/usr/share/pyshared/statsmodels/tsa/stattools.py is in python-statsmodels 0.4.2-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 | """
Statistical tools for time series analysis
"""
import numpy as np
from scipy import stats, signal
from statsmodels.regression.linear_model import OLS, yule_walker
from statsmodels.tools.tools import add_constant
from tsatools import lagmat, lagmat2ds, add_trend
#from statsmodels.sandbox.tsa import var
from adfvalues import *
#from statsmodels.sandbox.rls import RLS
#NOTE: now in two places to avoid circular import
#TODO: I like the bunch pattern for this too.
class ResultsStore(object):
def __str__(self):
return self._str
def _autolag(mod, endog, exog, startlag, maxlag, method, modargs=(),
fitargs=(), regresults=False):
"""
Returns the results for the lag length that maximimizes the info criterion.
Parameters
----------
mod : Model class
Model estimator class.
modargs : tuple
args to pass to model. See notes.
fitargs : tuple
args to pass to fit. See notes.
lagstart : int
The first zero-indexed column to hold a lag. See Notes.
maxlag : int
The highest lag order for lag length selection.
method : str {"aic","bic","t-stat"}
aic - Akaike Information Criterion
bic - Bayes Information Criterion
t-stat - Based on last lag
Returns
-------
icbest : float
Best information criteria.
bestlag : int
The lag length that maximizes the information criterion.
Notes
-----
Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs)
where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are
assumed to be in contiguous columns from low to high lag length with
the highest lag in the last column.
"""
#TODO: can tcol be replaced by maxlag + 2?
#TODO: This could be changed to laggedRHS and exog keyword arguments if this
# will be more general.
results = {}
method = method.lower()
for lag in range(startlag, startlag+maxlag+1):
mod_instance = mod(endog, exog[:,:lag], *modargs)
results[lag] = mod_instance.fit()
if method == "aic":
icbest, bestlag = min((v.aic,k) for k,v in results.iteritems())
elif method == "bic":
icbest, bestlag = min((v.bic,k) for k,v in results.iteritems())
elif method == "t-stat":
lags = sorted(results.keys())[::-1]
# stop = stats.norm.ppf(.95)
stop = 1.6448536269514722
for lag in range(startlag + maxlag, startlag - 1, -1):
icbest = np.abs(results[lag].tvalues[-1])
if np.abs(icbest) >= stop:
bestlag = lag
icbest = icbest
break
else:
raise ValueError("Information Criterion %s not understood.") % method
if not regresults:
return icbest, bestlag
else:
return icbest, bestlag, results
#this needs to be converted to a class like HetGoldfeldQuandt, 3 different returns are a mess
# See:
#Ng and Perron(2001), Lag length selection and the construction of unit root
#tests with good size and power, Econometrica, Vol 69 (6) pp 1519-1554
#TODO: include drift keyword, only valid with regression == "c"
# just changes the distribution of the test statistic to a t distribution
#TODO: autolag is untested
def adfuller(x, maxlag=None, regression="c", autolag='AIC',
store=False, regresults=False):
'''Augmented Dickey-Fuller unit root test
The Augmented Dickey-Fuller test can be used to test for a unit root in a
univariate process in the presence of serial correlation.
Parameters
----------
x : array_like, 1d
data series
maxlag : int
Maximum lag which is included in test, default 12*(nobs/100)^{1/4}
regression : str {'c','ct','ctt','nc'}
Constant and trend order to include in regression
* 'c' : constant only
* 'ct' : constant and trend
* 'ctt' : constant, and linear and quadratic trend
* 'nc' : no constant, no trend
autolag : {'AIC', 'BIC', 't-stat', None}
* if None, then maxlag lags are used
* if 'AIC' or 'BIC', then the number of lags is chosen to minimize the
corresponding information criterium
* 't-stat' based choice of maxlag. Starts with maxlag and drops a
lag until the t-statistic on the last lag length is significant at
the 95 % level.
store : bool
If True, then a result instance is returned additionally to
the adf statistic
regresults : bool
If True, the full regression results are returned.
Returns
-------
adf : float
Test statistic
pvalue : float
MacKinnon's approximate p-value based on MacKinnon (1994)
usedlag : int
Number of lags used.
nobs : int
Number of observations used for the ADF regression and calculation of
the critical values.
critical values : dict
Critical values for the test statistic at the 1 %, 5 %, and 10 % levels.
Based on MacKinnon (2010)
icbest : float
The maximized information criterion if autolag is not None.
regresults : RegressionResults instance
The
resstore : (optional) instance of ResultStore
an instance of a dummy class with results attached as attributes
Notes
-----
The null hypothesis of the Augmented Dickey-Fuller is that there is a unit
root, with the alternative that there is no unit root. If the pvalue is
above a critical size, then we cannot reject that there is a unit root.
The p-values are obtained through regression surface approximation from
MacKinnon 1994, but using the updated 2010 tables.
If the p-value is close to significant, then the critical values should be
used to judge whether to accept or reject the null.
The autolag option and maxlag for it are described in Greene.
Examples
--------
see example script
References
----------
Greene
Hamilton
P-Values (regression surface approximation)
MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for
unit-root and cointegration tests. `Journal of Business and Economic
Statistics` 12, 167-76.
Critical values
MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's
University, Dept of Economics, Working Papers. Available at
http://ideas.repec.org/p/qed/wpaper/1227.html
'''
if regresults:
store = True
trenddict = {None:'nc', 0:'c', 1:'ct', 2:'ctt'}
if regression is None or isinstance(regression, int):
regression = trenddict[regression]
regression = regression.lower()
if regression not in ['c','nc','ct','ctt']:
raise ValueError("regression option %s not understood") % regression
x = np.asarray(x)
nobs = x.shape[0]
if maxlag is None:
#from Greene referencing Schwert 1989
maxlag = int(np.ceil(12. * np.power(nobs/100., 1/4.)))
xdiff = np.diff(x)
xdall = lagmat(xdiff[:,None], maxlag, trim='both', original='in')
nobs = xdall.shape[0]
xdall[:,0] = x[-nobs-1:-1] # replace 0 xdiff with level of x
xdshort = xdiff[-nobs:]
if store:
resstore = ResultsStore()
if autolag:
if regression != 'nc':
fullRHS = add_trend(xdall, regression, prepend=True)
else:
fullRHS = xdall
startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level
#search for lag length with smallest information criteria
#Note: use the same number of observations to have comparable IC
#aic and bic: smaller is better
if not regresults:
icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag,
maxlag, autolag)
else:
icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag,
maxlag, autolag, regresults=regresults)
resstore.autolag_results = alres
bestlag -= startlag #convert to lag not column index
#rerun ols with best autolag
xdall = lagmat(xdiff[:,None], bestlag, trim='both', original='in')
nobs = xdall.shape[0]
xdall[:,0] = x[-nobs-1:-1] # replace 0 xdiff with level of x
xdshort = xdiff[-nobs:]
usedlag = bestlag
else:
usedlag = maxlag
icbest = None
if regression != 'nc':
resols = OLS(xdshort, add_trend(xdall[:,:usedlag+1], regression)).fit()
else:
resols = OLS(xdshort, xdall[:,:usedlag+1]).fit()
adfstat = resols.tvalues[0]
# adfstat = (resols.params[0]-1.0)/resols.bse[0]
# the "asymptotically correct" z statistic is obtained as
# nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1)
# I think this is the statistic that is used for series that are integrated
# for orders higher than I(1), ie., not ADF but cointegration tests.
# Get approx p-value and critical values
pvalue = mackinnonp(adfstat, regression=regression, N=1)
critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs)
critvalues = {"1%" : critvalues[0], "5%" : critvalues[1],
"10%" : critvalues[2]}
if store:
resstore.resols = resols
resstore.maxlag = maxlag
resstore.usedlag = usedlag
resstore.adfstat = adfstat
resstore.critvalues = critvalues
resstore.nobs = nobs
resstore.H0 = "The coefficient on the lagged level equals 1 - unit root"
resstore.HA = "The coefficient on the lagged level < 1 - stationary"
resstore.icbest = icbest
return adfstat, pvalue, critvalues, resstore
else:
if not autolag:
return adfstat, pvalue, usedlag, nobs, critvalues
else:
return adfstat, pvalue, usedlag, nobs, critvalues, icbest
def acovf(x, unbiased=False, demean=True, fft=False):
'''
Autocovariance for 1D
Parameters
----------
x : array
time series data
unbiased : bool
if True, then denominators is n-k, otherwise n
fft : bool
If True, use FFT convolution. This method should be preferred
for long time series.
Returns
-------
acovf : array
autocovariance function
'''
n = len(x)
if demean:
xo = x - x.mean();
else:
xo = x
if unbiased:
# xi = np.ones(n);
# d = np.correlate(xi, xi, 'full')
xi = np.arange(1,n+1)
d = np.hstack((xi,xi[:-1][::-1])) # faster, is correlate more general?
else:
d = n
if fft:
nobs = len(xo)
Frf = np.fft.fft(xo, n=nobs*2)
acov = np.fft.ifft(Frf*np.conjugate(Frf))[:nobs]/d
return acov.real
else:
return (np.correlate(xo, xo, 'full')/d)[n-1:]
def q_stat(x,nobs, type="ljungbox"):
"""
Return's Ljung-Box Q Statistic
x : array-like
Array of autocorrelation coefficients. Can be obtained from acf.
nobs : int
Number of observations in the entire sample (ie., not just the length
of the autocorrelation function results.
Returns
-------
q-stat : array
Ljung-Box Q-statistic for autocorrelation parameters
p-value : array
P-value of the Q statistic
Notes
------
Written to be used with acf.
"""
x = np.asarray(x)
if type=="ljungbox":
ret = nobs*(nobs+2)*np.cumsum((1./(nobs-np.arange(1,
len(x)+1)))*x**2)
chi2 = stats.chi2.sf(ret,np.arange(1,len(x)+1))
return ret,chi2
#NOTE: Changed unbiased to False
#see for example
# http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
def acf(x, unbiased=False, nlags=40, confint=None, qstat=False, fft=False):
'''
Autocorrelation function for 1d arrays.
Parameters
----------
x : array
Time series data
unbiased : bool
If True, then denominators for autocovariance are n-k, otherwise n
nlags: int, optional
Number of lags to return autocorrelation for.
confint : float or None, optional
If True, the confidence intervals for the given level are returned.
For instance if confint=95, 95 % confidence intervals are returned.
qstat : bool, optional
If True, returns the Ljung-Box q statistic for each autocorrelation
coefficient. See q_stat for more information.
fft : bool, optional
If True, computes the ACF via FFT.
Returns
-------
acf : array
autocorrelation function
confint : array, optional
Confidence intervals for the ACF. Returned if confint is not None.
qstat : array, optional
The Ljung-Box Q-Statistic. Returned if q_stat is True.
pvalues : array, optional
The p-values associated with the Q-statistics. Returned if q_stat is
True.
Notes
-----
The acf at lag 0 (ie., 1) is returned.
This is based np.correlate which does full convolution. For very long time
series it is recommended to use fft convolution instead.
If unbiased is true, the denominator for the autocovariance is adjusted
but the autocorrelation is not an unbiased estimtor.
'''
nobs = len(x)
d = nobs # changes if unbiased
if not fft:
avf = acovf(x, unbiased=unbiased, demean=True)
#acf = np.take(avf/avf[0], range(1,nlags+1))
acf = avf[:nlags+1]/avf[0]
else:
#JP: move to acovf
x0 = x - x.mean()
Frf = np.fft.fft(x0, n=nobs*2) # zero-pad for separability
if unbiased:
d = nobs - np.arange(nobs)
acf = np.fft.ifft(Frf * np.conjugate(Frf))[:nobs]/d
acf /= acf[0]
#acf = np.take(np.real(acf), range(1,nlags+1))
acf = np.real(acf[:nlags+1]) #keep lag 0
if not (confint or qstat):
return acf
# Based on Bartlett's formula for MA(q) processes
#NOTE: not sure if this is correct, or needs to be centered or what.
if not confint is None:
varacf = np.ones(nlags+1)/nobs
#varacf[1:] *= 1 + 2*np.cumsum(acf[1:-1]**2)
#TODO: test this, are my changes correct
varacf[0] = 0
varacf[1:] *= 1 + 2*np.cumsum(acf[1:]**2)
interval = stats.norm.ppf(1-(100-confint)/200.)*np.sqrt(varacf)
confint = np.array(zip(acf-interval, acf+interval))
if not qstat:
return acf, confint
if qstat:
qstat, pvalue = q_stat(acf[1:], nobs=nobs) #drop lag 0
if confint is not None:
return acf, confint, qstat, pvalue
else:
return acf, qstat
def pacf_yw(x, nlags=40, method='unbiased'):
'''Partial autocorrelation estimated with non-recursive yule_walker
Parameters
----------
x : 1d array
observations of time series for which pacf is calculated
maxlag : int
largest lag for which pacf is returned
method : 'unbiased' (default) or 'mle'
method for the autocovariance calculations in yule walker
Returns
-------
pacf : 1d array
partial autocorrelations, maxlag+1 elements
Notes
-----
This solves yule_walker for each desired lag and contains
currently duplicate calculations.
'''
xm = x - x.mean()
pacf = [1.]
for k in range(1, nlags+1):
pacf.append(yule_walker(x, k, method=method)[0][-1])
return np.array(pacf)
#NOTE: this is incorrect.
def pacf_ols(x, nlags=40):
'''Calculate partial autocorrelations
Parameters
----------
x : 1d array
observations of time series for which pacf is calculated
nlags : int
Number of lags for which pacf is returned. Lag 0 is not returned.
Returns
-------
pacf : 1d array
partial autocorrelations, maxlag+1 elements
Notes
-----
This solves a separate OLS estimation for each desired lag.
'''
#TODO: add warnings for Yule-Walker
#NOTE: demeaning and not using a constant gave incorrect answers?
#JP: demeaning should have a better estimate of the constant
#maybe we can compare small sample properties with a MonteCarlo
xlags, x0 = lagmat(x, nlags, original='sep')
#xlags = sm.add_constant(lagmat(x, nlags), prepend=True)
xlags = add_constant(xlags, prepend=True)
pacf = [1.]
for k in range(1, nlags+1):
res = OLS(x0[k:], xlags[k:,:k+1]).fit()
#np.take(xlags[k:], range(1,k+1)+[-1],
pacf.append(res.params[-1])
return np.array(pacf)
def pacf(x, nlags=40, method='ywunbiased'):
'''Partial autocorrelation estimated
Parameters
----------
x : 1d array
observations of time series for which pacf is calculated
maxlag : int
largest lag for which pacf is returned
method : 'ywunbiased' (default) or 'ywmle' or 'ols'
specifies which method for the calculations to use,
- yw or ywunbiased : yule walker with bias correction in denominator for acovf
- ywm or ywmle : yule walker without bias correction
- ols - regression of time series on lags of it and on constant
- ld or ldunbiased : Levinson-Durbin recursion with bias correction
- ldb or ldbiased : Levinson-Durbin recursion without bias correction
Returns
-------
pacf : 1d array
partial autocorrelations, nlags elements, including lag zero
Notes
-----
This solves yule_walker equations or ols for each desired lag
and contains currently duplicate calculations.
'''
if method == 'ols':
return pacf_ols(x, nlags=nlags)
elif method in ['yw', 'ywu', 'ywunbiased', 'yw_unbiased']:
return pacf_yw(x, nlags=nlags, method='unbiased')
elif method in ['ywm', 'ywmle', 'yw_mle']:
return pacf_yw(x, nlags=nlags, method='mle')
elif method in ['ld', 'ldu', 'ldunbiase', 'ld_unbiased']:
acv = acovf(x, unbiased=True)
ld_ = levinson_durbin(acv, nlags=nlags, isacov=True)
#print 'ld', ld_
return ld_[2]
elif method in ['ldb', 'ldbiased', 'ld_biased']: #inconsistent naming with ywmle
acv = acovf(x, unbiased=False)
ld_ = levinson_durbin(acv, nlags=nlags, isacov=True)
return ld_[2]
else:
raise ValueError('method not available')
def ccovf(x, y, unbiased=True, demean=True):
''' crosscovariance for 1D
Parameters
----------
x, y : arrays
time series data
unbiased : boolean
if True, then denominators is n-k, otherwise n
Returns
-------
ccovf : array
autocovariance function
Notes
-----
This uses np.correlate which does full convolution. For very long time
series it is recommended to use fft convolution instead.
'''
n = len(x)
if demean:
xo = x - x.mean();
yo = y - y.mean();
else:
xo = x
yo = y
if unbiased:
xi = np.ones(n);
d = np.correlate(xi, xi, 'full')
else:
d = n
return (np.correlate(xo,yo,'full') / d)[n-1:]
def ccf(x, y, unbiased=True):
'''cross-correlation function for 1d
Parameters
----------
x, y : arrays
time series data
unbiased : boolean
if True, then denominators for autocovariance is n-k, otherwise n
Returns
-------
ccf : array
cross-correlation function of x and y
Notes
-----
This is based np.correlate which does full convolution. For very long time
series it is recommended to use fft convolution instead.
If unbiased is true, the denominator for the autocovariance is adjusted
but the autocorrelation is not an unbiased estimtor.
'''
cvf = ccovf(x, y, unbiased=unbiased, demean=True)
return cvf / (np.std(x) * np.std(y))
def periodogram(X):
"""
Returns the periodogram for the natural frequency of X
Parameters
----------
X : array-like
Array for which the periodogram is desired.
Returns
-------
pgram : array
1./len(X) * np.abs(np.fft.fft(X))**2
References
----------
Brockwell and Davis.
"""
X = np.asarray(X)
# if kernel == "bartlett":
# w = 1 - np.arange(M+1.)/M #JP removed integer division
pergr = 1./len(X) * np.abs(np.fft.fft(X))**2
pergr[0] = 0. # what are the implications of this?
return pergr
#copied from nitime and scikits\statsmodels\sandbox\tsa\examples\try_ld_nitime.py
#TODO: check what to return, for testing and trying out returns everything
def levinson_durbin(s, nlags=10, isacov=False):
'''Levinson-Durbin recursion for autoregressive processes
Parameters
----------
s : array_like
If isacov is False, then this is the time series. If iasacov is true
then this is interpreted as autocovariance starting with lag 0
nlags : integer
largest lag to include in recursion or order of the autoregressive
process
isacov : boolean
flag to indicate whether the first argument, s, contains the autocovariances
or the data series.
Returns
-------
sigma_v : float
estimate of the error variance ?
arcoefs : ndarray
estimate of the autoregressive coefficients
pacf : ndarray
partial autocorrelation function
sigma : ndarray
entire sigma array from intermediate result, last value is sigma_v
phi : ndarray
entire phi array from intermediate result, last column contains
autoregressive coefficients for AR(nlags) with a leading 1
Notes
-----
This function returns currently all results, but maybe we drop sigma and
phi from the returns.
If this function is called with the time series (isacov=False), then the sample
autocovariance function is calculated with the default options (biased, no fft).
'''
s = np.asarray(s)
order = nlags #rename compared to nitime
#from nitime
## if sxx is not None and type(sxx) == np.ndarray:
## sxx_m = sxx[:order+1]
## else:
## sxx_m = ut.autocov(s)[:order+1]
if isacov:
sxx_m = s
else:
sxx_m = acovf(s)[:order+1] #not tested
phi = np.zeros((order+1, order+1), 'd')
sig = np.zeros(order+1)
# initial points for the recursion
phi[1,1] = sxx_m[1]/sxx_m[0]
sig[1] = sxx_m[0] - phi[1,1]*sxx_m[1]
for k in xrange(2,order+1):
phi[k,k] = (sxx_m[k] - np.dot(phi[1:k,k-1], sxx_m[1:k][::-1]))/sig[k-1]
for j in xrange(1,k):
phi[j,k] = phi[j,k-1] - phi[k,k]*phi[k-j,k-1]
sig[k] = sig[k-1]*(1 - phi[k,k]**2)
sigma_v = sig[-1]
arcoefs = phi[1:,-1]
pacf_ = np.diag(phi)
pacf_[0] = 1.
return sigma_v, arcoefs, pacf_, sig, phi #return everything
def grangercausalitytests(x, maxlag, addconst=True, verbose=True):
'''four tests for granger non causality of 2 timeseries
all four tests give similar results
`params_ftest` and `ssr_ftest` are equivalent based on F test which is
identical to lmtest:grangertest in R
Parameters
----------
x : array, 2d, (nobs,2)
data for test whether the time series in the second column Granger
causes the time series in the first column
maxlag : integer
the Granger causality test results are calculated for all lags up to
maxlag
verbose : bool
print results if true
Returns
-------
results : dictionary
all test results, dictionary keys are the number of lags. For each
lag the values are a tuple, with the first element a dictionary with
teststatistic, pvalues, degrees of freedom, the second element are
the OLS estimation results for the restricted model, the unrestricted
model and the restriction (contrast) matrix for the parameter f_test.
Notes
-----
TODO: convert to class and attach results properly
The Null hypothesis for grangercausalitytests is that the time series in
the second column, x2, does NOT Granger cause the time series in the first
column, x1. Grange causality means that past values of x2 have a
statistically significant effect on the current value of x1, taking past
values of x1 into account as regressors. We reject the null hypothesis
that x2 does not Granger cause x1 if the pvalues are below a desired size
of the test.
The null hypothesis for all four test is that the coefficients
corresponding to past values of the second time series are zero.
'params_ftest', 'ssr_ftest' are based on F distribution
'ssr_chi2test', 'lrtest' are based on chi-square distribution
References
----------
http://en.wikipedia.org/wiki/Granger_causality
Greene: Econometric Analysis
'''
from scipy import stats # lazy import
resli = {}
for mlg in range(1, maxlag+1):
result = {}
if verbose:
print '\nGranger Causality'
print 'number of lags (no zero)', mlg
mxlg = mlg #+ 1 # Note number of lags starting at zero in lagmat
# create lagmat of both time series
dta = lagmat2ds(x, mxlg, trim='both', dropex=1)
#add constant
if addconst:
dtaown = add_constant(dta[:,1:mxlg+1])
dtajoint = add_constant(dta[:,1:])
else:
raise ValueError('Not Implemented')
dtaown = dta[:,1:mxlg]
dtajoint = dta[:,1:]
#run ols on both models without and with lags of second variable
res2down = OLS(dta[:,0], dtaown).fit()
res2djoint = OLS(dta[:,0], dtajoint).fit()
#print results
#for ssr based tests see: http://support.sas.com/rnd/app/examples/ets/granger/index.htm
#the other tests are made-up
# Granger Causality test using ssr (F statistic)
fgc1 = (res2down.ssr-res2djoint.ssr)/res2djoint.ssr/(mxlg)*res2djoint.df_resid
if verbose:
print 'ssr based F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % \
(fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg)
result['ssr_ftest'] = (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg)
# Granger Causality test using ssr (ch2 statistic)
fgc2 = res2down.nobs*(res2down.ssr-res2djoint.ssr)/res2djoint.ssr
if verbose:
print 'ssr based chi2 test: chi2=%-8.4f, p=%-8.4f, df=%d' % \
(fgc2, stats.chi2.sf(fgc2, mxlg), mxlg)
result['ssr_chi2test'] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg)
#likelihood ratio test pvalue:
lr = -2*(res2down.llf-res2djoint.llf)
if verbose:
print 'likelihood ratio test: chi2=%-8.4f, p=%-8.4f, df=%d' % \
(lr, stats.chi2.sf(lr, mxlg), mxlg)
result['lrtest'] = (lr, stats.chi2.sf(lr, mxlg), mxlg)
# F test that all lag coefficients of exog are zero
rconstr = np.column_stack((np.zeros((mxlg-1,mxlg-1)), np.eye(mxlg-1, mxlg-1),\
np.zeros((mxlg-1, 1))))
rconstr = np.column_stack((np.zeros((mxlg,mxlg)), np.eye(mxlg, mxlg),\
np.zeros((mxlg, 1))))
ftres = res2djoint.f_test(rconstr)
if verbose:
print 'parameter F test: F=%-8.4f, p=%-8.4f, df_denom=%d, df_num=%d' % \
(ftres.fvalue, ftres.pvalue, ftres.df_denom, ftres.df_num)
result['params_ftest'] = (np.squeeze(ftres.fvalue)[()],
np.squeeze(ftres.pvalue)[()],
ftres.df_denom, ftres.df_num)
resli[mxlg] = (result, [res2down, res2djoint, rconstr])
return resli
def coint(y1, y2, regression="c"):
"""
This is a simple cointegration test. Uses unit-root test on residuals to
test for cointegrated relationship
See Hamilton (1994) 19.2
Parameters
----------
y1 : array_like, 1d
first element in cointegrating vector
y2 : array_like
remaining elements in cointegrating vector
c : str {'c'}
Included in regression
* 'c' : Constant
Returns
-------
coint_t : float
t-statistic of unit-root test on residuals
pvalue : float
MacKinnon's approximate p-value based on MacKinnon (1994)
crit_value : dict
Critical values for the test statistic at the 1 %, 5 %, and 10 % levels.
Notes
-----
The Null hypothesis is that there is no cointegration, the alternative
hypothesis is that there is cointegrating relationship. If the pvalue is
small, below a critical size, then we can reject the hypothesis that there
is no cointegrating relationship.
P-values are obtained through regression surface approximation from
MacKinnon 1994.
References
----------
MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for
unit-root and cointegration tests. `Journal of Business and Economic
Statistics` 12, 167-76.
"""
regression = regression.lower()
if regression not in ['c','nc','ct','ctt']:
raise ValueError("regression option %s not understood") % regression
y1 = np.asarray(y1)
y2 = np.asarray(y2)
if regression == 'c':
y2 = add_constant(y2)
st1_resid = OLS(y1, y2).fit().resid #stage one residuals
lgresid_cons = add_constant(st1_resid[0:-1])
uroot_reg = OLS(st1_resid[1:], lgresid_cons).fit()
coint_t = (uroot_reg.params[0]-1)/uroot_reg.bse[0]
pvalue = mackinnonp(coint_t, regression="c", N=2, lags=None)
crit_value = mackinnoncrit(N=1, regression="c", nobs=len(y1))
return coint_t, pvalue, crit_value
__all__ = ['acovf', 'acf', 'pacf', 'pacf_yw', 'pacf_ols', 'ccovf', 'ccf',
'periodogram', 'q_stat', 'coint']
if __name__=="__main__":
import statsmodels.api as sm
data = sm.datasets.macrodata.load().data
x = data['realgdp']
# adf is tested now.
adf = adfuller(x,4, autolag=None)
adfbic = adfuller(x, autolag="bic")
adfaic = adfuller(x, autolag="aic")
adftstat = adfuller(x, autolag="t-stat")
# acf is tested now
acf1,ci1,Q,pvalue = acf(x, nlags=40, confint=95, qstat=True)
acf2, ci2,Q2,pvalue2 = acf(x, nlags=40, confint=95, fft=True, qstat=True)
acf3,ci3,Q3,pvalue3 = acf(x, nlags=40, confint=95, qstat=True, unbiased=True)
acf4, ci4,Q4,pvalue4 = acf(x, nlags=40, confint=95, fft=True, qstat=True,
unbiased=True)
# pacf is tested now
# pacf1 = pacorr(x)
# pacfols = pacf_ols(x, nlags=40)
# pacfyw = pacf_yw(x, nlags=40, method="mle")
y = np.random.normal(size=(100,2))
grangercausalitytests(y,2)
|