This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/operators.py is in python-ufl 1.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
"""This module extends the form language with free function operators,
which are either already available as member functions on UFL objects
or defined as compound operators involving basic operations on the UFL
objects."""

# Copyright (C) 2008-2014 Martin Sandve Alnes and Anders Logg
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard, 2011

import operator
from ufl.log import error, warning
from ufl.assertions import ufl_assert
from ufl.form import Form
from ufl.constantvalue import Zero, ScalarValue, as_ufl
from ufl.differentiation import VariableDerivative, Grad, Div, Curl, NablaGrad, NablaDiv
from ufl.tensoralgebra import Transposed, Inner, Outer, Dot, Cross, \
    Determinant, Inverse, Cofactor, Trace, Deviatoric, Skew, Sym
from ufl.variable import Variable
from ufl.tensors import as_tensor, as_matrix, as_vector, ListTensor
from ufl.conditional import EQ, NE, LE, GE, LT, GT, \
    AndCondition, OrCondition, NotCondition, Conditional
from ufl.mathfunctions import Sqrt, Exp, Ln, Erf,\
    Cos, Sin, Tan, Cosh, Sinh, Tanh, Acos, Asin, Atan, Atan2,\
    BesselJ, BesselY, BesselI, BesselK
from ufl.restriction import CellAvg, FacetAvg
from ufl.indexing import indices
from ufl.indexed import Indexed
from ufl.geometry import SpatialCoordinate

#--- Basic operators ---

def rank(f):
    "UFL operator: The rank of f."
    f = as_ufl(f)
    return len(f.shape())

def shape(f):
    "UFL operator: The shape of f."
    f = as_ufl(f)
    return f.shape()

#--- Elementwise tensor operators ---

def elem_op_items(op_ind, indices, *args):
    sh = args[0].shape()
    n = sh[len(indices)]
    def extind(ii):
        return tuple(list(indices) + [ii])
    if len(sh) == len(indices)+1:
        return [op_ind(extind(i), *args) for i in range(n)]
    else:
        return [elem_op_items(op_ind, extind(i), *args) for i in range(n)]

def elem_op(op, *args):
    "UFL operator: Take the elementwise application of operator op on scalar values from one or more tensor arguments."
    args = map(as_ufl, args)
    sh = args[0].shape()
    ufl_assert(all(sh == x.shape() for x in args),
               "Cannot take elementwise operation with different shapes.")
    if sh == ():
        return op(*args)
    def op_ind(ind, *args):
        return op(*[x[ind] for x in args])
    return as_tensor(elem_op_items(op_ind, (), *args))

def elem_mult(A, B):
    "UFL operator: Take the elementwise multiplication of the tensors A and B with the same shape."
    return elem_op(operator.mul, A, B)

def elem_div(A, B):
    "UFL operator: Take the elementwise division of the tensors A and B with the same shape."
    return elem_op(operator.div, A, B)

def elem_pow(A, B):
    "UFL operator: Take the elementwise power of the tensors A and B with the same shape."
    return elem_op(operator.pow, A, B)


#--- Tensor operators ---

def transpose(A):
    "UFL operator: Take the transposed of tensor A."
    A = as_ufl(A)
    if A.shape() == ():
        return A
    return Transposed(A)

def outer(*operands):
    "UFL operator: Take the outer product of two or more operands."
    n = len(operands)
    if n == 1:
        return operands[0]
    elif n == 2:
        a, b = operands
    else:
        a = outer(*operands[:-1])
        b = operands[-1]
    a = as_ufl(a)
    b = as_ufl(b)
    if a.shape() == () and b.shape() == ():
        return a*b
    return Outer(a, b)

def inner(a, b):
    "UFL operator: Take the inner product of a and b."
    a = as_ufl(a)
    b = as_ufl(b)
    if a.shape() == () and b.shape() == ():
        return a*b
    return Inner(a, b)

# TODO: Something like this would be useful in some cases,
# but should inner just support a.rank() != b.rank() instead?
def _partial_inner(a, b):
    "UFL operator: Take the partial inner product of a and b."
    ar, br = a.rank(), b.rank()
    n = min(ar, br)
    return contraction(a, range(n-ar, n-ar+n), b, range(n))

def dot(a, b):
    "UFL operator: Take the dot product of a and b."
    a = as_ufl(a)
    b = as_ufl(b)
    if a.shape() == () and b.shape() == ():
        return a*b
    return Dot(a, b)
    #return contraction(a, (a.rank()-1,), b, (b.rank()-1,))

def contraction(a, a_axes, b, b_axes):
    "UFL operator: Take the contraction of a and b over given axes."
    ai, bi = a_axes, b_axes
    ufl_assert(len(ai) == len(bi), "Contraction must be over the same number of axes.")
    ash = a.shape()
    bsh = b.shape()
    aii = indices(a.rank())
    bii = indices(b.rank())
    cii = indices(len(ai))
    shape = [None]*len(ai)
    for i,j in enumerate(ai):
        aii[j] = cii[i]
        shape[i] = ash[j]
    for i,j in enumerate(bi):
        bii[j] = cii[i]
        ufl_assert(shape[i] == bsh[j], "Shape mismatch in contraction.")
    s = a[aii]*b[bii]
    cii = set(cii)
    ii = tuple(i for i in (aii + bii) if not i in cii)
    return as_tensor(s, ii)

def perp(v):
    "UFL operator: Take the perp of v, i.e. (-v1, +v0)."
    v = as_ufl(v)
    ufl_assert(v.shape() == (2,), "Expecting a 2D vector expression.")
    return as_vector((-v[1],v[0]))

def cross(a, b):
    "UFL operator: Take the cross product of a and b."
    a = as_ufl(a)
    b = as_ufl(b)
    #ufl_assert(a.shape() == (3,) and b.shape() == (3,),
    #           "Expecting 3D vectors in cross product.")
    return Cross(a, b)

def det(A):
    "UFL operator: Take the determinant of A."
    A = as_ufl(A)
    if A.shape() == ():
        return A
    return Determinant(A)

def inv(A):
    "UFL operator: Take the inverse of A."
    A = as_ufl(A)
    if A.shape() == ():
        return 1 / A
    return Inverse(A)

def cofac(A):
    "UFL operator: Take the cofactor of A."
    A = as_ufl(A)
    return Cofactor(A)

def tr(A):
    "UFL operator: Take the trace of A."
    A = as_ufl(A)
    return Trace(A)

def diag(A):
    """UFL operator: Take the diagonal part of rank 2 tensor A _or_
    make a diagonal rank 2 tensor from a rank 1 tensor.

    Always returns a rank 2 tensor. See also diag_vector."""

    # TODO: Make a compound type or two for this operator

    # Get and check dimensions
    r = A.rank()
    if r == 1:
        n, = A.shape()
    elif r == 2:
        m, n = A.shape()
        ufl_assert(m == n, "Can only take diagonal of square tensors.")
    else:
        error("Expecting rank 1 or 2 tensor.")

    # Build matrix row by row
    rows = []
    for i in range(n):
        row = [0]*n
        row[i] = A[i] if r == 1 else A[i,i]
        rows.append(row)
    return as_matrix(rows)

def diag_vector(A):
    """UFL operator: Take the diagonal part of rank 2 tensor A and return as a vector.

    See also diag."""

    # TODO: Make a compound type for this operator

    # Get and check dimensions
    ufl_assert(A.rank() == 2, "Expecting rank 2 tensor.")
    m, n = A.shape()
    ufl_assert(m == n, "Can only take diagonal of square tensors.")

    # Return diagonal vector
    return as_vector([A[i,i] for i in range(n)])

def dev(A):
    "UFL operator: Take the deviatoric part of A."
    A = as_ufl(A)
    return Deviatoric(A)

def skew(A):
    "UFL operator: Take the skew symmetric part of A."
    A = as_ufl(A)
    return Skew(A)

def sym(A):
    "UFL operator: Take the symmetric part of A."
    A = as_ufl(A)
    return Sym(A)

#--- Differential operators

def Dx(f, *i):
    """UFL operator: Take the partial derivative of f with respect
    to spatial variable number i. Equivalent to f.dx(\*i)."""
    f = as_ufl(f)
    return f.dx(*i)

def Dt(f):
    "UFL operator: <Not implemented yet!> The partial derivative of f with respect to time."
    #return TimeDerivative(f) # TODO: Add class
    raise NotImplementedError

def Dn(f):
    """UFL operator: Take the directional derivative of f in the
    facet normal direction, Dn(f) := dot(grad(f), n)."""
    f = as_ufl(f)
    if f.is_cellwise_constant():
        return Zero(f.shape(), f.free_indices(), f.index_dimensions())
    from ufl.geometry import FacetNormal
    return dot(grad(f), FacetNormal(f.domain()))

def diff(f, v):
    """UFL operator: Take the derivative of f with respect to the variable v.

    If f is a form, diff is applied to each integrand.
    """
    if isinstance(f, Form):
        from ufl.algorithms.transformer import transform_integrands
        return transform_integrands(f, lambda e: diff(e, v))
    else:
        f = as_ufl(f)

    if isinstance(v, SpatialCoordinate):
        return grad(f)
    # TODO: Allow this? Must be tested well!
    #elif (isinstance(v, Indexed)
    #      and isinstance(v.operands()[0], SpatialCoordinate)):
    #    return grad(f)[...,v.operands()[1]]
    elif isinstance(v, Variable):
        return VariableDerivative(f, v)
    else:
        error("Expecting a Variable or SpatialCoordinate in diff.")

def grad(f):
    """UFL operator: Take the gradient of f.

    This operator follows the grad convention where

      grad(s)[i] = s.dx(i)

      grad(v)[i,j] = v[i].dx(j)

      grad(T)[:,i] = T[:].dx(i)

    for scalar expressions s, vector expressions v,
    and arbitrary rank tensor expressions T.

    See also: :py:func:`nabla_grad`
    """
    f = as_ufl(f)
    return Grad(f)

def div(f):
    """UFL operator: Take the divergence of f.

    This operator follows the div convention where

      div(v) = v[i].dx(i)

      div(T)[:] = T[:,i].dx(i)

    for vector expressions v, and
    arbitrary rank tensor expressions T.

    See also: :py:func:`nabla_div`
    """
    f = as_ufl(f)
    return Div(f)

def nabla_grad(f):
    """UFL operator: Take the gradient of f.

    This operator follows the grad convention where

      nabla_grad(s)[i] = s.dx(i)

      nabla_grad(v)[i,j] = v[j].dx(i)

      nabla_grad(T)[i,:] = T[:].dx(i)

    for scalar expressions s, vector expressions v,
    and arbitrary rank tensor expressions T.

    See also: :py:func:`grad`
    """
    f = as_ufl(f)
    return NablaGrad(f)

def nabla_div(f):
    """UFL operator: Take the divergence of f.

    This operator follows the div convention where

      nabla_div(v) = v[i].dx(i)

      nabla_div(T)[:] = T[i,:].dx(i)

    for vector expressions v, and
    arbitrary rank tensor expressions T.

    See also: :py:func:`div`
    """
    f = as_ufl(f)
    return NablaDiv(f)

def curl(f):
    "UFL operator: Take the curl of f."
    f = as_ufl(f)
    return Curl(f)
rot = curl

#--- DG operators ---

def jump(v, n=None):
    "UFL operator: Take the jump of v across a facet."
    v = as_ufl(v)
    is_not_constant = len(v.domains()) > 0 # FIXME: Not quite right...
    if is_not_constant:
        if n is None:
            return v('+') - v('-')
        r = v.rank()
        if r == 0:
            return v('+')*n('+') + v('-')*n('-')
        else:
            return dot(v('+'), n('+')) + dot(v('-'), n('-'))
    else:
        warning("Returning zero from jump of expression without a domain. This may be erroneous.")
        # FIXME: Is this right? If v has no cell, it doesn't depend on
        # anything spatially variable or any form arguments, and thus
        # the jump is zero. In other words, I'm assuming that
        # "not v.domains()" is equivalent with "v is a constant".
        # Update: This is NOT true for jump(Expression("x[0]")) from dolfin.
        return Zero(v.shape(), v.free_indices(), v.index_dimensions())

def avg(v):
    "UFL operator: Take the average of v across a facet."
    v = as_ufl(v)
    return 0.5*(v('+') + v('-'))

def cell_avg(f):
    "UFL operator: Take the average of v over a cell."
    #ufl_assert((isinstance(f, Restricted) and isinstance(f.operands()[0], FormArgument)) or
    #    isinstance(f, FormArgument), "Can only take the cell average of a (optionally restricted) Coefficient or Argument.")
    return CellAvg(f)

def facet_avg(f):
    "UFL operator: Take the average of v over a facet."
    #ufl_assert((isinstance(f, Restricted) and isinstance(f.operands()[0], FormArgument)) or
    #    isinstance(f, FormArgument), "Can only take the cell average of a (optionally restricted) Coefficient or Argument.")
    return FacetAvg(f)

#--- Other operators ---

def variable(e):
    "UFL operator: Define a variable representing the given expression, see also diff()."
    e = as_ufl(e)
    return Variable(e)

#--- Conditional expressions ---

def conditional(condition, true_value, false_value):
    """UFL operator: A conditional expression, taking the value of true_value
    when condition evaluates to true and false_value otherwise."""
    return Conditional(condition, true_value, false_value)

def eq(left, right):
    "UFL operator: A boolean expresion (left == right) for use with conditional."
    return EQ(left, right)

def ne(left, right):
    "UFL operator: A boolean expresion (left != right) for use with conditional."
    return NE(left, right)

def le(left, right):
    "UFL operator: A boolean expresion (left <= right) for use with conditional."
    return as_ufl(left) <= as_ufl(right)

def ge(left, right):
    "UFL operator: A boolean expresion (left >= right) for use with conditional."
    return as_ufl(left) >= as_ufl(right)

def lt(left, right):
    "UFL operator: A boolean expresion (left < right) for use with conditional."
    return as_ufl(left) < as_ufl(right)

def gt(left, right):
    "UFL operator: A boolean expresion (left > right) for use with conditional."
    return as_ufl(left) > as_ufl(right)

def And(left, right):
    "UFL operator: A boolean expresion (left and right) for use with conditional."
    return AndCondition(left, right)

def Or(left, right):
    "UFL operator: A boolean expresion (left or right) for use with conditional."
    return OrCondition(left, right)

def Not(condition):
    "UFL operator: A boolean expresion (not condition) for use with conditional."
    return NotCondition(condition)

def sign(x):
    "UFL operator: Take the sign (+1 or -1) of x."
    # TODO: Add a Sign type for this?
    return conditional(eq(x, 0), 0, conditional(lt(x, 0), -1, +1))

def Max(x, y):
    "UFL operator: Take the maximum of x and y."
    # TODO: Add a Maximum type for this?
    return conditional(gt(x, y), x, y)

def Min(x, y):
    "UFL operator: Take the minimum of x and y."
    # TODO: Add a Minimum type for this?
    return conditional(lt(x, y), x, y)

#--- Math functions ---

def _mathfunction(f, cls):
    f = as_ufl(f)
    r = cls(f)
    if isinstance(r, (ScalarValue, Zero, int, float)):
        return float(r)
    return r

def sqrt(f):
    "UFL operator: Take the square root of f."
    return _mathfunction(f, Sqrt)

def exp(f):
    "UFL operator: Take the exponential of f."
    return _mathfunction(f, Exp)

def ln(f):
    "UFL operator: Take the natural logarithm of f."
    return _mathfunction(f, Ln)

def cos(f):
    "UFL operator: Take the cosinus of f."
    return _mathfunction(f, Cos)

def sin(f):
    "UFL operator: Take the sinus of f."
    return _mathfunction(f, Sin)

def tan(f):
    "UFL operator: Take the tangent of f."
    return _mathfunction(f, Tan)

def cosh(f):
    "UFL operator: Take the cosinus hyperbolicus of f."
    return _mathfunction(f, Cosh)

def sinh(f):
    "UFL operator: Take the sinus hyperbolicus of f."
    return _mathfunction(f, Sinh)

def tanh(f):
    "UFL operator: Take the tangent hyperbolicus of f."
    return _mathfunction(f, Tanh)

def acos(f):
    "UFL operator: Take the inverse cosinus of f."
    return _mathfunction(f, Acos)

def asin(f):
    "UFL operator: Take the inverse sinus of f."
    return _mathfunction(f, Asin)

def atan(f):
    "UFL operator: Take the inverse tangent of f."
    return _mathfunction(f, Atan)

def atan_2(f1,f2):
    "UFL operator: Take the inverse tangent of f."
    f1 = as_ufl(f1)
    f2 = as_ufl(f2)
    r = Atan2(f1, f2)
    if isinstance(r, (ScalarValue, Zero, int, float)):
        return float(r)
    return r

def erf(f):
    "UFL operator: Take the error function of f."
    return _mathfunction(f, Erf)

def bessel_J(nu, f):
    """UFL operator: cylindrical Bessel function of the first kind."""
    nu = as_ufl(nu)
    f = as_ufl(f)
    return BesselJ(nu, f)

def bessel_Y(nu, f):
    """UFL operator: cylindrical Bessel function of the second kind."""
    nu = as_ufl(nu)
    f = as_ufl(f)
    return BesselY(nu, f)

def bessel_I(nu, f):
    """UFL operator: regular modified cylindrical Bessel function."""
    nu = as_ufl(nu)
    f = as_ufl(f)
    return BesselI(nu, f)

def bessel_K(nu, f):
    """UFL operator: irregular modified cylindrical Bessel function."""
    nu = as_ufl(nu)
    f = as_ufl(f)
    return BesselK(nu, f)


#--- Special function for exterior_derivative

def exterior_derivative(f):
    """UFL operator: Take the exterior derivative of f.

    The exterior derivative uses the element family to
    determine whether id, grad, curl or div should be used.

    Note that this uses the 'grad' and 'div' operators,
    as opposed to 'nabla_grad' and 'nabla_div'.
    """

    # Extract the element from the input f
    if isinstance(f, Indexed):
        expression, indices = f.operands()
        if len(indices) > 1:
            raise NotImplementedError
        index = int(indices[0])
        element = expression.element()
        element = element.extract_component(index)[1]
    elif isinstance(f, ListTensor):
        f0 = f.operands()[0]
        f0expr, f0indices = f0.operands() # FIXME: Assumption on type of f0!!!
        if len(f0indices) > 1:
            raise NotImplementedError
        index = int(f0indices[0])
        element = f0expr.element()
        element = element.extract_component(index)[1]
    else:
        try:
            element = f.element()
        except:
            error("Unable to determine element from %s" % f)

    # Extract the family and the
    family = element.family()
    gdim = element.domain().geometric_dimension()

    # L^2 elements:
    if "Disc" in family:
        return f

    # H^1 elements:
    if "Lagrange" in family:
        if gdim == 1:
            return grad(f)[0]  # Special-case 1D vectors as scalars
        return grad(f)

    # H(curl) elements:
    if "curl" in family:
        return curl(f)

    # H(div) elements:
    if "Brezzi" in family or "Raviart" in family:
        return div(f)

    error("Unable to determine exterior_derivative. Family is '%s'" % family)