This file is indexed.

/usr/lib/python3/dist-packages/networkx/algorithms/tests/test_cycles.py is in python3-networkx 1.9+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
from nose.tools import *
import networkx
import networkx as nx

class TestCycles:
    def setUp(self):
        G=networkx.Graph()
        G.add_cycle([0,1,2,3])
        G.add_cycle([0,3,4,5])
        G.add_cycle([0,1,6,7,8])
        G.add_edge(8,9)
        self.G=G
        
    def is_cyclic_permutation(self,a,b):
        n=len(a)
        if len(b)!=n:
            return False
        l=a+a
        return any(l[i:i+n]==b for i in range(2*n-n+1))

    def test_cycle_basis(self):
        G=self.G
        cy=networkx.cycle_basis(G,0)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        cy=networkx.cycle_basis(G,1)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        cy=networkx.cycle_basis(G,9)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        # test disconnected graphs
        G.add_cycle(list("ABC"))
        cy=networkx.cycle_basis(G,9)
        sort_cy= sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5],['A','B','C']])

    @raises(nx.NetworkXNotImplemented)
    def test_cycle_basis(self):
        G=nx.DiGraph()
        cy=networkx.cycle_basis(G,0)

    @raises(nx.NetworkXNotImplemented)
    def test_cycle_basis(self):
        G=nx.MultiGraph()
        cy=networkx.cycle_basis(G,0)

    def test_simple_cycles(self):
        G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
        cc=sorted(nx.simple_cycles(G))
        ca=[[0], [0, 1, 2], [0, 2], [1, 2], [2]]
        for c in cc:
            assert_true(any(self.is_cyclic_permutation(c,rc) for rc in ca))

    @raises(nx.NetworkXNotImplemented)
    def test_simple_cycles_graph(self):
        G = nx.Graph()
        c = sorted(nx.simple_cycles(G))

    def test_unsortable(self):
        #  TODO What does this test do?  das 6/2013
        G=nx.DiGraph()
        G.add_cycle(['a',1])
        c=list(nx.simple_cycles(G))

    def test_simple_cycles_small(self):
        G = nx.DiGraph()
        G.add_cycle([1,2,3])
        c=sorted(nx.simple_cycles(G))
        assert_equal(len(c),1)
        assert_true(self.is_cyclic_permutation(c[0],[1,2,3]))
        G.add_cycle([10,20,30])
        cc=sorted(nx.simple_cycles(G))
        ca=[[1,2,3],[10,20,30]]
        for c in cc:
            assert_true(any(self.is_cyclic_permutation(c,rc) for rc in ca))

    def test_simple_cycles_empty(self):
        G = nx.DiGraph()
        assert_equal(list(nx.simple_cycles(G)),[])
        
    def test_complete_directed_graph(self):
        # see table 2 in Johnson's paper
        ncircuits=[1,5,20,84,409,2365,16064]
        for n,c in zip(range(2,9),ncircuits):
            G=nx.DiGraph(nx.complete_graph(n))
            assert_equal(len(list(nx.simple_cycles(G))),c)
        
    def worst_case_graph(self,k):
        # see figure 1 in Johnson's paper
        # this graph has excactly 3k simple cycles
        G=nx.DiGraph()
        for n in range(2,k+2):
            G.add_edge(1,n)
            G.add_edge(n,k+2)
        G.add_edge(2*k+1,1)
        for n in range(k+2,2*k+2):
            G.add_edge(n,2*k+2)
            G.add_edge(n,n+1)
        G.add_edge(2*k+3,k+2)
        for n in range(2*k+3,3*k+3):
            G.add_edge(2*k+2,n)
            G.add_edge(n,3*k+3)
        G.add_edge(3*k+3,2*k+2)
        return G

    def test_worst_case_graph(self):
        # see figure 1 in Johnson's paper
        for k in range(3,10):
            G=self.worst_case_graph(k)
            l=len(list(nx.simple_cycles(G)))
            assert_equal(l,3*k)
    
    def test_recursive_simple_and_not(self):
        for k in range(2,10):
            G=self.worst_case_graph(k)
            cc=sorted(nx.simple_cycles(G))
            rcc=sorted(nx.recursive_simple_cycles(G))
            assert_equal(len(cc),len(rcc))
            for c in cc:
                assert_true(any(self.is_cyclic_permutation(c,rc) for rc in rcc))
            for rc in rcc:
                assert_true(any(self.is_cyclic_permutation(rc,c) for c in cc))

    def test_simple_graph_with_reported_bug(self):
        G=nx.DiGraph()
        edges = [(0, 2), (0, 3), (1, 0), (1, 3), (2, 1), (2, 4), \
                (3, 2), (3, 4), (4, 0), (4, 1), (4, 5), (5, 0), \
                (5, 1), (5, 2), (5, 3)]
        G.add_edges_from(edges)
        cc=sorted(nx.simple_cycles(G))
        assert_equal(len(cc),26)
        rcc=sorted(nx.recursive_simple_cycles(G))
        assert_equal(len(cc),len(rcc))
        for c in cc:
            assert_true(any(self.is_cyclic_permutation(c,rc) for rc in rcc))
        for rc in rcc:
            assert_true(any(self.is_cyclic_permutation(rc,c) for c in cc))