This file is indexed.

/usr/share/pyshared/statsmodels/stats/multitest.py is in python-statsmodels 0.4.2-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
'''Multiple Testing and P-Value Correction


Author: Josef Perktold
License: BSD-3

'''



import numpy as np


#==============================================
#
# Part 1: Multiple Tests and P-Value Correction
#
#==============================================

def _ecdf(x):
    '''no frills empirical cdf used in fdrcorrection
    '''
    nobs = len(x)
    return np.arange(1,nobs+1)/float(nobs)

def multipletests(pvals, alpha=0.05, method='hs', returnsorted=False):
    '''test results and p-value correction for multiple tests


    Parameters
    ----------
    pvals : array_like
        uncorrected p-values
    alpha : float
        FWER, family-wise error rate, e.g. 0.1
    method : string
        Method used for testing and adjustment of pvalues. Can be either the
        full name or initial letters. Available methods are ::

        `bonferroni` : one-step correction
        `sidak` : on-step correction
        `holm-sidak` :
        `holm` :
        `simes-hochberg` :
        `hommel` :
        `fdr_bh` : Benjamini/Hochberg
        `fdr_by` : Benjamini/Yekutieli

    returnsorted : bool
         not tested, return sorted p-values instead of original sequence

    Returns
    -------
    reject : array, boolean
        true for hypothesis that can be rejected for given alpha
    pvals_corrected : array
        p-values corrected for multiple tests
    alphacSidak: float
        corrected pvalue with Sidak method
    alphacBonf: float
        corrected pvalue with Sidak method


    Notes
    -----
    all corrected pvalues now tested against R.
    insufficient "cosmetic" tests yet
    new procedure 'fdr_gbs' not verified yet, p-values derived from scratch not
    reference

    All procedures that are included, control FWER or FDR in the independent
    case, and most are robust in the positively correlated case.

    fdr_gbs: high power, fdr control for independent case and only small
    violation in positively correlated case


    there will be API changes.


    References
    ----------

    '''
    pvals = np.asarray(pvals)
    alphaf = alpha  # Notation ?
    sortind = np.argsort(pvals)
    pvals = pvals[sortind]
    sortrevind = sortind.argsort()
    ntests = len(pvals)
    alphacSidak = 1 - np.power((1. - alphaf), 1./ntests)
    alphacBonf = alphaf / float(ntests)
    if method.lower() in ['b', 'bonf', 'bonferroni']:
        reject = pvals < alphacBonf
        pvals_corrected = pvals * float(ntests)  # not sure

    elif method.lower() in ['s', 'sidak']:
        reject = pvals < alphacSidak
        pvals_corrected = 1 - np.power((1. - pvals), ntests)  # not sure

    elif method.lower() in ['hs', 'holm-sidak']:
        notreject = pvals > alphacSidak
        notrejectmin = np.min(np.nonzero(notreject))
        notreject[notrejectmin:] = True
        reject = ~notreject
        pvals_corrected = None  # not yet implemented
        #TODO: new not tested, mainly guessing by analogy
        pvals_corrected_raw = 1 - np.power((1. - pvals), np.arange(ntests, 0, -1))#ntests) # from "sidak" #pvals / alphacSidak * alphaf
        pvals_corrected = np.maximum.accumulate(pvals_corrected_raw)

    elif method.lower() in ['h', 'holm']:
        notreject = pvals > alphaf / np.arange(ntests, 0, -1) #alphacSidak
        notrejectmin = np.min(np.nonzero(notreject))
        notreject[notrejectmin:] = True
        reject = ~notreject
        pvals_corrected = None  # not yet implemented
        #TODO: new not tested, mainly guessing by analogy
        pvals_corrected_raw = pvals * np.arange(ntests, 0, -1) #ntests) # from "sidak" #pvals / alphacSidak * alphaf
        pvals_corrected = np.maximum.accumulate(pvals_corrected_raw)

    elif method.lower() in ['sh', 'simes-hochberg']:
        alphash = alphaf / np.arange(ntests, 0, -1)
        reject = pvals < alphash
        rejind = np.nonzero(reject)
        if rejind[0].size > 0:
            rejectmax = np.max(np.nonzero(reject))
            reject[:rejectmax] = True
        #check else
        pvals_corrected = None  # not yet implemented
        #TODO: new not tested, mainly guessing by analogy, looks ok in 1 example
        pvals_corrected_raw = np.arange(ntests, 0, -1) * pvals
        pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]

    elif method.lower() in ['ho', 'hommel']:
        a=pvals.copy()
        for m in range(ntests, 1, -1):
            cim = np.min(m * pvals[-m:] / np.arange(1,m+1.))
            a[-m:] = np.maximum(a[-m:], cim)
            a[:-m] = np.maximum(a[:-m], np.minimum(m * pvals[:-m], cim))
        pvals_corrected = a
        reject = a < alphaf

    elif method.lower() in ['fdr_bh', 'fdr_i', 'fdr_p', 'fdri', 'fdrp']:
        #delegate, call with sorted pvals
        reject, pvals_corrected = fdrcorrection(pvals, alpha=alpha,
                                                 method='indep')
    elif method.lower() in ['fdr_by', 'fdr_n', 'fdr_c', 'fdrn', 'fdrcorr']:
        #delegate, call with sorted pvals
        reject, pvals_corrected = fdrcorrection(pvals, alpha=alpha,
                                                 method='n')

    elif method.lower() in ['fdr_gbs']:
        #adaptive stepdown in Favrilov, Benjamini, Sarkar, Annals of Statistics 2009
##        notreject = pvals > alphaf / np.arange(ntests, 0, -1) #alphacSidak
##        notrejectmin = np.min(np.nonzero(notreject))
##        notreject[notrejectmin:] = True
##        reject = ~notreject

        ii = np.arange(1, ntests + 1)
        q = (ntests + 1. - ii)/ii * pvals / (1. - pvals)
        pvals_corrected_raw = np.maximum.accumulate(q) #up requirementd

        pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]
        reject = pvals_corrected < alpha

    else:
        raise ValueError('method not recognized')


    if not pvals_corrected is None: #not necessary anymore
        pvals_corrected[pvals_corrected>1] = 1
    if returnsorted:
        return reject, pvals_corrected, alphacSidak, alphacBonf
    else:
        if pvals_corrected is None:
            return reject[sortrevind], pvals_corrected, alphacSidak, alphacBonf
        else:
            return reject[sortrevind], pvals_corrected[sortrevind], alphacSidak, alphacBonf

#TODO: rename drop 0 at end
def fdrcorrection(pvals, alpha=0.05, method='indep'):
    '''pvalue correction for false discovery rate

    This covers Benjamini/Hochberg for independent or positively correlated and
    Benjamini/Yekutieli for general or negatively correlated tests. Both are
    available in the function multipletests, as method=`fdr_bh`, resp. `fdr_by`.

    Parameters
    ----------
    pvals : array_like
        set of p-values of the individual tests.
    alpha : float
        error rate
    method : {'indep', 'negcorr')

    Returns
    -------
    rejected : array, bool
        True if a hypothesis is rejected, False if not
    pvalue-corrected : array
        pvalues adjusted for multiple hypothesis testing to limit FDR

    Notes
    -----

    If there is prior information on the fraction of true hypothesis, then alpha
    should be set to alpha * m/m_0 where m is the number of tests,
    given by the p-values, and m_0 is an estimate of the true hypothesis.
    (see Benjamini, Krieger and Yekuteli)

    The two-step method of Benjamini, Krieger and Yekutiel that estimates the number
    of false hypotheses will be available (soon).

    Method names can be abbreviated to first letter, 'i' or 'p' for fdr_bh and 'n' for
    fdr_by.



    '''
    pvals = np.asarray(pvals)

    pvals_sortind = np.argsort(pvals)
    pvals_sorted = pvals[pvals_sortind]
    sortrevind = pvals_sortind.argsort()

    if method in ['i', 'indep', 'p', 'poscorr']:
        ecdffactor = _ecdf(pvals_sorted)
    elif method in ['n', 'negcorr']:
        cm = np.sum(1./np.arange(1, len(pvals_sorted)+1))   #corrected this
        ecdffactor = _ecdf(pvals_sorted) / cm
##    elif method in ['n', 'negcorr']:
##        cm = np.sum(np.arange(len(pvals)))
##        ecdffactor = ecdf(pvals_sorted)/cm
    else:
        raise ValueError('only indep and necorr implemented')
    reject = pvals_sorted < ecdffactor*alpha
    if reject.any():
        rejectmax = max(np.nonzero(reject)[0])
    else:
        rejectmax = 0
    reject[:rejectmax] = True

    pvals_corrected_raw = pvals_sorted / ecdffactor
    pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]
    pvals_corrected[pvals_corrected>1] = 1
    return reject[sortrevind], pvals_corrected[sortrevind]
    #return reject[pvals_sortind.argsort()]

def fdrcorrection_twostage(pvals, alpha=0.05, iter=False):
    '''(iterated) two stage linear step-up procedure with estimation of number of true
    hypotheses

    Benjamini, Krieger and Yekuteli, procedure in Definition 6

    Parameters
    ----------
    pvals : array_like
        set of p-values of the individual tests.
    alpha : float
        error rate
    method : {'indep', 'negcorr')

    Returns
    -------
    rejected : array, bool
        True if a hypothesis is rejected, False if not
    pvalue-corrected : array
        pvalues adjusted for multiple hypotheses testing to limit FDR
    m0 : int
        ntest - rej, estimated number of true hypotheses
    alpha_stages : list of floats
        A list of alphas that have been used at each stage

    Notes
    -----
    The returned corrected p-values, are from the last stage of the fdr_bh linear step-up
    procedure (fdrcorrection0 with method='indep')

    BKY described several other multi-stage methods, which would be easy to implement.
    However, in their simulation the simple two-stage method (with iter=False) was the
    most robust to the presence of positive correlation

    TODO: What should be returned?

    '''
    ntests = len(pvals)
    alpha_prime = alpha/(1+alpha)
    rej, pvalscorr = fdrcorrection(pvals, alpha=alpha_prime, method='indep')
    r1 = rej.sum()
    if (r1 == 0) or (r1 == ntests):
        return rej, pvalscorr, ntests - r1
    ri_old = r1
    alpha_stages = [alpha_prime]
    while 1:
        ntests0 = ntests - ri_old
        alpha_star = alpha_prime * ntests / ntests0
        alpha_stages.append(alpha_star)
        #print ntests0, alpha_star
        rej, pvalscorr = fdrcorrection(pvals, alpha=alpha_star, method='indep')
        ri = rej.sum()
        if (not iter) or ri == ri_old:
            break
        elif ri < ri_old:
            raise RuntimeError(" oops - shouldn't be here")
        ri_old = ri

    return rej, pvalscorr, ntests - ri, alpha_stages