/usr/share/pyshared/statsmodels/stats/gof.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | '''extra statistical function and helper functions
contains:
* goodness-of-fit tests
- powerdiscrepancy
- gof_chisquare_discrete
- gof_binning_discrete
Author: Josef Perktold (josef-pktd)
'''
import numpy as np
#fix these imports
import scipy
from scipy import stats
# copied from regression/stats.utils
def powerdiscrepancy(observed, expected, lambd=0.0, axis=0, ddof=0):
"""Calculates power discrepancy, a class of goodness-of-fit tests
as a measure of discrepancy between observed and expected data.
This contains several goodness-of-fit tests as special cases, see the
describtion of lambd, the exponent of the power discrepancy. The pvalue
is based on the asymptotic chi-square distribution of the test statistic.
freeman_tukey:
D(x|\theta) = \sum_j (\sqrt{x_j} - \sqrt{e_j})^2
Parameters
----------
o : Iterable
Observed values
e : Iterable
Expected values
lambd : float or string
* float : exponent `a` for power discrepancy
* 'loglikeratio': a = 0
* 'freeman_tukey': a = -0.5
* 'pearson': a = 1 (standard chisquare test statistic)
* 'modified_loglikeratio': a = -1
* 'cressie_read': a = 2/3
* 'neyman' : a = -2 (Neyman-modified chisquare, reference from a book?)
axis : int
axis for observations of one series
ddof : int
degrees of freedom correction,
Returns
-------
D_obs : Discrepancy of observed values
pvalue : pvalue
References
----------
Cressie, Noel and Timothy R. C. Read, Multinomial Goodness-of-Fit Tests,
Journal of the Royal Statistical Society. Series B (Methodological),
Vol. 46, No. 3 (1984), pp. 440-464
Campbell B. Read: Freeman-Tukey chi-squared goodness-of-fit statistics,
Statistics & Probability Letters 18 (1993) 271-278
Nobuhiro Taneichi, Yuri Sekiya, Akio Suzukawa, Asymptotic Approximations
for the Distributions of the Multinomial Goodness-of-Fit Statistics
under Local Alternatives, Journal of Multivariate Analysis 81, 335?359 (2002)
Steele, M. 1,2, C. Hurst 3 and J. Chaseling, Simulated Power of Discrete
Goodness-of-Fit Tests for Likert Type Data
Examples
--------
>>> observed = np.array([ 2., 4., 2., 1., 1.])
>>> expected = np.array([ 0.2, 0.2, 0.2, 0.2, 0.2])
for checking correct dimension with multiple series
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd='freeman_tukey',axis=1)
(array([[ 2.745166, 2.745166]]), array([[ 0.6013346, 0.6013346]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected,axis=1)
(array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=0,axis=1)
(array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=1,axis=1)
(array([[ 3., 3.]]), array([[ 0.5578254, 0.5578254]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=2/3.0,axis=1)
(array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, expected, lambd=2/3.0,axis=1)
(array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]]))
>>> powerdiscrepancy(np.column_stack((observed,observed)), expected, lambd=2/3.0, axis=0)
(array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]]))
each random variable can have different total count/sum
>>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0)
(array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]]))
>>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0)
(array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]]))
>>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), expected, lambd=2/3.0, axis=0)
(array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]]))
>>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), 20*expected, lambd=2/3.0, axis=0)
(array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]]))
>>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=2/3.0, axis=0)
(array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]]))
>>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=-1, axis=0)
(array([[ 2.77258872, 5.54517744]]), array([[ 0.59657359, 0.2357868 ]]))
"""
o = np.array(observed)
e = np.array(expected)
if np.isfinite(lambd) == True: # check whether lambd is a number
a = lambd
else:
if lambd == 'loglikeratio': a = 0
elif lambd == 'freeman_tukey': a = -0.5
elif lambd == 'pearson': a = 1
elif lambd == 'modified_loglikeratio': a = -1
elif lambd == 'cressie_read': a = 2/3.0
else:
raise ValueError('lambd has to be a number or one of ' + \
'loglikeratio, freeman_tukey, pearson, ' +\
'modified_loglikeratio or cressie_read')
n = np.sum(o, axis=axis)
nt = n
if n.size>1:
n = np.atleast_2d(n)
if axis == 1:
nt = n.T # need both for 2d, n and nt for broadcasting
if e.ndim == 1:
e = np.atleast_2d(e)
if axis == 0:
e = e.T
if np.all(np.sum(e, axis=axis) == n):
p = e/(1.0*nt)
elif np.all(np.sum(e, axis=axis) == 1):
p = e
e = nt * e
else:
raise ValueError('observed and expected need to have the same ' +\
'number of observations, or e needs to add to 1')
k = o.shape[axis]
if e.shape[axis] != k:
raise ValueError('observed and expected need to have the same ' +\
'number of bins')
# Note: taken from formulas, to simplify cancel n
if a == 0: # log likelihood ratio
D_obs = 2*n * np.sum(o/(1.0*nt) * np.log(o/e), axis=axis)
elif a == -1: # modified log likelihood ratio
D_obs = 2*n * np.sum(e/(1.0*nt) * np.log(e/o), axis=axis)
else:
D_obs = 2*n/a/(a+1) * np.sum(o/(1.0*nt) * ((o/e)**a - 1), axis=axis)
return D_obs, stats.chi2.sf(D_obs,k-1-ddof)
#todo: need also binning for continuous distribution
# and separated binning function to be used for powerdiscrepancy
def gof_chisquare_discrete(distfn, arg, rvs, alpha, msg):
'''perform chisquare test for random sample of a discrete distribution
Parameters
----------
distname : string
name of distribution function
arg : sequence
parameters of distribution
alpha : float
significance level, threshold for p-value
Returns
-------
result : bool
0 if test passes, 1 if test fails
Notes
-----
originally written for scipy.stats test suite,
still needs to be checked for standalone usage, insufficient input checking
may not run yet (after copy/paste)
refactor: maybe a class, check returns, or separate binning from
test results
'''
# define parameters for test
## n=2000
n = len(rvs)
nsupp = 20
wsupp = 1.0/nsupp
## distfn = getattr(stats, distname)
## np.random.seed(9765456)
## rvs = distfn.rvs(size=n,*arg)
# construct intervals with minimum mass 1/nsupp
# intervalls are left-half-open as in a cdf difference
distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
last = 0
distsupp = [max(distfn.a, -1000)]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii,*arg)
if current - last >= wsupp-1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1-wsupp):
break
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1-last)
distsupp = np.array(distsupp)
distmass = np.array(distmass)
# convert intervals to right-half-open as required by histogram
histsupp = distsupp+1e-8
histsupp[0] = distfn.a
# find sample frequencies and perform chisquare test
#TODO: move to compatibility.py
if np.__version__ < '1.5':
freq,hsupp = np.histogram(rvs, histsupp, new=True)
else:
freq,hsupp = np.histogram(rvs,histsupp)
cdfs = distfn.cdf(distsupp,*arg)
(chis,pval) = stats.chisquare(np.array(freq),n*distmass)
return chis, pval, (pval > alpha), 'chisquare - test for %s' \
'at arg = %s with pval = %s' % (msg,str(arg),str(pval))
# copy/paste, remove code duplication when it works
def gof_binning_discrete(rvs, distfn, arg, nsupp=20):
'''get bins for chisquare type gof tests for a discrete distribution
Parameters
----------
rvs : array
sample data
distname : string
name of distribution function
arg : sequence
parameters of distribution
nsupp : integer
number of bins. The algorithm tries to find bins with equal weights.
depending on the distribution, the actual number of bins can be smaller.
Returns
-------
freq : array
empirical frequencies for sample; not normalized, adds up to sample size
expfreq : array
theoretical frequencies according to distribution
histsupp : array
bin boundaries for histogram, (added 1e-8 for numerical robustness)
Notes
-----
The results can be used for a chisquare test ::
(chis,pval) = stats.chisquare(freq, expfreq)
originally written for scipy.stats test suite,
still needs to be checked for standalone usage, insufficient input checking
may not run yet (after copy/paste)
refactor: maybe a class, check returns, or separate binning from
test results
todo :
optimal number of bins ? (check easyfit),
recommendation in literature at least 5 expected observations in each bin
'''
# define parameters for test
## n=2000
n = len(rvs)
wsupp = 1.0/nsupp
## distfn = getattr(stats, distname)
## np.random.seed(9765456)
## rvs = distfn.rvs(size=n,*arg)
# construct intervals with minimum mass 1/nsupp
# intervalls are left-half-open as in a cdf difference
distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
last = 0
distsupp = [max(distfn.a, -1000)]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii,*arg)
if current - last >= wsupp-1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1-wsupp):
break
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1-last)
distsupp = np.array(distsupp)
distmass = np.array(distmass)
# convert intervals to right-half-open as required by histogram
histsupp = distsupp+1e-8
histsupp[0] = distfn.a
# find sample frequencies and perform chisquare test
if np.__version__ < '1.5':
freq,hsupp = np.histogram(rvs, histsupp, new=True)
else:
freq,hsupp = np.histogram(rvs,histsupp)
#freq,hsupp = np.histogram(rvs,histsupp,new=True)
cdfs = distfn.cdf(distsupp,*arg)
return np.array(freq), n*distmass, histsupp
|