This file is indexed.

/usr/share/racket/collects/data/integer-set.rkt is in racket-common 6.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#lang racket/base

;; a library for integer interval sets

(require racket/contract/base
         racket/match
         racket/stream
         unstable/custom-write)

(provide well-formed-set?
         (contract-out
          (struct integer-set ((contents well-formed-set?)))
          [make-range
           (->i () ((i exact-integer?) (j (i) (and/c exact-integer? (>=/c i))))
                [res integer-set?])]
          [rename merge union (integer-set? integer-set? . -> . integer-set?)]
          [split (integer-set? integer-set?
                  . -> .
                  (values integer-set? integer-set? integer-set?))]
          [intersect (integer-set? integer-set? . -> . integer-set?)]
          [subtract (integer-set? integer-set? . -> . integer-set?)]
          [symmetric-difference
           (integer-set? integer-set? . -> . integer-set?)]
          [complement (->i ((s integer-set?) (min exact-integer?)
                            (max (min) (and/c exact-integer? (>=/c min))))
                           [res integer-set?])]
          [member? (exact-integer? integer-set? . -> . any)]
          [get-integer (integer-set? . -> . (or/c #f exact-integer?))]
          [rename is-foldr foldr (any/c any/c integer-set? . -> . any)]
          [partition ((listof integer-set?) . -> . (listof integer-set?))]
          [count (integer-set? . -> . natural-number/c)]
          [subset? (integer-set? integer-set? . -> . any)]))

;; test macro, now updated to use submodules
(define-syntax test-block
  (syntax-rules ()
    ((_ defs (code right-ans) ...)
     (module+ test
       (let* defs
         (let ((real-ans code))
           (unless (equal? real-ans right-ans)
             (printf "Test failed: ~e gave ~e.  Expected ~e\n"
                     'code real-ans 'right-ans))) ...)))))

;; An integer-set is (make-integer-set (listof (cons int int)))
;; Each cons represents a range of integers, and the entire
;; set is the union of the ranges.  The ranges must be disjoint and
;; increasing.  Further, adjacent ranges must have at least
;; one number between them.
(define-struct integer-set (contents) #:mutable
  #:methods gen:custom-write
  [(define write-proc
     (make-constructor-style-printer
      (λ (set) 'integer-set)
      (λ (set) (integer-set-contents set))))]
  #:methods gen:equal+hash
  [(define (equal-proc s1 s2 rec-equal?)
     (rec-equal? (integer-set-contents s1)
                 (integer-set-contents s2)))
   (define (hash-proc set rec-hash)
     (rec-hash (integer-set-contents set)))
   (define (hash2-proc set rec-hash)
     (rec-hash (integer-set-contents set)))]
  #:methods gen:stream
  [(define (stream-empty? set)
     (null? (integer-set-contents set)))
   (define (stream-first set)
     (define contents (integer-set-contents set))
     ;; the contract lets us assume non-null
     (caar contents))
   (define (stream-rest set)
     (define contents (integer-set-contents set))
     (match-define (cons low hi) (car contents))
     (make-integer-set
      (if (= low hi)
          (cdr contents)
          (cons (cons (+ 1 low) hi) (cdr contents)))))])

;; well-formed-set? : X -> bool
(define (well-formed-set? x)
  (let loop ((set x)
             (current-num -inf.0))
    (or
     (null? set)
     (and (pair? set)
          (pair? (car set))
          (exact-integer? (caar set))
          (exact-integer? (cdar set))
          (< (add1 current-num) (caar set))
          (<= (caar set) (cdar set))
          (loop (cdr set) (cdar set))))))

(test-block ()
            ((well-formed-set? '((0 . 4) (7 . 9))) #t)
            ((well-formed-set? '((-1 . 4))) #t)
            ((well-formed-set? '((11 . 10))) #f)
            ((well-formed-set? '((0 . 10) (8 . 12))) #f)
            ((well-formed-set? '((10 . 20) (1 . 2))) #f)
            ((well-formed-set? '((-10 . -20))) #f)
            ((well-formed-set? '((-20 . -10))) #t)
            ((well-formed-set? '((1 . 1))) #t)
            ((well-formed-set? '((1 . 1) (2 . 3))) #f)
            ((well-formed-set? '((1 . 1) (3 . 3))) #t)
            ((well-formed-set? null) #t))

;; make-range : int * int -> integer-set
;; creates a set of integers between i and j.  i <= j
(define make-range
  (case-lambda
    (() (make-integer-set null))
    ((i) (make-integer-set (list (cons i i))))
    ((i j) (make-integer-set (list (cons i j))))))
(test-block ()
            ((integer-set-contents (make-range)) '())
            ((integer-set-contents (make-range 12)) '((12 . 12)))
            ((integer-set-contents (make-range 97 110)) '((97 . 110)))
            ((integer-set-contents (make-range 111 111)) '((111 . 111))))


;; sub-range? : (cons int int) (cons int int) -> bool
;; true iff the interval [(car r1), (cdr r1)] is a subset of
;; [(car r2), (cdr r2)]
(define (sub-range? r1 r2)
  (and (>= (car r1) (car r2))
       (<= (cdr r1) (cdr r2))))

;; overlap? : (cons int int) (cons int int) -> bool
;; true iff the intervals [(car r1), (cdr r1)] and [(car r2), (cdr r2)]
;; have non-empty intersections and (car r1) >= (car r2)
(define (overlap? r1 r2)
  (and (>= (car r1) (car r2))
       (>= (cdr r1) (cdr r2))
       (<= (car r1) (cdr r2))))

;; merge-helper : (listof (cons int int)) (listof (cons int int)) -> (listof (cons int int))
(define (merge-helper s1 s2)
  (cond
    ((null? s2) s1)
    ((null? s1) s2)
    (else
     (let ((r1 (car s1))
           (r2 (car s2)))
       (cond
         ((sub-range? r1 r2) (merge-helper (cdr s1) s2))
         ((sub-range? r2 r1) (merge-helper s1 (cdr s2)))
         ((or (overlap? r1 r2) (= (car r1) (add1 (cdr r2))))
          (merge-helper (cons (cons (car r2) (cdr r1)) (cdr s1)) (cdr s2)))
         ((or (overlap? r2 r1) (= (car r2) (add1 (cdr r1))))
          (merge-helper (cdr s1) (cons (cons (car r1) (cdr r2)) (cdr s2))))
         ((< (car r1) (car r2))
          (cons r1 (merge-helper (cdr s1) s2)))
         (else
          (cons r2 (merge-helper s1 (cdr s2)))))))))

(test-block ()
            ((merge-helper null null) null)
            ((merge-helper null '((1 . 10))) '((1 . 10)))
            ((merge-helper '((1 . 10)) null) '((1 . 10)))
            ;; r1 in r2
            ((merge-helper '((5 . 10)) '((5 . 10))) '((5 . 10)))
            ((merge-helper '((6 . 9)) '((5 . 10))) '((5 . 10)))
            ((merge-helper '((7 . 7)) '((5 . 10))) '((5 . 10)))
            ;; r2 in r1
            ((merge-helper '((5 . 10)) '((5 . 10))) '((5 . 10)))
            ((merge-helper '((5 . 10)) '((6 . 9))) '((5 . 10)))
            ((merge-helper '((5 . 10)) '((7 . 7))) '((5 . 10)))
            ;; r2 and r1 are disjoint
            ((merge-helper '((5 . 10)) '((12 . 14))) '((5 . 10) (12 . 14)))
            ((merge-helper '((12 . 14)) '((5 . 10))) '((5 . 10) (12 . 14)))
            ;; r1 and r1 are adjacent
            ((merge-helper '((5 . 10)) '((11 . 13))) '((5 . 13)))
            ((merge-helper '((11 . 13)) '((5 . 10))) '((5 . 13)))
            ;; r1 and r2 overlap
            ((merge-helper '((5 . 10)) '((7 . 14))) '((5 . 14)))
            ((merge-helper '((7 . 14)) '((5 . 10))) '((5 . 14)))
            ((merge-helper '((5 . 10)) '((10 . 14))) '((5 . 14)))
            ((merge-helper '((7 . 10)) '((5 . 7))) '((5 . 10)))
            ;; with lists
            ((merge-helper '((1 . 1) (3 . 3) (5 . 10) (100 . 200))
                    '((2 . 2) (10 . 12) (300 . 300)))
             '((1 . 3) (5 . 12) (100 . 200) (300 . 300)))
            ((merge-helper '((1 . 1) (3 . 3) (5 . 5) (8 . 8) (10 . 10) (12 . 12))
                    '((2 . 2) (4 . 4) (6 . 7) (9 . 9) (11 . 11)))
             '((1 . 12)))
            ((merge-helper '((2 . 2) (4 . 4) (6 . 7) (9 . 9) (11 . 11))
                    '((1 . 1) (3 . 3) (5 . 5) (8 . 8) (10 . 10) (12 . 12)))
             '((1 . 12))))

;; merge : integer-set integer-set -> integer-set
;; Union of s1 and s2
(define (merge s1 s2)
  (make-integer-set (merge-helper (integer-set-contents s1) (integer-set-contents s2))))

;; split-sub-range : (cons int int) (cons int int) -> char-set
;; (subrange? r1 r2) must hold.
;; returns [(car r2), (cdr r2)] - ([(car r1), (cdr r1)] intersect [(car r2), (cdr r2)]).
(define (split-sub-range r1 r2)
  (let ((r1-car (car r1))
        (r1-cdr (cdr r1))
        (r2-car (car r2))
        (r2-cdr (cdr r2)))
    (cond
      ((and (= r1-car r2-car) (= r1-cdr r2-cdr)) null)
      ((= r1-car r2-car) (list (cons (add1 r1-cdr) r2-cdr)))
      ((= r1-cdr r2-cdr) (list (cons r2-car (sub1 r1-car))))
      (else
       (list (cons r2-car (sub1 r1-car)) (cons (add1 r1-cdr) r2-cdr))))))

(test-block ()
            ((split-sub-range '(1 . 10) '(1 . 10)) '())
            ((split-sub-range '(1 . 5) '(1 . 10)) '((6 . 10)))
            ((split-sub-range '(2 . 10) '(1 . 10)) '((1 . 1)))
            ((split-sub-range '(2 . 5) '(1 . 10)) '((1 . 1) (6 . 10))))

;; split-acc : (listof (cons int int))^5 -> integer-set^3
(define (split-acc s1 s2 i s1-i s2-i)
  (cond
    ((null? s1) (values (make-integer-set (reverse i))
                        (make-integer-set (reverse s1-i))
                        (make-integer-set (reverse (append (reverse s2) s2-i)))))
    ((null? s2) (values (make-integer-set (reverse i))
                        (make-integer-set (reverse (append (reverse s1) s1-i)))
                        (make-integer-set (reverse s2-i))))
    (else
     (let ((r1 (car s1))
           (r2 (car s2)))
       (cond
         ((sub-range? r1 r2)
          (split-acc (cdr s1) (append (split-sub-range r1 r2) (cdr s2))
                     (cons r1 i) s1-i s2-i))
         ((sub-range? r2 r1)
          (split-acc (append (split-sub-range r2 r1) (cdr s1)) (cdr s2)
                     (cons r2 i) s1-i s2-i))
         ((overlap? r1 r2)
          (split-acc (cons (cons (add1 (cdr r2)) (cdr r1)) (cdr s1))
                     (cdr s2)
                     (cons (cons (car r1) (cdr r2)) i)
                     s1-i
                     (cons (cons (car r2) (sub1 (car r1))) s2-i)))
         ((overlap? r2 r1)
          (split-acc (cdr s1)
                     (cons (cons (add1 (cdr r1)) (cdr r2)) (cdr s2))
                     (cons (cons (car r2) (cdr r1)) i)
                     (cons (cons (car r1) (sub1 (car r2)))s1-i )
                     s2-i))
         ((< (car r1) (car r2))
          (split-acc (cdr s1) s2 i (cons r1 s1-i) s2-i))
         (else
          (split-acc s1 (cdr s2) i s1-i (cons r2 s2-i))))))))

;; split : integer-set integer-set -> integer-set integer-set integer-set
;; returns (s1 intersect s2), s1 - (s1 intersect s2) and s2 - (s1 intersect s2)
;; Of course, s1 - (s1 intersect s2) = s1 intersect (complement s2) = s1 - s2
(define (split s1 s2)
  (split-acc (integer-set-contents s1) (integer-set-contents s2) null null null))

;; intersect: integer-set integer-set -> integer-set
(define (intersect s1 s2)
  (let-values (((i s1-s2 s2-s1) (split s1 s2)))
    i))

;; subtract: integer-set integer-set -> integer-set
(define (subtract s1 s2)
  (let-values (((i s1-s2 s2-s1) (split s1 s2)))
    s1-s2))

;; symmetric-difference: integer-set integer-set -> integer-set
(define (symmetric-difference s1 s2)
  (let-values (((i s1-s2 s2-s1) (split s1 s2)))
    (merge s1-s2 s2-s1)))

(test-block ((s (lambda (s1 s2)
                  (map integer-set-contents
                       (call-with-values (lambda () (split (make-integer-set s1)
                                                           (make-integer-set s2))) list)))))
            ((s null null) '(() () ()))
            ((s '((1 . 10)) null) '(() ((1 . 10)) ()))
            ((s null '((1 . 10))) '(() () ((1 . 10))))
            ((s '((1 . 10)) null) '(() ((1 . 10)) ()))
            ((s '((1 . 10)) '((1 . 10))) '(((1 . 10)) () ()))
            ((s '((1 . 10)) '((2 . 5))) '(((2 . 5)) ((1 . 1) (6 . 10)) ()))
            ((s '((2 . 5)) '((1 . 10))) '(((2 . 5)) () ((1 . 1) (6 . 10))))
            ((s '((2 . 5)) '((5 . 10))) '(((5 . 5)) ((2 . 4)) ((6 . 10))))
            ((s '((5 . 10)) '((2 . 5))) '(((5 . 5)) ((6 . 10)) ((2 . 4))))
            ((s '((2 . 10)) '((5 . 14))) '(((5 . 10)) ((2 . 4)) ((11 . 14))))
            ((s '((5 . 14)) '((2 . 10))) '(((5 . 10)) ((11 . 14)) ((2 . 4))))
            ((s '((10 . 20)) '((30 . 50))) '(() ((10 . 20)) ((30 . 50))))
            ((s '((100 . 200)) '((30 . 50))) '(() ((100 . 200)) ((30 . 50))))
            ((s '((1 . 5) (7 . 9) (100 . 200) (500 . 600) (600 . 700))
                '((2 . 8) (50 . 60) (101 . 104) (105 . 220)))
             '(((2 . 5) (7 . 8) (101 . 104) (105 . 200))
               ((1 . 1) (9 . 9) (100 . 100) (500 . 600) (600 . 700))
               ((6 . 6) (50 . 60) (201 . 220))))
            ((s '((2 . 8) (50 . 60) (101 . 104) (105 . 220))
                '((1 . 5) (7 . 9) (100 . 200) (500 . 600) (600 . 700)))
             '(((2 . 5) (7 . 8) (101 . 104) (105 . 200))
               ((6 . 6) (50 . 60) (201 . 220))
               ((1 . 1) (9 . 9) (100 . 100) (500 . 600) (600 . 700))))
            )

;; complement-helper : (listof (cons int int)) int int -> (listof (cons int int))
;; The current-nat accumulator keeps track of where the
;; next range in the complement should start.
(define (complement-helper s min max)
  (cond
    ((null? s) (if (<= min max)
                   (list (cons min max))
                   null))
    (else
     (let ((s-car (car s)))
       (cond
         ((< min (car s-car))
          (cons (cons min (sub1 (car s-car)))
                (complement-helper (cdr s) (add1 (cdr s-car)) max)))
         ((<= min (cdr s-car))
          (complement-helper (cdr s) (add1 (cdr s-car)) max))
         (else
          (complement-helper (cdr s) min max)))))))


;; complement : integer-set int int -> integer-set
;; A set of all the nats not in s and between min and max, inclusive.
;; min <= max
(define (complement s min max)
  (make-integer-set (complement-helper (integer-set-contents s) min max)))

(test-block ((c (lambda (a b c)
                  (integer-set-contents (complement (make-integer-set a) b c)))))
            ((c null 0 255) '((0 . 255)))
            ((c '((1 . 5) (7 . 7) (10 . 200)) 0 255)
             '((0 . 0) (6 . 6) (8 . 9) (201 . 255)))
            ((c '((0 . 254)) 0 255) '((255 . 255)))
            ((c '((1 . 255)) 0 255) '((0 . 0)))
            ((c '((0 . 255)) 0 255) null)
            ((c '((1 . 10)) 2 5) null)
            ((c '((1 . 5) (7 . 12)) 2 8) '((6 . 6)))
            ((c '((1 . 5) (7 . 12)) 6 6) '((6 . 6)))
            ((c '((1 . 5) (7 . 12)) 7 7) '()))

;; member?-helper : int (listof (cons int int)) -> bool
(define (member?-helper i is)
  (and
    (pair? is)
    (or (<= (caar is) i (cdar is))
        (member?-helper i (cdr is)))))

;; member? : int integer-set -> bool
(define (member? i is)
  (member?-helper i (integer-set-contents is)))

(test-block ()
            ((member? 1 (make-integer-set null)) #f)
            ((member? 19 (make-integer-set '((1 . 18) (20 . 21)))) #f)
            ((member? 19 (make-integer-set '((1 . 2) (19 . 19) (20 . 21)))) #t))

;; get-integer : integer-set -> (union int #f)
(define (get-integer is)
  (let ((l (integer-set-contents is)))
    (cond
      ((null? l) #f)
      (else (caar l)))))

(test-block ()
            ((get-integer (make-integer-set null)) #f)
            ((get-integer (make-integer-set '((1 . 2) (5 . 6)))) 1))

;; is-foldr-helper : (int Y -> Y) Y int int (listof (cons int int)) -> Y
(define (is-foldr-helper f base start stop is)
  (cond
    ((and (> start stop) (null? is)) base)
    ((> start stop)
     (is-foldr-helper f base (caar is) (cdar is) (cdr is)))
    (else
     (f start
        (is-foldr-helper f base (add1 start) stop is)))))

;; is-foldr : (int Y -> Y) Y integer-set -> Y
(define (is-foldr f base is)
  (let ((l (integer-set-contents is)))
    (cond
      ((null? l) base)
      (else
       (is-foldr-helper f base (caar l) (cdar l) (cdr l))))))

(test-block ()
            ((is-foldr cons null (make-integer-set null)) null)
            ((is-foldr cons null (make-integer-set '((1 . 2) (5 . 10))))
             '(1 2 5 6 7 8 9 10)))

;; partition : (listof integer-set) -> (listof integer-set)
;; The coarsest refinment r of sets such that the integer-sets in r
;; are pairwise disjoint.
(define (partition sets)
  (map make-integer-set (foldr partition1 null sets)))

;; partition1 : integer-set (listof (listof (cons int int))) -> (listof (listof (cons int int)))
;; All the integer-sets in sets must be pairwise disjoint.  Splits set
;; against each element in sets.
(define (partition1 set sets)
  (let ((set (integer-set-contents set)))
    (cond
      ((null? set) sets)
      ((null? sets) (list set))
      (else
       (let ((set2 (car sets)))
         (let-values (((i s1 s2) (split-acc set set2 null null null)))
           (let ((rest (partition1 s1 (cdr sets)))
                 (i (integer-set-contents i))
                 (s2 (integer-set-contents s2)))
             (cond
               ((null? i)
                (cons s2 rest))
               ((null? s2)
                (cons i rest))
               (else
                (cons i (cons s2 rest)))))))))))

(test-block ((->is (lambda (str)
                     (foldr (lambda (c cs)
                              (merge (make-range (char->integer c))
                                     cs))
                            (make-range)
                            (string->list str))))
             (->is2 (lambda (str)
                      (integer-set-contents (->is str)))))
            ((partition null) null)
            ((map integer-set-contents (partition (list (->is "1234")))) (list (->is2 "1234")))
            ((map integer-set-contents (partition (list (->is "1234") (->is "0235"))))
             (list (->is2 "23") (->is2 "05") (->is2 "14")))
            ((map integer-set-contents (partition (list (->is "12349") (->is "02359") (->is "67") (->is "29"))))
             (list (->is2 "29") (->is2 "67") (->is2 "3") (->is2 "05") (->is2 "14")))
            ((partition1 (->is "bcdjw") null) (list (->is2 "bcdjw")))
            ((partition1 (->is "") null) null)
            ((partition1 (->is "") (list (->is2 "a") (->is2 "b") (->is2 "1")))
             (list (->is2 "a") (->is2 "b") (->is2 "1")))
            ((partition1 (->is "bcdjw")
                         (list (->is2 "z")
                               (->is2 "ab")
                               (->is2 "dj")))
             (list (->is2 "z") (->is2 "b") (->is2 "a") (->is2 "dj") (->is2 "cw"))))

;; count : integer-set -> nat
(define (count s)
  (foldr (lambda (range sum) (+ 1 sum (- (cdr range) (car range))))
         0
         (integer-set-contents s)))

(test-block ()
            ((count (make-integer-set null)) 0)
            ((count (make-integer-set '((1 . 1)))) 1)
            ((count (make-integer-set '((-1 . 10)))) 12)
            ((count (make-integer-set '((-10 . -5) (-1 . 10) (12 . 12)))) 19))

;; subset?-helper : (listof (cons int int)) (listof (cons int int)) -> bool
(define (subset?-helper l1 l2)
  (cond
    ((null? l1) #t)
    ((null? l2) #f)
    (else
     (let ((r1 (car l1))
           (r2 (car l2)))
       (cond
         ((sub-range? r1 r2) (subset?-helper (cdr l1) l2))
         ((<= (car r1) (cdr r2)) #f)
         (else (subset?-helper l1 (cdr l2))))))))

(test-block ()
            ((subset?-helper null null) #t)
            ((subset?-helper null '((1 . 1))) #t)
            ((subset?-helper '((1 . 1)) null) #f)
            ((subset?-helper '((1 . 1)) '((0 . 10))) #t)
            ((subset?-helper '((1 . 1)) '((2 . 10))) #f)
            ((subset?-helper '((-4 . -4) (2 . 10)) '((-20 . -17) (-15 . -10) (-5 . -4) (-2 . 0) (1 . 12))) #t)
            ((subset?-helper '((-4 . -3) (2 . 10)) '((-20 . -17) (-15 . -10) (-5 . -4) (-2 . 0) (1 . 12))) #f)
            ((subset?-helper '((-4 . -4) (2 . 10)) '((-20 . -17) (-15 . -10) (-5 . -4) (-2 . 0) (3 . 12))) #f))

;; subset? : integer-set integer-set -> bool
(define (subset? s1 s2)
  (subset?-helper (integer-set-contents s1) (integer-set-contents s2)))