/usr/share/pyshared/statsmodels/tools/tools.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | '''
Utility functions models code
'''
import numpy as np
import numpy.lib.recfunctions as nprf
import numpy.linalg as L
from scipy.interpolate import interp1d
from scipy.linalg import svdvals
from statsmodels.distributions import (ECDF, monotone_fn_inverter,
StepFunction)
from statsmodels.tools.data import _is_using_pandas
from statsmodels.compatnp.py3k import asstr2
from pandas import DataFrame
def _make_dictnames(tmp_arr, offset=0):
"""
Helper function to create a dictionary mapping a column number
to the name in tmp_arr.
"""
col_map = {}
for i,col_name in enumerate(tmp_arr):
col_map.update({i+offset : col_name})
return col_map
def drop_missing(Y,X=None, axis=1):
"""
Returns views on the arrays Y and X where missing observations are dropped.
Y : array-like
X : array-like, optional
axis : int
Axis along which to look for missing observations. Default is 1, ie.,
observations in rows.
Returns
-------
Y : array
All Y where the
X : array
Notes
-----
If either Y or X is 1d, it is reshaped to be 2d.
"""
Y = np.asarray(Y)
if Y.ndim == 1:
Y = Y[:,None]
if X is not None:
X = np.array(X)
if X.ndim == 1:
X = X[:,None]
keepidx = np.logical_and(~np.isnan(Y).any(axis),~np.isnan(X).any(axis))
return Y[keepidx], X[keepidx]
else:
keepidx = ~np.isnan(Y).any(axis)
return Y[keepidx]
#TODO: needs to better preserve dtype and be more flexible
# ie., if you still have a string variable in your array you don't
# want to cast it to float
#TODO: add name validator (ie., bad names for datasets.grunfeld)
def categorical(data, col=None, dictnames=False, drop=False, ):
'''
Returns a dummy matrix given an array of categorical variables.
Parameters
----------
data : array
A structured array, recarray, or array. This can be either
a 1d vector of the categorical variable or a 2d array with
the column specifying the categorical variable specified by the col
argument.
col : 'string', int, or None
If data is a structured array or a recarray, `col` can be a string
that is the name of the column that contains the variable. For all
arrays `col` can be an int that is the (zero-based) column index
number. `col` can only be None for a 1d array. The default is None.
dictnames : bool, optional
If True, a dictionary mapping the column number to the categorical
name is returned. Used to have information about plain arrays.
drop : bool
Whether or not keep the categorical variable in the returned matrix.
Returns
--------
dummy_matrix, [dictnames, optional]
A matrix of dummy (indicator/binary) float variables for the
categorical data. If dictnames is True, then the dictionary
is returned as well.
Notes
-----
This returns a dummy variable for EVERY distinct variable. If a
a structured or recarray is provided, the names for the new variable is the
old variable name - underscore - category name. So if the a variable
'vote' had answers as 'yes' or 'no' then the returned array would have to
new variables-- 'vote_yes' and 'vote_no'. There is currently
no name checking.
Examples
--------
>>> import numpy as np
>>> import statsmodels.api as sm
Univariate examples
>>> import string
>>> string_var = [string.lowercase[0:5], string.lowercase[5:10], \
string.lowercase[10:15], string.lowercase[15:20], \
string.lowercase[20:25]]
>>> string_var *= 5
>>> string_var = np.asarray(sorted(string_var))
>>> design = sm.tools.categorical(string_var, drop=True)
Or for a numerical categorical variable
>>> instr = np.floor(np.arange(10,60, step=2)/10)
>>> design = sm.tools.categorical(instr, drop=True)
With a structured array
>>> num = np.random.randn(25,2)
>>> struct_ar = np.zeros((25,1), dtype=[('var1', 'f4'),('var2', 'f4'), \
('instrument','f4'),('str_instr','a5')])
>>> struct_ar['var1'] = num[:,0][:,None]
>>> struct_ar['var2'] = num[:,1][:,None]
>>> struct_ar['instrument'] = instr[:,None]
>>> struct_ar['str_instr'] = string_var[:,None]
>>> design = sm.tools.categorical(struct_ar, col='instrument', drop=True)
Or
>>> design2 = sm.tools.categorical(struct_ar, col='str_instr', drop=True)
'''
if isinstance(col, (list, tuple)):
try:
assert len(col) == 1
col = col[0]
except:
raise ValueError("Can only convert one column at a time")
#TODO: add a NameValidator function
# catch recarrays and structured arrays
if data.dtype.names or data.__class__ is np.recarray:
if not col and np.squeeze(data).ndim > 1:
raise IndexError("col is None and the input array is not 1d")
if isinstance(col, int):
col = data.dtype.names[col]
if col is None and data.dtype.names and len(data.dtype.names) == 1:
col = data.dtype.names[0]
tmp_arr = np.unique(data[col])
# if the cols are shape (#,) vs (#,1) need to add an axis and flip
_swap = True
if data[col].ndim == 1:
tmp_arr = tmp_arr[:,None]
_swap = False
tmp_dummy = (tmp_arr==data[col]).astype(float)
if _swap:
tmp_dummy = np.squeeze(tmp_dummy).swapaxes(1,0)
if not tmp_arr.dtype.names: # how do we get to this code path?
tmp_arr = [asstr2(item) for item in np.squeeze(tmp_arr)]
elif tmp_arr.dtype.names:
tmp_arr = [asstr2(item) for item in np.squeeze(tmp_arr.tolist())]
# prepend the varname and underscore, if col is numeric attribute lookup
# is lost for recarrays...
if col is None:
try:
col = data.dtype.names[0]
except:
col = 'var'
#TODO: the above needs to be made robust because there could be many
# var_yes, var_no varaibles for instance.
tmp_arr = [col + '_'+ item for item in tmp_arr]
#TODO: test this for rec and structured arrays!!!
if drop is True:
if len(data.dtype) <= 1:
if tmp_dummy.shape[0] < tmp_dummy.shape[1]:
tmp_dummy = np.squeeze(tmp_dummy).swapaxes(1,0)
dt = zip(tmp_arr, [tmp_dummy.dtype.str]*len(tmp_arr))
# preserve array type
return np.array(map(tuple, tmp_dummy.tolist()),
dtype=dt).view(type(data))
data=nprf.drop_fields(data, col, usemask=False,
asrecarray=type(data) is np.recarray)
data=nprf.append_fields(data, tmp_arr, data=tmp_dummy,
usemask=False, asrecarray=type(data) is np.recarray)
return data
# handle ndarrays and catch array-like for an error
elif data.__class__ is np.ndarray or not isinstance(data,np.ndarray):
if not isinstance(data, np.ndarray):
raise NotImplementedError("Array-like objects are not supported")
if isinstance(col, int):
offset = data.shape[1] # need error catching here?
tmp_arr = np.unique(data[:,col])
tmp_dummy = (tmp_arr[:,np.newaxis]==data[:,col]).astype(float)
tmp_dummy = tmp_dummy.swapaxes(1,0)
if drop is True:
offset -= 1
data = np.delete(data, col, axis=1).astype(float)
data = np.column_stack((data,tmp_dummy))
if dictnames is True:
col_map = _make_dictnames(tmp_arr, offset)
return data, col_map
return data
elif col is None and np.squeeze(data).ndim == 1:
tmp_arr = np.unique(data)
tmp_dummy = (tmp_arr[:,None]==data).astype(float)
tmp_dummy = tmp_dummy.swapaxes(1,0)
if drop is True:
if dictnames is True:
col_map = _make_dictnames(tmp_arr)
return tmp_dummy, col_map
return tmp_dummy
else:
data = np.column_stack((data, tmp_dummy))
if dictnames is True:
col_map = _make_dictnames(tmp_arr, offset=1)
return data, col_map
return data
else:
raise IndexError("The index %s is not understood" % col)
def _series_add_constant(data, prepend):
const = np.ones_like(data)
# const.name = 'const'
if not prepend:
results = DataFrame([data, const]).T
results.columns = [data.name, 'const']
else:
results = DataFrame([const, data]).T
results.columns = ['const', data.name]
return results
def _dataframe_add_constant(data, prepend):
# check for const.
if np.any(data.var(0) == 1):
return data
if prepend:
data.insert(0, 'const', 1)
else:
data['const'] = 1
return data
def _pandas_add_constant(data, prepend):
from pandas import Series
if isinstance(data, Series):
return _series_add_constant(data, prepend)
else:
return _dataframe_add_constant(data, prepend)
#TODO: add an axis argument to this for sysreg
def add_constant(data, prepend=False):
'''
This appends a column of ones to an array if prepend==False.
For ndarrays and pandas.DataFrames, checks to make sure a constant is not
already included. If there is at least one column of ones then the
original object is returned. Does not check for a constant if a structured
or recarray is
given.
Parameters
----------
data : array-like
`data` is the column-ordered design matrix
prepend : bool
True and the constant is prepended rather than appended.
Returns
-------
data : array
The original array with a constant (column of ones) as the first or
last column.
Notes
-----
.. WARNING::
The default of prepend will be changed to True in the next release of
statsmodels. We recommend to use an explicit prepend in any permanent
code.
'''
if not prepend:
import inspect
frame = inspect.currentframe().f_back
info = inspect.getframeinfo(frame)
try: # info.code_context is None on python 2.6? Why?
to_warn = (info.code_context is not None and
'prepend' not in '\n'.join(info.code_context))
except: # python 2.5 compatibility
to_warn = 'prepend' not in '\n'.join(info[3])
if to_warn:
import warnings
warnings.warn("The default of `prepend` will be changed to True "
"in 0.5.0, use explicit prepend",
FutureWarning)
if _is_using_pandas(data, None):
# work on a copy
return _pandas_add_constant(data.copy(), prepend)
else:
data = np.asarray(data)
if not data.dtype.names:
var0 = data.var(0) == 0
if np.any(var0):
return data
data = np.column_stack((data, np.ones((data.shape[0], 1))))
if prepend:
return np.roll(data, 1, 1)
else:
return_rec = data.__class__ is np.recarray
if prepend:
ones = np.ones((data.shape[0], 1), dtype=[('const', float)])
data = nprf.append_fields(ones, data.dtype.names, [data[i] for
i in data.dtype.names], usemask=False, asrecarray=return_rec)
else:
data = nprf.append_fields(data, 'const', np.ones(data.shape[0]),
usemask=False, asrecarray = return_rec)
return data
def isestimable(C, D):
"""
From an q x p contrast matrix C and an n x p design matrix D, checks
if the contrast C is estimable by looking at the rank of vstack([C,D]) and
verifying it is the same as the rank of D.
"""
if C.ndim == 1:
C.shape = (C.shape[0], 1)
new = np.vstack([C, D])
if rank(new) != rank(D):
return False
return True
def recipr(X):
"""
Return the reciprocal of an array, setting all entries less than or
equal to 0 to 0. Therefore, it presumes that X should be positive in
general.
"""
x = np.maximum(np.asarray(X).astype(np.float64), 0)
return np.greater(x, 0.) / (x + np.less_equal(x, 0.))
def recipr0(X):
"""
Return the reciprocal of an array, setting all entries equal to 0
as 0. It does not assume that X should be positive in
general.
"""
test = np.equal(np.asarray(X), 0)
return np.where(test, 0, 1. / X)
def clean0(matrix):
"""
Erase columns of zeros: can save some time in pseudoinverse.
"""
colsum = np.add.reduce(matrix**2, 0)
val = [matrix[:,i] for i in np.flatnonzero(colsum)]
return np.array(np.transpose(val))
def rank(X, cond=1.0e-12):
"""
Return the rank of a matrix X based on its generalized inverse,
not the SVD.
"""
X = np.asarray(X)
if len(X.shape) == 2:
D = svdvals(X)
return int(np.add.reduce(np.greater(D / D.max(), cond).astype(np.int32)))
else:
return int(not np.alltrue(np.equal(X, 0.)))
def fullrank(X, r=None):
"""
Return a matrix whose column span is the same as X.
If the rank of X is known it can be specified as r -- no check
is made to ensure that this really is the rank of X.
"""
if r is None:
r = rank(X)
V, D, U = L.svd(X, full_matrices=0)
order = np.argsort(D)
order = order[::-1]
value = []
for i in range(r):
value.append(V[:,order[i]])
return np.asarray(np.transpose(value)).astype(np.float64)
StepFunction = np.deprecate(StepFunction,
old_name = 'statsmodels.tools.tools.StepFunction',
new_name = 'statsmodels.distributions.StepFunction')
monotone_fn_inverter = np.deprecate(monotone_fn_inverter,
old_name = 'statsmodels.tools.tools.monotone_fn_inverter',
new_name = 'statsmodels.distributions.monotone_fn_inverter')
ECDF = np.deprecate(ECDF,
old_name = 'statsmodels.tools.tools.ECDF',
new_name = 'statsmodels.distributions.ECDF')
def unsqueeze(data, axis, oldshape):
"""
Unsqueeze a collapsed array
>>> from numpy import mean
>>> from numpy.random import standard_normal
>>> x = standard_normal((3,4,5))
>>> m = mean(x, axis=1)
>>> m.shape
(3, 5)
>>> m = unsqueeze(m, 1, x.shape)
>>> m.shape
(3, 1, 5)
>>>
"""
newshape = list(oldshape)
newshape[axis] = 1
return data.reshape(newshape)
def chain_dot(*arrs):
"""
Returns the dot product of the given matrices.
Parameters
----------
arrs: argument list of ndarray
Returns
-------
Dot product of all arguments.
Example
-------
>>> import numpy as np
>>> from statsmodels.tools import chain_dot
>>> A = np.arange(1,13).reshape(3,4)
>>> B = np.arange(3,15).reshape(4,3)
>>> C = np.arange(5,8).reshape(3,1)
>>> chain_dot(A,B,C)
array([[1820],
[4300],
[6780]])
"""
return reduce(lambda x, y: np.dot(y, x), arrs[::-1])
def webuse(data, baseurl='http://www.stata-press.com/data/r11/'):
"""
Parameters
----------
data : str
Name of dataset to fetch.
Returns
-------
dta : Record Array
A record array containing the Stata dataset.
Examples
--------
>>> dta = webuse('auto')
Notes
-----
Make sure baseurl has trailing forward slash. Doesn't do any
error checking in response URLs.
"""
# lazy imports
import pandas
from statsmodels.iolib import genfromdta
from urllib2 import urlopen
from urlparse import urljoin
from StringIO import StringIO
url = urljoin(baseurl, data+'.dta')
dta = urlopen(url)
dta = StringIO(dta.read()) # make it truly file-like
return genfromdta(dta)
|