This file is indexed.

/usr/lib/python3/dist-packages/seaborn/distributions.py is in python3-seaborn 0.4.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
"""Plottng functions for visualizing distributions."""
from __future__ import division
import colorsys
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings

try:
    import statsmodels
    import statsmodels.api as sm
    _has_statsmodels = True

    from distutils.version import LooseVersion as LV
    _has_statsmodels_ge_0_6 = LV(statsmodels.__version__) >= LV("0.6")

    def needs_statsmodels_0_6():
        if not _has_statsmodels_ge_0_6:
            raise RuntimeError("This functionality requires statsmodels 0.6"
                               " or later. You have %s" % statsmodels.__version__)

except ImportError:
    _has_statsmodels = False

from .external.six.moves import range

from .utils import set_hls_values, desaturate, percentiles, iqr, _kde_support
from .palettes import color_palette, husl_palette, blend_palette
from .axisgrid import JointGrid


def _box_reshape(vals, groupby, names, order):
    """Reshape the box/violinplot input options and find plot labels."""

    # Set up default label outputs
    xlabel, ylabel = None, None

    # If order is provided, make sure it was used correctly
    if order is not None:
        # Assure that order is the same length as names, if provided
        if names is not None:
            if len(order) != len(names):
                raise ValueError("`order` must have same length as `names`")
        # Assure that order is only used with the right inputs
        is_pd = isinstance(vals, pd.Series) or isinstance(vals, pd.DataFrame)
        if not is_pd:
            raise ValueError("`vals` must be a Pandas object to use `order`.")

    # Handle case where data is a wide DataFrame
    if isinstance(vals, pd.DataFrame):
        if order is not None:
            vals = vals[order]
        if names is None:
            names = vals.columns.tolist()
        if vals.columns.name is not None:
            xlabel = vals.columns.name
        vals = vals.values.T

    # Handle case where data is a long Series and there is a grouping object
    elif isinstance(vals, pd.Series) and groupby is not None:
        groups = pd.groupby(vals, groupby).groups
        order = sorted(groups) if order is None else order
        if hasattr(groupby, "name"):
            if groupby.name is not None:
                xlabel = groupby.name
        if vals.name is not None:
            ylabel = vals.name
        vals = [vals.reindex(groups[name]) for name in order]
        if names is None:
            names = order

    else:

        # Handle case where the input data is an array or there was no groupby
        if hasattr(vals, 'shape'):
            if len(vals.shape) == 1:
                if np.isscalar(vals[0]):
                    vals = [vals]
                else:
                    vals = list(vals)
            elif len(vals.shape) == 2:
                nr, nc = vals.shape
                if nr == 1:
                    vals = [vals]
                elif nc == 1:
                    vals = [vals.ravel()]
                else:
                    vals = [vals[:, i] for i in range(nc)]
            else:
                error = "Input `vals` can have no more than 2 dimensions"
                raise ValueError(error)

        # This should catch things like flat lists
        elif np.isscalar(vals[0]):
            vals = [vals]

        # By default, just use the plot positions as names
        if names is None:
            names = list(range(1, len(vals) + 1))
        elif hasattr(names, "name"):
            if names.name is not None:
                xlabel = names.name

    # Now convert vals to a common representation
    # The plotting functions will work with a list of arrays
    # The list allows each array to possibly be of a different length
    vals = [np.asarray(a, np.float) for a in vals]

    return vals, xlabel, ylabel, names


def _box_colors(vals, color, sat):
    """Find colors to use for boxplots or violinplots."""
    if color is None:
        # Default uses either the current palette or husl
        current_palette = mpl.rcParams["axes.color_cycle"]
        if len(vals) <= len(current_palette):
            colors = color_palette(n_colors=len(vals))
        else:
            colors = husl_palette(len(vals), l=.7)
    else:
        try:
            color = mpl.colors.colorConverter.to_rgb(color)
            colors = [color for _ in vals]
        except ValueError:
                colors = color_palette(color, len(vals))

    # Desaturate a bit because these are patches
    colors = [mpl.colors.colorConverter.to_rgb(c) for c in colors]
    colors = [desaturate(c, sat) for c in colors]

    # Determine the gray color for the lines
    light_vals = [colorsys.rgb_to_hls(*c)[1] for c in colors]
    l = min(light_vals) * .6
    gray = (l, l, l)

    return colors, gray


def boxplot(vals, groupby=None, names=None, join_rm=False, order=None,
            color=None, alpha=None, fliersize=3, linewidth=1.5, widths=.8,
            saturation=.7, label=None, ax=None, **kwargs):
    """Wrapper for matplotlib boxplot with better aesthetics and functionality.

    Parameters
    ----------
    vals : DataFrame, Series, 2D array, list of vectors, or vector.
        Data for plot. DataFrames and 2D arrays are assumed to be "wide" with
        each column mapping to a box. Lists of data are assumed to have one
        element per box.  Can also provide one long Series in conjunction with
        a grouping element as the `groupy` parameter to reshape the data into
        several boxes. Otherwise 1D data will produce a single box.
    groupby : grouping object
        If `vals` is a Series, this is used to group into boxes by calling
        pd.groupby(vals, groupby).
    names : list of strings, optional
        Names to plot on x axis; otherwise plots numbers. This will override
        names inferred from Pandas inputs.
    order : list of strings, optional
        If vals is a Pandas object with name information, you can control the
        order of the boxes by providing the box names in your preferred order.
    join_rm : boolean, optional
        If True, positions in the input arrays are treated as repeated
        measures and are joined with a line plot.
    color : mpl color, sequence of colors, or seaborn palette name
        Inner box color.
    alpha : float
        Transparancy of the inner box color.
    fliersize : float, optional
        Markersize for the fliers.
    linewidth : float, optional
        Width for the box outlines and whiskers.
    saturation : float, 0-1
        Saturation relative to the fully-saturated color. Large patches tend
        to look better at lower saturations, so this dims the palette colors
        a bit by default.
    ax : matplotlib axis, optional
        Existing axis to plot into, otherwise grab current axis.
    kwargs : additional keyword arguments to boxplot

    Returns
    -------
    ax : matplotlib axis
        Axis where boxplot is plotted.

    """
    if ax is None:
        ax = plt.gca()

    # Reshape and find labels for the plot
    vals, xlabel, ylabel, names = _box_reshape(vals, groupby, names, order)

    # Draw the boxplot using matplotlib
    boxes = ax.boxplot(vals, patch_artist=True, widths=widths, **kwargs)

    # Find plot colors
    colors, gray = _box_colors(vals, color, saturation)

    # Set the new aesthetics
    for i, box in enumerate(boxes["boxes"]):
        box.set_color(colors[i])
        if alpha is not None:
            box.set_alpha(alpha)
        box.set_edgecolor(gray)
        box.set_linewidth(linewidth)
    for i, whisk in enumerate(boxes["whiskers"]):
        whisk.set_color(gray)
        whisk.set_linewidth(linewidth)
        whisk.set_linestyle("-")
    for i, cap in enumerate(boxes["caps"]):
        cap.set_color(gray)
        cap.set_linewidth(linewidth)
    for i, med in enumerate(boxes["medians"]):
        med.set_color(gray)
        med.set_linewidth(linewidth)
    for i, fly in enumerate(boxes["fliers"]):
        fly.set_color(gray)
        fly.set_marker("d")
        fly.set_markeredgecolor(gray)
        fly.set_markersize(fliersize)

    # This is a hack to get labels to work
    # It's unclear whether this is actually broken in matplotlib or just not
    # implemented, either way it's annoying.
    if label is not None:
        pos = kwargs.get("positions", [1])[0]
        med = np.median(vals[0])
        color = colors[0]
        ax.add_patch(plt.Rectangle([pos, med], 0, 0, color=color, label=label))

    # Is this a vertical plot?
    vertical = kwargs.get("vert", True)

    # Draw the joined repeated measures
    if join_rm:
        x, y = np.arange(1, len(vals) + 1), vals
        if not vertical:
            x, y = y, x
        ax.plot(x, y, color=gray, alpha=2. / 3)

    # Label the axes and ticks
    if vertical:
        ax.set_xticklabels(list(names))
    else:
        ax.set_yticklabels(list(names))
        xlabel, ylabel = ylabel, xlabel
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)

    # Turn off the grid parallel to the boxes
    if vertical:
        ax.xaxis.grid(False)
    else:
        ax.yaxis.grid(False)

    return ax


def violinplot(vals, groupby=None, inner="box", color=None, positions=None,
               names=None, order=None, bw="scott", widths=.8, alpha=None,
               saturation=.7, join_rm=False, gridsize=100, cut=3,
               inner_kws=None, ax=None, vert=True, **kwargs):

    """Create a violin plot (a combination of boxplot and kernel density plot).

    Parameters
    ----------
    vals : DataFrame, Series, 2D array, or list of vectors.
        Data for plot. DataFrames and 2D arrays are assumed to be "wide" with
        each column mapping to a box. Lists of data are assumed to have one
        element per box.  Can also provide one long Series in conjunction with
        a grouping element as the `groupy` parameter to reshape the data into
        several violins. Otherwise 1D data will produce a single violins.
    groupby : grouping object
        If `vals` is a Series, this is used to group into boxes by calling
        pd.groupby(vals, groupby).
    inner : {'box' | 'stick' | 'points'}
        Plot quartiles or individual sample values inside violin.
    color : mpl color, sequence of colors, or seaborn palette name
        Inner violin colors
    positions : number or sequence of numbers
        Position of first violin or positions of each violin.
    names : list of strings, optional
        Names to plot on x axis; otherwise plots numbers. This will override
        names inferred from Pandas inputs.
    order : list of strings, optional
        If vals is a Pandas object with name information, you can control the
        order of the plot by providing the violin names in your preferred
        order.
    bw : {'scott' | 'silverman' | scalar}
        Name of reference method to determine kernel size, or size as a
        scalar.
    widths : float
        Width of each violin at maximum density.
    alpha : float, optional
        Transparancy of violin fill.
    saturation : float, 0-1
        Saturation relative to the fully-saturated color. Large patches tend
        to look better at lower saturations, so this dims the palette colors
        a bit by default.
    join_rm : boolean, optional
        If True, positions in the input arrays are treated as repeated
        measures and are joined with a line plot.
    gridsize : int
        Number of discrete gridpoints to evaluate the density on.
    cut : scalar
        Draw the estimate to cut * bw from the extreme data points.
    inner_kws : dict, optional
        Keyword arugments for inner plot.
    ax : matplotlib axis, optional
        Axis to plot on, otherwise grab current axis.
    vert : boolean, optional
        If true (default), draw vertical plots; otherwise, draw horizontal
        ones.
    kwargs : additional parameters to fill_betweenx

    Returns
    -------
    ax : matplotlib axis
        Axis with violin plot.

    """

    if ax is None:
        ax = plt.gca()

    # Reshape and find labels for the plot
    vals, xlabel, ylabel, names = _box_reshape(vals, groupby, names, order)

    # Sort out the plot colors
    colors, gray = _box_colors(vals, color, saturation)

    # Initialize the kwarg dict for the inner plot
    if inner_kws is None:
        inner_kws = {}
    inner_kws.setdefault("alpha", .6 if inner == "points" else 1)
    inner_kws["alpha"] *= 1 if alpha is None else alpha
    inner_kws.setdefault("color", gray)
    inner_kws.setdefault("marker", "." if inner == "points" else "")
    lw = inner_kws.pop("lw", 1.5 if inner == "box" else .8)
    inner_kws.setdefault("linewidth", lw)

    # Find where the violins are going
    if positions is None:
        positions = np.arange(1, len(vals) + 1)
    elif not hasattr(positions, "__iter__"):
        positions = np.arange(positions, len(vals) + positions)

    # Set the default linewidth if not provided in kwargs
    try:
        lw = kwargs[({"lw", "linewidth"} & set(kwargs)).pop()]
    except KeyError:
        lw = 1.5

    # Iterate over the variables
    for i, a in enumerate(vals):

        x = positions[i]

        # If we only have a single value, plot a horizontal line
        if len(a) == 1:
            y = a[0]
            if vert:
                ax.plot([x - widths / 2, x + widths / 2], [y, y], **inner_kws)
            else:
                ax.plot([y, y], [x - widths / 2, x + widths / 2], **inner_kws)
            continue

        # Fit the KDE
        try:
            kde = stats.gaussian_kde(a, bw)
        except TypeError:
            kde = stats.gaussian_kde(a)
            if bw != "scott":  # scipy default
                msg = ("Ignoring bandwidth choice, "
                       "please upgrade scipy to use a different bandwidth.")
                warnings.warn(msg, UserWarning)

        # Determine the support region
        if isinstance(bw, str):
            bw_name = "scotts" if bw == "scott" else bw
            _bw = getattr(kde, "%s_factor" % bw_name)() * a.std(ddof=1)
        else:
            _bw = bw
        y = _kde_support(a, _bw, gridsize, cut, (-np.inf, np.inf))
        dens = kde.evaluate(y)
        scl = 1 / (dens.max() / (widths / 2))
        dens *= scl

        # Draw the violin. If vert (default), we will use ``ax.plot`` in the
        # standard way; otherwise, we invert x,y.
        # For this, define a simple wrapper ``ax_plot``
        color = colors[i]
        if vert:
            ax.fill_betweenx(y, x - dens, x + dens, alpha=alpha, color=color)

            def ax_plot(x, y, *args, **kwargs):
                ax.plot(x, y, *args, **kwargs)

        else:
            ax.fill_between(y, x - dens, x + dens, alpha=alpha, color=color)

            def ax_plot(x, y, *args, **kwargs):
                ax.plot(y, x, *args, **kwargs)

        if inner == "box":
            for quant in percentiles(a, [25, 75]):
                q_x = kde.evaluate(quant) * scl
                q_x = [x - q_x, x + q_x]
                ax_plot(q_x, [quant, quant], linestyle=":",  **inner_kws)
            med = np.median(a)
            m_x = kde.evaluate(med) * scl
            m_x = [x - m_x, x + m_x]
            ax_plot(m_x, [med, med], linestyle="--", **inner_kws)
        elif inner == "stick":
            x_vals = kde.evaluate(a) * scl
            x_vals = [x - x_vals, x + x_vals]
            ax_plot(x_vals, [a, a], linestyle="-", **inner_kws)
        elif inner == "points":
            x_vals = [x for _ in a]
            ax_plot(x_vals, a, mew=0, linestyle="", **inner_kws)
        for side in [-1, 1]:
            ax_plot((side * dens) + x, y, c=gray, lw=lw)

    # Draw the repeated measure bridges
    if join_rm:
        ax.plot(range(1, len(vals) + 1), vals,
                color=inner_kws["color"], alpha=2. / 3)

    # Add in semantic labels
    if names is not None:
        if len(vals) != len(names):
            raise ValueError("Length of names list must match nuber of bins")
        names = list(names)

    if vert:
        # Add in semantic labels
        ax.set_xticks(positions)
        ax.set_xlim(positions[0] - .5, positions[-1] + .5)
        ax.set_xticklabels(names)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)
    else:
        # Add in semantic labels
        ax.set_yticks(positions)
        ax.set_yticklabels(names)
        ax.set_ylim(positions[0] - .5, positions[-1] + .5)

        if ylabel is not None:
            ax.set_ylabel(xlabel)
        if xlabel is not None:
            ax.set_xlabel(ylabel)

    ax.xaxis.grid(False)
    return ax


def _freedman_diaconis_bins(a):
    """Calculate number of hist bins using Freedman-Diaconis rule."""
    # From http://stats.stackexchange.com/questions/798/
    a = np.asarray(a)
    h = 2 * iqr(a) / (len(a) ** (1 / 3))
    return np.ceil((a.max() - a.min()) / h)


def distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,
             hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
             color=None, vertical=False, norm_hist=False, axlabel=None,
             label=None, ax=None):
    """Flexibly plot a distribution of observations.

    Parameters
    ----------

    a : (squeezable to) 1d array
        Observed data.
    bins : argument for matplotlib hist(), or None, optional
        Specification of hist bins, or None to use Freedman-Diaconis rule.
    hist : bool, optional
        Whether to plot a (normed) histogram.
    kde : bool, optional
        Whether to plot a gaussian kernel density estimate.
    rug : bool, optional
        Whether to draw a rugplot on the support axis.
    fit : random variable object, optional
        An object with `fit` method, returning a tuple that can be passed to a
        `pdf` method a positional arguments following an grid of values to
        evaluate the pdf on.
    {hist, kde, rug, fit}_kws : dictionaries, optional
        Keyword arguments for underlying plotting functions.
    color : matplotlib color, optional
        Color to plot everything but the fitted curve in.
    vertical : bool, optional
        If True, oberved values are on y-axis.
    norm_hist : bool, otional
        If True, the histogram height shows a density rather than a count.
        This is implied if a KDE or fitted density is plotted.
    axlabel : string, False, or None, optional
        Name for the support axis label. If None, will try to get it
        from a.namel if False, do not set a label.
    label : string, optional
        Legend label for the relevent component of the plot
    ax : matplotlib axis, optional
        if provided, plot on this axis

    Returns
    -------
    ax : matplotlib axis

    """
    if ax is None:
        ax = plt.gca()

    # Intelligently label the support axis
    label_ax = bool(axlabel)
    if axlabel is None and hasattr(a, "name"):
        axlabel = a.name
        if axlabel is not None:
            label_ax = True

    # Make a a 1-d array
    a = np.asarray(a).squeeze()

    # Decide if the hist is normed
    norm_hist = norm_hist or kde or (fit is not None)

    # Handle dictionary defaults
    if hist_kws is None:
        hist_kws = dict()
    if kde_kws is None:
        kde_kws = dict()
    if rug_kws is None:
        rug_kws = dict()
    if fit_kws is None:
        fit_kws = dict()

    # Get the color from the current color cycle
    if color is None:
        if vertical:
            line, = ax.plot(0, a.mean())
        else:
            line, = ax.plot(a.mean(), 0)
        color = line.get_color()
        line.remove()

    # Plug the label into the right kwarg dictionary
    if label is not None:
        if hist:
            hist_kws["label"] = label
        elif kde:
            kde_kws["label"] = label
        elif rug:
            rug_kws["label"] = label
        elif fit:
            fit_kws["label"] = label

    if hist:
        if bins is None:
            bins = _freedman_diaconis_bins(a)
        hist_kws.setdefault("alpha", 0.4)
        hist_kws.setdefault("normed", norm_hist)
        orientation = "horizontal" if vertical else "vertical"
        hist_color = hist_kws.pop("color", color)
        ax.hist(a, bins, orientation=orientation,
                color=hist_color, **hist_kws)
        if hist_color != color:
            hist_kws["color"] = hist_color

    if kde:
        kde_color = kde_kws.pop("color", color)
        kdeplot(a, vertical=vertical, ax=ax, color=kde_color, **kde_kws)
        if kde_color != color:
            kde_kws["color"] = kde_color

    if rug:
        rug_color = rug_kws.pop("color", color)
        axis = "y" if vertical else "x"
        rugplot(a, axis=axis, ax=ax, color=rug_color, **rug_kws)
        if rug_color != color:
            rug_kws["color"] = rug_color

    if fit is not None:
        fit_color = fit_kws.pop("color", "#282828")
        gridsize = fit_kws.pop("gridsize", 200)
        cut = fit_kws.pop("cut", 3)
        clip = fit_kws.pop("clip", (-np.inf, np.inf))
        bw = stats.gaussian_kde(a).scotts_factor() * a.std(ddof=1)
        x = _kde_support(a, bw, gridsize, cut, clip)
        params = fit.fit(a)
        pdf = lambda x: fit.pdf(x, *params)
        y = pdf(x)
        if vertical:
            x, y = y, x
        ax.plot(x, y, color=fit_color, **fit_kws)
        if fit_color != "#282828":
            fit_kws["color"] = fit_color

    if label_ax:
        if vertical:
            ax.set_ylabel(axlabel)
        else:
            ax.set_xlabel(axlabel)

    return ax


def _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut,
                        clip, legend, ax, cumulative=False, **kwargs):
    """Plot a univariate kernel density estimate on one of the axes."""

    # Sort out the clipping
    if clip is None:
        clip = (-np.inf, np.inf)

    # Calculate the KDE
    if _has_statsmodels:
        # Prefer using statsmodels for kernel flexibility
        x, y = _statsmodels_univariate_kde(data, kernel, bw,
                                           gridsize, cut, clip,
                                           cumulative=cumulative)
    else:
        # Fall back to scipy if missing statsmodels
        if kernel != "gau":
            kernel = "gau"
            msg = "Kernel other than `gau` requires statsmodels."
            warnings.warn(msg, UserWarning)
        if cumulative:
            raise ImportError("Cumulative distributions are currently"
                              "only implemented in statsmodels."
                              "Please install statsmodels.")
        x, y = _scipy_univariate_kde(data, bw, gridsize, cut, clip)

    # Make sure the density is nonnegative
    y = np.amax(np.c_[np.zeros_like(y), y], axis=1)

    # Flip the data if the plot should be on the y axis
    if vertical:
        x, y = y, x

    # Check if a label was specified in the call
    label = kwargs.pop("label", None)

    # Otherwise check if the data object has a name
    if label is None and hasattr(data, "name"):
        label = data.name

    # Decide if we're going to add a legend
    legend = label is not None and legend
    label = "_nolegend_" if label is None else label

    # Use the active color cycle to find the plot color
    line, = ax.plot(x, y, **kwargs)
    color = line.get_color()
    line.remove()
    kwargs.pop("color", None)

    # Draw the KDE plot and, optionally, shade
    ax.plot(x, y, color=color, label=label, **kwargs)
    alpha = kwargs.get("alpha", 0.25)
    if shade:
        if vertical:
            ax.fill_betweenx(y, 1e-12, x, color=color, alpha=alpha)
        else:
            ax.fill_between(x, 1e-12, y, color=color, alpha=alpha)

    # Draw the legend here
    if legend:
        ax.legend(loc="best")

    return ax


def _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip,
                                cumulative=False):
    """Compute a univariate kernel density estimate using statsmodels."""
    needs_statsmodels_0_6()
    fft = kernel == "gau"
    kde = sm.nonparametric.KDEUnivariate(data)
    kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip)
    if cumulative:
        grid, y = kde.support, kde.cdf
    else:
        grid, y = kde.support, kde.density
    return grid, y


def _scipy_univariate_kde(data, bw, gridsize, cut, clip):
    """Compute a univariate kernel density estimate using scipy."""
    try:
        kde = stats.gaussian_kde(data, bw_method=bw)
    except TypeError:
        kde = stats.gaussian_kde(data)
        if bw != "scott":  # scipy default
            msg = ("Ignoring bandwidth choice, "
                   "please upgrade scipy to use a different bandwidth.")
            warnings.warn(msg, UserWarning)
    if isinstance(bw, str):
        bw = "scotts" if bw == "scott" else bw
        bw = getattr(kde, "%s_factor" % bw)()
    grid = _kde_support(data, bw, gridsize, cut, clip)
    y = kde(grid)
    return grid, y


def _bivariate_kdeplot(x, y, filled, kernel, bw, gridsize, cut, clip, axlabel,
                       ax, **kwargs):
    """Plot a joint KDE estimate as a bivariate contour plot."""

    # Determine the clipping
    if clip is None:
        clip = [(-np.inf, np.inf), (-np.inf, np.inf)]
    elif np.ndim(clip) == 1:
        clip = [clip, clip]

    # Calculate the KDE
    if _has_statsmodels:
        xx, yy, z = _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip)
    else:
        xx, yy, z = _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip)

    # Plot the contours
    n_levels = kwargs.pop("n_levels", 10)
    cmap = kwargs.get("cmap", "BuGn" if filled else "BuGn_d")
    if isinstance(cmap, str):
        if cmap.endswith("_d"):
            pal = ["#333333"]
            pal.extend(color_palette(cmap.replace("_d", "_r"), 2))
            cmap = blend_palette(pal, as_cmap=True)
    kwargs["cmap"] = cmap
    contour_func = ax.contourf if filled else ax.contour
    contour_func(xx, yy, z, n_levels, **kwargs)
    kwargs["n_levels"] = n_levels

    # Label the axes
    if hasattr(x, "name") and axlabel:
        ax.set_xlabel(x.name)
    if hasattr(y, "name") and axlabel:
        ax.set_ylabel(y.name)

    return ax


def _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip):
    """Compute a bivariate kde using statsmodels."""
    needs_statsmodels_0_6()
    if isinstance(bw, str):
        bw_func = getattr(sm.nonparametric.bandwidths, "bw_" + bw)
        x_bw = bw_func(x)
        y_bw = bw_func(y)
        bw = [x_bw, y_bw]
    elif np.isscalar(bw):
        bw = [bw, bw]
    kde = sm.nonparametric.KDEMultivariate([x, y], "cc", bw)
    x_support = _kde_support(x, kde.bw[0], gridsize, cut, clip[0])
    y_support = _kde_support(y, kde.bw[1], gridsize, cut, clip[1])
    xx, yy = np.meshgrid(x_support, y_support)
    z = kde.pdf([xx.ravel(), yy.ravel()]).reshape(xx.shape)
    return xx, yy, z


def _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip):
    """Compute a bivariate kde using scipy."""
    data = np.c_[x, y]
    kde = stats.gaussian_kde(data.T)
    data_std = data.std(axis=0, ddof=1)
    if isinstance(bw, str):
        bw = "scotts" if bw == "scott" else bw
        bw_x = getattr(kde, "%s_factor" % bw)() * data_std[0]
        bw_y = getattr(kde, "%s_factor" % bw)() * data_std[1]
    x_support = _kde_support(data[:, 0], bw_x, gridsize, cut, clip[0])
    y_support = _kde_support(data[:, 1], bw_y, gridsize, cut, clip[1])
    xx, yy = np.meshgrid(x_support, y_support)
    z = kde([xx.ravel(), yy.ravel()]).reshape(xx.shape)
    return xx, yy, z


def kdeplot(data, data2=None, shade=False, vertical=False, kernel="gau",
            bw="scott", gridsize=100, cut=3, clip=None, legend=True, ax=None,
            cumulative=False, **kwargs):
    """Fit and plot a univariate or bivarate kernel density estimate.

    Parameters
    ----------
    data : 1d or 2d array-like
        Input data. If two-dimensional, assumed to be shaped (n_unit x n_var),
        and a bivariate contour plot will be drawn.
    data2: 1d array-like
        Second input data. If provided `data` must be one-dimensional, and
        a bivariate plot is produced.
    shade : bool, optional
        If true, shade in the area under the KDE curve (or draw with filled
        contours when data is bivariate).
    vertical : bool
        If True, density is on x-axis.
    kernel : {'gau' | 'cos' | 'biw' | 'epa' | 'tri' | 'triw' }, optional
        Code for shape of kernel to fit with. Bivariate KDE can only use
        gaussian kernel.
    bw : {'scott' | 'silverman' | scalar | pair of scalars }, optional
        Name of reference method to determine kernel size, scalar factor,
        or scalar for each dimension of the bivariate plot.
    gridsize : int, optional
        Number of discrete points in the evaluation grid.
    cut : scalar, optional
        Draw the estimate to cut * bw from the extreme data points.
    clip : pair of scalars, or pair of pair of scalars, optional
        Lower and upper bounds for datapoints used to fit KDE. Can provide
        a pair of (low, high) bounds for bivariate plots.
    legend : bool, optoinal
        If True, add a legend or label the axes when possible.
    ax : matplotlib axis, optional
        Axis to plot on, otherwise uses current axis.
    cumulative : bool
        If draw, draw the cumulative distribution estimated by the kde.
    kwargs : other keyword arguments for plot()

    Returns
    -------
    ax : matplotlib axis
        Axis with plot.

    """
    if ax is None:
        ax = plt.gca()

    data = data.astype(np.float64)
    if data2 is not None:
        data2 = data2.astype(np.float64)

    bivariate = False
    if isinstance(data, np.ndarray) and np.ndim(data) > 1:
        bivariate = True
        x, y = data.T
    elif isinstance(data, pd.DataFrame) and np.ndim(data) > 1:
        bivariate = True
        x = data.iloc[:, 0].values
        y = data.iloc[:, 1].values
    elif data2 is not None:
        bivariate = True
        x = data
        y = data2

    if bivariate and cumulative:
        raise TypeError("Cumulative distribution plots are not"
                        "supported for bivariate distributions.")
    if bivariate:
        ax = _bivariate_kdeplot(x, y, shade, kernel, bw, gridsize,
                                cut, clip, legend, ax, **kwargs)
    else:
        ax = _univariate_kdeplot(data, shade, vertical, kernel, bw,
                                 gridsize, cut, clip, legend, ax,
                                 cumulative=cumulative, **kwargs)

    return ax


def rugplot(a, height=None, axis="x", ax=None, **kwargs):
    """Plot datapoints in an array as sticks on an axis.

    Parameters
    ----------
    a : vector
        1D array of datapoints.
    height : scalar, optional
        Height of ticks, if None draw at 5% of axis range.
    axis : {'x' | 'y'}, optional
        Axis to draw rugplot on.
    ax : matplotlib axis
        Axis to draw plot into; otherwise grabs current axis.
    kwargs : other keyword arguments for plt.plot()

    Returns
    -------
    ax : matplotlib axis
        Axis with rugplot.

    """
    if ax is None:
        ax = plt.gca()
    a = np.asarray(a)
    vertical = kwargs.pop("vertical", None)
    if vertical is not None:
        axis = "y" if vertical else "x"
    other_axis = dict(x="y", y="x")[axis]
    min, max = getattr(ax, "get_%slim" % other_axis)()
    if height is None:
        range = max - min
        height = range * .05
    if axis == "x":
        ax.plot([a, a], [min, min + height], **kwargs)
    else:
        ax.plot([min, min + height], [a, a], **kwargs)
    return ax


def jointplot(x, y, data=None, kind="scatter", stat_func=stats.pearsonr,
              color=None, size=6, ratio=5, space=.2,
              dropna=True, xlim=None, ylim=None,
              joint_kws=None, marginal_kws=None, annot_kws=None):
    """Draw a plot of two variables with bivariate and univariate graphs.

    Parameters
    ----------
    x, y : strings or vectors
        Data or names of variables in `data`.
    data : DataFrame, optional
        DataFrame when `x` and `y` are variable names.
    kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }, optional
        Kind of plot to draw.
    stat_func : callable or None
        Function used to calculate a statistic about the relationship and
        annotate the plot. Should map `x` and `y` either to a single value
        or to a (value, p) tuple. Set to ``None`` if you don't want to
        annotate the plot.
    color : matplotlib color, optional
        Color used for the plot elements.
    size : numeric, optional
        Size of the figure (it will be square).
    ratio : numeric, optional
        Ratio of joint axes size to marginal axes height.
    space : numeric, optional
        Space between the joint and marginal axes
    dropna : bool, optional
        If True, remove observations that are missing from `x` and `y`.
    {x, y}lim : two-tuples, optional
        Axis limits to set before plotting.
    {joint, marginal, annot}_kws : dicts
        Additional keyword arguments for the plot components.

    Returns
    -------
    grid : JointGrid
        JointGrid object with the plot on it.

    See Also
    --------
    JointGrid : The Grid class used for drawing this plot. Use it directly if
                you need more flexibility.

    """
    # Set up empty default kwarg dicts
    if joint_kws is None:
        joint_kws = {}
    if marginal_kws is None:
        marginal_kws = {}
    if annot_kws is None:
        annot_kws = {}

    # Make a colormap based off the plot color
    if color is None:
        color = color_palette()[0]
    color_rgb = mpl.colors.colorConverter.to_rgb(color)
    colors = [set_hls_values(color_rgb, l=l) for l in np.linspace(1, 0, 12)]
    cmap = blend_palette(colors, as_cmap=True)

    # Initialize the JointGrid object
    grid = JointGrid(x, y, data, dropna=dropna,
                     size=size, ratio=ratio, space=space,
                     xlim=xlim, ylim=ylim)

    # Plot the data using the grid
    if kind == "scatter":

        joint_kws.setdefault("color", color)
        grid.plot_joint(plt.scatter, **joint_kws)

        marginal_kws.setdefault("kde", False)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

    elif kind.startswith("hex"):

        x_bins = _freedman_diaconis_bins(grid.x)
        y_bins = _freedman_diaconis_bins(grid.y)
        gridsize = int(np.mean([x_bins, y_bins]))

        joint_kws.setdefault("gridsize", gridsize)
        joint_kws.setdefault("cmap", cmap)
        grid.plot_joint(plt.hexbin, **joint_kws)

        marginal_kws.setdefault("kde", False)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

    elif kind.startswith("kde"):

        joint_kws.setdefault("shade", True)
        joint_kws.setdefault("cmap", cmap)
        grid.plot_joint(kdeplot, **joint_kws)

        marginal_kws.setdefault("shade", True)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(kdeplot, **marginal_kws)

    elif kind.startswith("reg"):

        from .linearmodels import regplot

        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

        joint_kws.setdefault("color", color)
        grid.plot_joint(regplot, **joint_kws)

    elif kind.startswith("resid"):

        from .linearmodels import residplot

        joint_kws.setdefault("color", color)
        grid.plot_joint(residplot, **joint_kws)

        x, y = grid.ax_joint.collections[0].get_offsets().T
        marginal_kws.setdefault("color", color)
        marginal_kws.setdefault("kde", False)
        distplot(x, ax=grid.ax_marg_x, **marginal_kws)
        distplot(y, vertical=True, fit=stats.norm, ax=grid.ax_marg_y,
                 **marginal_kws)
        stat_func = None
    else:
        msg = "kind must be either 'scatter', 'reg', 'resid', 'kde', or 'hex'"
        raise ValueError(msg)

    if stat_func is not None:
        grid.annotate(stat_func, **annot_kws)

    return grid