   (`self.fvalue`, self.pvalue, self.df_denom, self.df_num)
        else:
            return '<T test: effect=%s, sd=%s, t=%s, p=%s, df_denom=%d>' % \
                   (`self.effect`, `self.sd`, `self.tvalue`, `self.pvalue`,
                           self.df_denom)

    def __repr__(self):
        return str(self.__class__) + '\n' + self.__str__()

class Contrast(object):
    """
    This class is used to construct contrast matrices in regression models.

    They are specified by a (term, design) pair.  The term, T, is a linear
    combination of columns of the design matrix. The matrix attribute of
    Contrast is a contrast matrix C so that

    colspan(dot(D, C)) = colspan(dot(D, dot(pinv(D), T)))

    where pinv(D) is the generalized inverse of D. Further, the matrix

    Tnew = dot(C, D)

    is full rank. The rank attribute is the rank of

    dot(D, dot(pinv(D), T))

    In a regression model, the contrast tests that E(dot(Tnew, Y)) = 0
    for each column of Tnew.

    Parameters
    ----------
    term ; array-like
    design : array-like

    Attributes
    ----------
    contrast_matrix

    Examples
    ---------
    >>>import numpy.random as R
    >>>import statsmodels.api as sm
    >>>import numpy as np
    >>>R.seed(54321)
    >>>X = R.standard_normal((40,10))

    Get a contrast

    >>>new_term = np.column_stack((X[:,0], X[:,2]))
    >>>c = sm.contrast.Contrast(new_term, X)
    >>>test = [[1] + [0]*9, [0]*2 + [1] + [0]*7]
    >>>np.allclose(c.contrast_matrix, test)
    True

    Get another contrast

    >>>P = np.dot(X, np.linalg.pinv(X))
    >>>resid = np.identity(40) - P
    >>>noise = np.dot(resid,R.standard_normal((40,5)))
    >>>new_term2 = np.column_stack((noise,X[:,2]))
    >>>c2 = Contrast(new_term2, X)
    >>>print c2.contrast_matrix
    [ -1.26424750e-16   8.59467391e-17   1.56384718e-01  -2.60875560e-17
  -7.77260726e-17  -8.41929574e-18  -7.36359622e-17  -1.39760860e-16
   1.82976904e-16  -3.75277947e-18]

    Get another contrast

    >>>zero = np.zeros((40,))
    >>>new_term3 = np.column_stack((zero,X[:,2]))
    >>>c3 = sm.contrast.Contrast(new_term3, X)
    >>>test2 = [0]*2 + [1] + [0]*7
    >>>np.allclose(c3.contrast_matrix, test2)
    True

    """
    def _get_matrix(self):
        """
        Gets the contrast_matrix property
        """
        if not hasattr(self, "_contrast_matrix"):
            self.compute_matrix()
        return self._contrast_matrix

    contrast_matrix = property(_get_matrix)

    def __init__(self, term, design):
        self.term = np.asarray(term)
        self.design = np.asarray(design)

    def compute_matrix(self):
        """
        Construct a contrast matrix C so that

        colspan(dot(D, C)) = colspan(dot(D, dot(pinv(D), T)))

        where pinv(D) is the generalized inverse of D=design.
        """

        T = self.term
        if T.ndim == 1:
            T = T[:,None]

        self.T = clean0(T)
        self.D = self.design
        self._contrast_matrix = contrastfromcols(self.T, self.D)
        try:
            self.rank = self.matrix.shape[1]
        except:
            self.rank = 1

#TODO: fix docstring after usage is settled
def contrastfromcols(L, D, pseudo=None):
    """
    From an n x p design matrix D and a matrix L, tries
    to determine a p x q contrast matrix C which
    determines a contrast of full rank, i.e. the
    n x q matrix

    dot(transpose(C), pinv(D))

    is full rank.

    L must satisfy either L.shape[0] == n or L.shape[1] == p.

    If L.shape[0] == n, then L is thought of as representing
    columns in the column space of D.

    If L.shape[1] == p, then L is thought of as what is known
    as a contrast matrix. In this case, this function returns an estimable
    contrast corresponding to the dot(D, L.T)

    Note that this always produces a meaningful contrast, not always
    with the intended properties because q is always non-zero unless
    L is identically 0. That is, it produces a contrast that spans
    the column space of L (after projection onto the column space of D).

    Parameters
    ----------
    L : array-like
    D : array-like
    """
    L = np.asarray(L)
    D = np.asarray(D)

    n, p = D.shape

    if L.shape[0] != n and L.shape[1] != p:
        raise ValueError("shape of L and D mismatched")

    if pseudo is None:
        pseudo = np.linalg.pinv(D)    # D^+ \approx= ((dot(D.T,D))^(-1),D.T)

    if L.shape[0] == n:
        C = np.dot(pseudo, L).T
    else:
        C = L
        C = np.dot(pseudo, np.dot(D, C.T)).T

    Lp = np.dot(D, C.T)

    if len(Lp.shape) == 1:
        Lp.shape = (n, 1)

    if rank(Lp) != Lp.shape[1]:
        Lp = fullrank(Lp)
        C = np.dot(pseudo, Lp).T

    return np.squeeze(C)