/usr/share/racket/collects/ffi/unsafe.rkt is in racket-common 6.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 | #lang racket/base
;; Foreign Racket interface
(require '#%foreign setup/dirs racket/unsafe/ops racket/private/for
(for-syntax racket/base racket/list syntax/stx
racket/struct-info))
(provide ctype-sizeof ctype-alignof compiler-sizeof
malloc free end-stubborn-change
cpointer? cpointer-gcable? prop:cpointer
ptr-equal? ptr-add ptr-ref ptr-set! (protect-out cast)
ptr-offset ptr-add! offset-ptr? set-ptr-offset!
vector->cpointer flvector->cpointer extflvector->cpointer saved-errno lookup-errno
ctype? make-ctype make-cstruct-type make-array-type make-union-type
make-sized-byte-string ctype->layout
_void _int8 _uint8 _int16 _uint16 _int32 _uint32 _int64 _uint64
_fixint _ufixint _fixnum _ufixnum
_float _double _longdouble _double*
_bool _stdbool _pointer _gcpointer _scheme (rename-out [_scheme _racket]) _fpointer function-ptr
memcpy memmove memset
malloc-immobile-cell free-immobile-cell
make-late-weak-box make-late-weak-hasheq)
(define-syntax define*
(syntax-rules ()
[(_ (name . args) body ...)
(begin (provide name) (define (name . args) body ...))]
[(_ name expr)
(begin (provide name) (define name expr))]))
;; ----------------------------------------------------------------------------
;; C integer types
(define* _sint8 _int8)
(define* _sint16 _int16)
(define* _sint32 _int32)
(define* _sint64 _int64)
;; _byte etc is a convenient name for _uint8 & _sint8
;; (_byte is unsigned)
(define* _byte (make-ctype _uint8
(lambda (i) (if (and (exact-integer? i)
(<= -128 i -1))
(+ i 256)
i))
(lambda (v) v)))
(define* _ubyte _uint8)
(define* _sbyte _int8)
;; _word etc is a convenient name for _uint16 & _sint16
;; (_word is unsigned)
(define* _word (make-ctype _uint16
(lambda (i) (if (and (exact-integer? i)
(<= (- (expt 2 15)) i -1))
(+ i (expt 2 16))
i))
(lambda (v) v)))
(define* _uword _uint16)
(define* _sword _int16)
;; utility for the next few definitions
(define (sizeof->3ints c-type)
(case (compiler-sizeof c-type)
[(2) (values _int16 _uint16 _int16)]
[(4) (values _int32 _uint32 _int32)]
[(8) (values _int64 _uint64 _int64)]
[else (error 'foreign "internal error: bad compiler size for `~s'"
c-type)]))
;; _short etc is a convenient name for whatever is the compiler's `short'
;; (_short is signed)
(provide _short _ushort _sshort)
(define-values (_short _ushort _sshort) (sizeof->3ints 'short))
;; _int etc is a convenient name for whatever is the compiler's `int'
;; (_int is signed)
(provide _int _uint _sint)
(define-values (_int _uint _sint) (sizeof->3ints 'int))
;; _long etc is a convenient name for whatever is the compiler's `long'
;; (_long is signed)
(provide _long _ulong _slong)
(define-values (_long _ulong _slong) (sizeof->3ints 'long))
;; _llong etc is a convenient name for whatever is the compiler's `long long'
;; (_llong is signed)
(provide _llong _ullong _sllong)
(define-values (_llong _ullong _sllong) (sizeof->3ints '(long long)))
;; _intptr etc is a convenient name for whatever is the integer
;; equivalent of the compiler's pointer (see `intptr_t') (_intptr is
;; signed)
(provide _intptr _uintptr _sintptr)
(define-values (_intptr _uintptr _sintptr) (sizeof->3ints '(void *)))
(define* _size _uintptr)
(define* _ssize _intptr)
(define* _ptrdiff _intptr)
(define* _intmax _intptr)
(define* _uintmax _uintptr)
;; ----------------------------------------------------------------------------
;; Getting and setting library objects
(define lib-suffix (bytes->string/latin-1 (subbytes (system-type 'so-suffix) 1)))
(define lib-suffix-re (regexp (string-append "\\." lib-suffix "$")))
(define suffix-before-version? (not (equal? lib-suffix "dylib")))
(provide (protect-out (rename-out [get-ffi-lib ffi-lib]))
ffi-lib? ffi-lib-name)
(define (get-ffi-lib name [version/s ""]
#:fail [fail #f]
#:get-lib-dirs [get-lib-dirs get-lib-search-dirs]
#:global? [global? (eq? (system-type 'so-mode) 'global)])
(cond
[(not name) (ffi-lib name)] ; #f => NULL => open this executable
[(not (or (string? name) (path? name)))
(raise-argument-error 'ffi-lib "(or/c string? path?)" name)]
[else
;; A possible way that this might be misleading: say that there is a
;; "foo.so" file in the current directory, which refers to some
;; undefined symbol, trying to use this function with "foo.so" will try
;; a dlopen with "foo.so" which isn't found, then it tries a dlopen with
;; "/<curpath>/foo.so" which fails because of the undefined symbol, and
;; since all fails, it will use (ffi-lib "foo.so") to raise the original
;; file-not-found error. This is because the dlopen doesn't provide a
;; way to distinguish different errors (only dlerror, but that's
;; unreliable).
(let* ([versions (if (list? version/s) version/s (list version/s))]
[versions (map (lambda (v)
(if (or (not v) (zero? (string-length v)))
"" (string-append "." v)))
versions)]
[fullpath (lambda (p) (path->complete-path (cleanse-path p)))]
[absolute? (absolute-path? name)]
[name0 (path->string (cleanse-path name))] ; orig name
[names (map (if (regexp-match lib-suffix-re name0) ; name+suffix
(lambda (v) (string-append name0 v))
(lambda (v)
(if suffix-before-version?
(string-append name0 "." lib-suffix v)
(string-append name0 v "." lib-suffix))))
versions)]
[ffi-lib* (lambda (name) (ffi-lib name #t global?))])
(or ;; try to look in our library paths first
(and (not absolute?)
(ormap (lambda (dir)
;; try good names first, then original
(or (ormap (lambda (name)
(ffi-lib* (build-path dir name)))
names)
(ffi-lib* (build-path dir name0))))
(get-lib-dirs)))
;; try a system search
(ormap ffi-lib* names) ; try good names first
(ffi-lib* name0) ; try original
(ormap (lambda (name) ; try relative paths
(and (file-exists? name) (ffi-lib* (fullpath name))))
names)
(and (file-exists? name0) ; relative with original
(ffi-lib* (fullpath name0)))
;; give up: by default, call ffi-lib so it will raise an error
(if fail
(fail)
(if (pair? names)
(ffi-lib (car names) #f global?)
(ffi-lib name0 #f global?)))))]))
(define (get-ffi-lib-internal x)
(if (ffi-lib? x) x (get-ffi-lib x)))
;; These internal functions provide the functionality to be used by
;; get-ffi-obj, set-ffi-obj! and define-c below
(define (ffi-get ffi-obj type)
(ptr-ref ffi-obj type))
(define (ffi-set! ffi-obj type new)
(let-values ([(new type) (get-lowlevel-object new type)])
(hash-set! ffi-objects-ref-table ffi-obj new)
(ptr-set! ffi-obj type new)))
;; This is better handled with `make-c-parameter'
(provide (protect-out ffi-obj-ref))
(define ffi-obj-ref
(case-lambda
[(name lib) (ffi-obj-ref name lib #f)]
[(name lib failure)
(let ([name (get-ffi-obj-name 'ffi-obj-ref name)]
[lib (get-ffi-lib-internal lib)])
(with-handlers ([exn:fail:filesystem?
(lambda (e) (if failure (failure) (raise e)))])
(ffi-obj name lib)))]))
;; get-ffi-obj is implemented as a syntax only to be able to propagate the
;; foreign name into the type syntax, which allows generated wrappers to have a
;; proper name.
(provide (protect-out get-ffi-obj))
(define get-ffi-obj*
(case-lambda
[(name lib type) (get-ffi-obj* name lib type #f)]
[(name lib type failure)
(let ([name (get-ffi-obj-name 'get-ffi-obj name)]
[lib (get-ffi-lib-internal lib)])
(let-values ([(obj error?)
(with-handlers
([exn:fail:filesystem?
(lambda (e)
(if failure (values (failure) #t) (raise e)))])
(values (ffi-obj name lib) #f))])
(if error? obj (ffi-get obj type))))]))
(define-syntax (get-ffi-obj stx)
(syntax-case stx ()
[(_ name lib type)
#`(get-ffi-obj* name lib #,(syntax-property #`type 'ffi-name #'name))]
[(_ name lib type failure)
#`(get-ffi-obj* name lib #,(syntax-property #`type 'ffi-name #'name)
failure)]
[x (identifier? #'x) #'get-ffi-obj*]))
;; It is important to use the set-ffi-obj! wrapper because it takes care of
;; keeping a handle on the object -- otherwise, setting a callback hook will
;; crash when the Scheme function is gone.
(provide (protect-out set-ffi-obj!))
(define (set-ffi-obj! name lib type new)
(ffi-set! (ffi-obj (get-ffi-obj-name 'set-ffi-obj! name)
(get-ffi-lib-internal lib))
type new))
;; Combining the above two in a `define-c' special form which makes a Scheme
;; `binding', first a `parameter'-like constructor:
(provide (protect-out make-c-parameter))
(define (make-c-parameter name lib type)
(let ([obj (ffi-obj (get-ffi-obj-name 'make-c-parameter name)
(get-ffi-lib-internal lib))])
(case-lambda [() (ffi-get obj type)]
[(new) (ffi-set! obj type new)])))
;; Then the fake binding syntax, uses the defined identifier to name the
;; object:
(provide (protect-out define-c))
(define-syntax (define-c stx)
(syntax-case stx ()
[(_ var-name lib-name type-expr)
(with-syntax ([(p) (generate-temporaries (list #'var-name))])
(namespace-syntax-introduce
#'(begin (define p (make-c-parameter 'var-name lib-name type-expr))
(define-syntax var-name
(syntax-id-rules (set!)
[(set! var val) (p val)]
[(var . xs) ((p) . xs)]
[var (p)])))))]))
;; Used to convert strings and symbols to a byte-string that names an object
(define (get-ffi-obj-name who objname)
(cond [(bytes? objname) objname]
[(symbol? objname) (get-ffi-obj-name who (symbol->string objname))]
[(string? objname) (string->bytes/utf-8 objname)]
[else (raise-argument-error who "(or/c bytes? symbol? string?)" objname)]))
;; This table keeps references to values that are set in foreign libraries, to
;; avoid them being GCed. See set-ffi-obj! above.
(define ffi-objects-ref-table (make-hasheq))
;; ----------------------------------------------------------------------------
;; Compile-time support for fun-expanders
(begin-for-syntax
;; The `_fun' macro tears its input apart and reassemble it using pieces from
;; custom function types (macros). This whole deal needs some work to make
;; it play nicely with taints and code inspectors, so Matthew wrote the
;; following code. The idea is to create a define-fun-syntax which makes the
;; new syntax transformer be an object that carries extra information, later
;; used by `expand-fun-syntax/fun'.
(define orig-inspector (variable-reference->module-declaration-inspector
(#%variable-reference)))
(define (disarm stx)
(syntax-disarm stx orig-inspector))
;; This is used to expand a fun-syntax in a _fun type context.
(define (expand-fun-syntax/fun stx)
(let loop ([stx stx])
(define (do-expand id id?) ; id? == are we expanding an identifier?
(define v (syntax-local-value id (lambda () #f)))
(define set!-trans? (set!-transformer? v))
(define proc (if set!-trans? (set!-transformer-procedure v) v))
(if (and (fun-syntax? proc) (or (not id?) set!-trans?))
;; Do essentially the same thing that `local-expand' does.
;; First, create an "introducer" to mark introduced identifiers:
(let* ([introduce (make-syntax-introducer)]
[expanded
;; Re-introduce mark related to expansion of `_fun':
(syntax-local-introduce
;; Re-add mark specific to this expansion, cancelling
;; some marks applied before expanding (leaving only
;; introuced syntax marked)
(introduce
;; Actually expand:
((fun-syntax-proc proc)
;; Disarm taints:
(disarm
;; Add mark specific to this expansion:
(introduce
;; Remove mark related to expansion of `_fun':
(syntax-local-introduce stx))))))])
;; Restore die packs from original, then loop
;; to continue expanding:
(loop (syntax-rearm expanded stx)))
stx))
(syntax-case (disarm stx) ()
[(id . rest) (identifier? #'id) (do-expand #'id #f)]
[id (identifier? #'id) (do-expand #'id #t)]
[_else stx])))
;; Use module-or-top-identifier=? because we use keywords like `=' and want
;; to make it possible to play with it at the toplevel.
(define id=? module-or-top-identifier=?)
(define (split-by key args)
(let loop ([args args] [r (list '())])
(cond [(null? args) (reverse (map reverse r))]
[(eq? key (car args)) (loop (cdr args) (cons '() r))]
[else (loop (cdr args)
(cons (cons (car args) (car r)) (cdr r)))])))
(define (with-renamer to from body)
#`(let-syntax ([#,to (make-rename-transformer #'#,from)]) #,body))
(define (custom-type->keys type err)
(define stops (map (lambda (s) (datum->syntax type s #f))
'(#%app #%top #%datum)))
;; Expand `type' using expand-fun-syntax/fun
(define orig (expand-fun-syntax/fun type))
(define (with-arg x rearm)
(syntax-case* x (=>) id=?
[(id => body) (identifier? #'id)
;; Extract #'body from its context
(list (rearm #'id) (rearm #'body))]
[_else (rearm x)]))
(let ([keys '()])
(define (setkey! key val . id?)
(cond
[(assq key keys)
(err "bad expansion of custom type (two `~a:'s)" key type)]
[(and (pair? id?) (car id?) (not (identifier? val)))
(err "bad expansion of custom type (`~a:' expects an identifier)"
key type)]
[else (set! keys (cons (cons key val) keys))]))
(let loop ([t (disarm orig)])
(define (next rest . args) (apply setkey! args) (loop rest))
(define (rearm e) (syntax-rearm e orig))
(syntax-case* t
(type: expr: bind: 1st-arg: prev-arg: pre: post: keywords: =>)
id=?
[(type: t x ...) (next #'(x ...) 'type (rearm #'t))]
[(expr: e x ...) (next #'(x ...) 'expr (rearm #'e))]
[(bind: id x ...) (next #'(x ...) 'bind (rearm #'id) #t)]
[(1st-arg: id x ...) (next #'(x ...) '1st (rearm #'id) #t)]
[(prev-arg: id x ...) (next #'(x ...) 'prev (rearm #'id) #t)]
[(pre: p => expr x ...) (err "bad form for `pre:'. Expected either `pre: (id => expression)' or `pre: expression'" #'(pre: p => expr))]
[(pre: p x ...) (next #'(x ...) 'pre (with-arg #'p rearm))]
[(post: p => expr x ...) (err "bad form for `post:' Expected either `post: (id => expression)' or `post: expression'" #'(post: p => expr))]
[(post: p x ...) (next #'(x ...) 'post (with-arg #'p rearm))]
[(keywords: x ...)
(let kloop ([ks '()] [xs #'(x ...)])
(syntax-case xs ()
[(k v x ...) (syntax-e #'k)
(kloop (cons (cons (syntax-e (rearm #'k)) (rearm #'v)) ks) #'(x ...))]
[_ (next xs 'keywords (reverse ks))]))]
[() (and (pair? keys) keys)]
[_else #f]))))
;; This is used for a normal expansion of fun-syntax, when not in a _fun type
;; context.
(define (expand-fun-syntax/normal fun-stx stx)
(define (err msg . sub)
(apply raise-syntax-error (fun-syntax-name fun-stx) msg stx sub))
(let ([keys (custom-type->keys stx err)])
(define (getkey key) (cond [(assq key keys) => cdr] [else #f]))
(define (notkey key)
(when (getkey key)
(err (format "this type must be used in a _fun expression (uses ~s)"
key))))
(if keys
(let ([type (getkey 'type)] [pre (getkey 'pre)] [post (getkey 'post)])
(unless type
(err "this type must be used in a _fun expression (#f type)"))
(for-each notkey '(expr bind 1st prev keywords))
(if (or pre post)
;; a type with pre/post blocks
(let ([make-> (lambda (x what)
(cond [(not x) #'#f]
[(and (list? x) (= 2 (length x))
(identifier? (car x)))
#`(lambda (#,(car x)) #,(cadr x))]
[else #`(lambda (_)
(error '#,(fun-syntax-name fun-stx)
"cannot be used to ~a"
#,what))]))])
(with-syntax ([type type]
[scheme->c (make-> pre "send values to C")]
[c->scheme (make-> post "get values from C")])
#'(make-ctype type scheme->c c->scheme)))
;; simple type
type))
;; no keys => normal expansion
((fun-syntax-proc fun-stx) stx))))
(define-values (make-fun-syntax fun-syntax?
fun-syntax-proc fun-syntax-name)
(let-values ([(desc make pred? get set!)
(make-struct-type
'fun-syntax #f 2 0 #f '() (current-inspector)
expand-fun-syntax/normal)])
(values make pred?
(make-struct-field-accessor get 0 'proc)
(make-struct-field-accessor get 1 'name)))))
;; Use define-fun-syntax instead of define-syntax for forms that
;; are to be expanded by `_fun':
(provide define-fun-syntax)
(define-syntax define-fun-syntax
(syntax-rules ()
[(_ id trans)
(define-syntax id
(let* ([xformer trans]
[set!-trans? (set!-transformer? xformer)])
(unless (or (and (procedure? xformer)
(procedure-arity-includes? xformer 1))
set!-trans?)
(raise-argument-error 'define-fun-syntax
"(or/c (procedure-arity-includes/c 1) set!-transformer?)"
xformer))
(let ([f (make-fun-syntax (if set!-trans?
(set!-transformer-procedure xformer)
xformer)
'id)])
(if set!-trans? (make-set!-transformer f) f))))]))
;; ----------------------------------------------------------------------------
;; Function type
;; Creates a simple function type that can be used for callouts and callbacks,
;; optionally applying a wrapper function to modify the result primitive
;; (callouts) or the input procedure (callbacks).
(define* (_cprocedure itypes otype
#:abi [abi #f]
#:wrapper [wrapper #f]
#:keep [keep #t]
#:atomic? [atomic? #f]
#:in-original-place? [orig-place? #f]
#:async-apply [async-apply #f]
#:save-errno [errno #f])
(_cprocedure* itypes otype abi wrapper keep atomic? orig-place? async-apply errno))
;; for internal use
(define held-callbacks (make-weak-hasheq))
(define (_cprocedure* itypes otype abi wrapper keep atomic? orig-place? async-apply errno)
(define-syntax-rule (make-it wrap)
(make-ctype _fpointer
(lambda (x)
(and x
(let ([cb (ffi-callback (wrap x) itypes otype abi atomic? async-apply)])
(cond [(eq? keep #t) (hash-set! held-callbacks x (make-ephemeron x cb))]
[(box? keep)
(let ([x (unbox keep)])
(set-box! keep
(if (or (null? x) (pair? x)) (cons cb x) cb)))]
[(procedure? keep) (keep cb)])
cb)))
(lambda (x) (and x (wrap (ffi-call x itypes otype abi errno orig-place?))))))
(if wrapper (make-it wrapper) (make-it begin)))
;; Syntax for the special _fun type:
;; (_fun [{(name ... [. name]) | name} [-> expr] ::]
;; {type | (name : type [= expr]) | ([name :] type = expr)} ...
;; -> {type | (name : type)}
;; [-> expr])
;; Usage:
;; `{(name ...) | ...} ::' specify explicit wrapper function formal arguments
;; `-> expr' can be used instead of the last expr
;; `type' input type (implies input, but see type macros next)
;; `(name : type = expr)' specify name and type, `= expr' means computed input
;; `-> type' output type (possibly with name)
;; `-> expr' specify different output, can use previous names
;; Also, see below for custom function types.
(provide ->) ; to signal better errors when trying to use this with contracts
(define-syntax (-> stx)
(raise-syntax-error '-> "should be used only in a _fun context" stx))
(provide _fun)
(define-for-syntax _fun-keywords
`([#:abi ,#'#f] [#:keep ,#'#t] [#:atomic? ,#'#f] [#:in-original-place? ,#'#f]
[#:async-apply ,#'#f] [#:save-errno ,#'#f]))
(define-syntax (_fun stx)
(define (err msg . sub) (apply raise-syntax-error '_fun msg stx sub))
(define xs #f)
(define inputs #f)
(define output #f)
(define bind '())
(define pre '())
(define post '())
(define input-names #f)
(define output-type #f)
(define output-expr #f)
(define 1st-arg #f)
(define prev-arg #f)
(define (bind! x) (set! bind (append bind (list x))))
(define (pre! x) (set! pre (append pre (list x))))
(define (post! x) (set! post (append post (list x))))
(define-values (kwd-ref kwd-set!)
(let ([ks '()])
(values
(lambda (k)
(cond [(assq k ks) => cdr]
[(assq k _fun-keywords) => cadr]
[else (error '_fun "internal error: unknown keyword: ~.s" k)]))
(lambda (k-stx v [sub k-stx])
(let ([k (if (syntax? k-stx) (syntax-e k-stx) k-stx)])
(cond [(assq k ks)
(err (if (keyword? k-stx)
(format "indirectly duplicate ~s keyword" k-stx)
"duplicate keyword")
sub)]
[(assq k _fun-keywords) (set! ks (cons (cons k v) ks))]
[else (err "unknown keyword" sub)]))))))
(define ((t-n-e clause) type name expr)
(let ([keys (custom-type->keys type err)])
(define (getkey key) (cond [(assq key keys) => cdr] [else #f]))
(define (arg x . no-expr?) ;; can mutate `name'
(define use-expr?
(and (list? x) (= 2 (length x)) (identifier? (car x))))
;; when the current expr is not used with a (x => ...) form,
;; either check that no expression is given or just make it
;; disappear from the inputs.
(unless use-expr?
(if (and (pair? no-expr?) (car no-expr?) expr)
(err "got an expression for a custom type that do not use it"
clause)
(set! expr (void))))
(when use-expr?
(unless name (set! name (car (generate-temporaries #'(ret)))))
(set! x (with-renamer (car x) name (cadr x))))
(cond [(getkey '1st) =>
(lambda (v)
(if 1st-arg
(set! x (with-renamer v 1st-arg x))
(err "got a custom type that wants 1st arg too early"
clause)))])
(cond [(getkey 'prev) =>
(lambda (v)
(if prev-arg
(set! x (with-renamer v prev-arg x))
(err "got a custom type that wants prev arg too early"
clause)))])
x)
(when keys
(set! type (getkey 'type))
(cond [(and (not expr) (getkey 'expr)) => (lambda (x) (set! expr x))])
(cond [(getkey 'bind) => (lambda (x) (bind! #`[#,x #,name]))])
(cond [(getkey 'pre ) => (lambda (x) (pre! (let ([a (arg x #t)])
#`[#,name #,a])))])
(cond [(getkey 'post) => (lambda (x) (post! (let ([a (arg x)])
#`[#,name #,a])))])
(cond [(getkey 'keywords)
=> (lambda (ks)
(for ([k+v (in-list ks)])
(kwd-set! (car k+v) (cdr k+v) clause)))]))
;; turn a #f syntax to #f
(set! type (and type (syntax-case type () [#f #f] [_ type])))
(when type ; remember these for later usages
(unless 1st-arg (set! 1st-arg name))
(set! prev-arg name))
(list type name expr)))
(define (do-fun)
;; parse keywords
(let loop ()
(let ([k (and (pair? xs) (pair? (cdr xs)) (car xs))])
(when (and (syntax? k)
(keyword? (syntax-e k)))
(kwd-set! k (cadr xs))
(set! xs (cddr xs))
(loop))))
;; parse known punctuation
(set! xs (map (lambda (x)
(syntax-case* x (-> ::) id=? [:: '::] [-> '->] [_ x]))
xs))
;; parse "::"
(let ([s (split-by ':: xs)])
(case (length s)
[(0) (err "something bad happened (::)")]
[(1) (void)]
[(2) (if (and (= 1 (length (car s))) (not (eq? '-> (caar s))))
(begin (set! xs (cadr s)) (set! input-names (caar s)))
(err "bad wrapper formals"))]
[else (err "saw two or more instances of `::'")]))
;; parse "->"
(let ([s (split-by '-> xs)])
(case (length s)
[(0) (err "something bad happened (->)")]
[(1) (err "missing output type")]
[(2 3) (set! inputs (car s))
(case (length (cadr s))
[(1) (set! output-type (caadr s))]
[(0) (err "missing output type after `->'")]
[else (err "extraneous output type" (cadadr s))])
(unless (null? (cddr s))
(case (length (caddr s))
[(1) (set! output-expr (caaddr s))]
[(0) (err "missing output expression after `->'")]
[else (err "extraneous output expression"
(cadr (caddr s)))]))]
[else (err "saw three or more instances of `->'")]))
(set! inputs
(map (lambda (sub temp)
(let ([t-n-e (t-n-e sub)])
(syntax-case* sub (: =) id=?
[(name : type) (t-n-e #'type #'name #f)]
[(type = expr) (t-n-e #'type temp #'expr)]
[(name : type = expr) (t-n-e #'type #'name #'expr)]
[type (t-n-e #'type temp #f)])))
inputs
(generate-temporaries (map (lambda (x) 'tmp) inputs))))
;; when processing the output type, only the post code matters
(set! pre! (lambda (x) #f))
(set! output
(let ([t-n-e (t-n-e output-type)])
(syntax-case* output-type (: =) id=?
[(name : type) (t-n-e #'type #'name output-expr)]
[(type = expr) (if output-expr
(err "extraneous output expression" #'expr)
(t-n-e #'type #f #'expr))]
[(name : type = expr)
(if output-expr
(err "extraneous output expression" #'expr)
(t-n-e #'type #'name #'expr))]
[type (t-n-e #'type #f output-expr)])))
(let ([make-cprocedure
(lambda (wrapper)
#`(_cprocedure* (list #,@(filter-map car inputs))
#,(car output)
#,(kwd-ref '#:abi)
#,wrapper
#,(kwd-ref '#:keep)
#,(kwd-ref '#:atomic?)
#,(kwd-ref '#:in-original-place?)
#,(kwd-ref '#:async-apply)
#,(kwd-ref '#:save-errno)))])
(if (or (caddr output) input-names (ormap caddr inputs)
(ormap (lambda (x) (not (car x))) inputs)
(pair? bind) (pair? pre) (pair? post))
(let* ([input-names
(or input-names
(filter-map (lambda (i) (and (not (caddr i)) (cadr i)))
inputs))]
[output-expr
(let ([o (caddr output)])
(and (not (void? o)) o))]
[args
(filter-map (lambda (i)
(and (caddr i)
(not (void? (caddr i)))
#`[#,(cadr i) #,(caddr i)]))
inputs)]
[ffi-args
(filter-map (lambda (x) (and (car x) (cadr x))) inputs)]
;; the actual wrapper body
[body (quasisyntax/loc stx
(lambda #,input-names
(let* (#,@args
#,@bind
#,@pre)
#,(if (or output-expr
(cadr output))
(let ([res (or (cadr output)
(car (generate-temporaries #'(ret))))])
#`(let* ([#,res (ffi #,@ffi-args)]
#,@post)
#,(or output-expr res)))
#`(begin0
(ffi #,@ffi-args)
(let* (#,@post) (void)))))))]
;; if there is a string 'ffi-name property, use it as a name
[body (let ([n (cond [(syntax-property stx 'ffi-name)
=> syntax->datum]
[else #f])])
(if (string? n)
(syntax-property
body 'inferred-name
(string->symbol (string-append "ffi-wrapper:" n)))
body))])
(make-cprocedure #`(lambda (ffi) #,body)))
(make-cprocedure #'#f))))
(syntax-case stx ()
[(_ x ...) (begin (set! xs (syntax->list #'(x ...))) (do-fun))]))
(define (function-ptr p fun-ctype)
(if (or (cpointer? p) (procedure? p))
(if (eq? (ctype->layout fun-ctype) 'fpointer)
(if (procedure? p)
((ctype-scheme->c fun-ctype) p)
((ctype-c->scheme fun-ctype) p))
(raise-argument-error 'function-ptr "(and ctype? (lambda (ct) (eq? 'fpointer (ctype->layout ct))))" fun-ctype))
(raise-argument-error 'function-ptr "(or/c cpointer? procedure?)" p)))
;; ----------------------------------------------------------------------------
;; String types
;; The internal _string type uses the native ucs-4 encoding, also providing a
;; utf-16 type
(provide _string/ucs-4 _string/utf-16)
;; 8-bit string encodings, #f is NULL
(define ((false-or-op op) x) (and x (op x)))
(define* _string/utf-8
(make-ctype _bytes
(false-or-op string->bytes/utf-8) (false-or-op bytes->string/utf-8)))
(define* _string/locale
(make-ctype _bytes
(false-or-op string->bytes/locale) (false-or-op bytes->string/locale)))
(define* _string/latin-1
(make-ctype _bytes
(false-or-op string->bytes/latin-1) (false-or-op bytes->string/latin-1)))
;; 8-bit string encodings, #f is NULL, can also use bytes and paths
(define ((any-string-op op) x)
(cond [(not x) x]
[(bytes? x) x]
[(path? x) (path->bytes x)]
[else (op x)]))
(define* _string*/utf-8
(make-ctype _bytes
(any-string-op string->bytes/utf-8) (false-or-op bytes->string/utf-8)))
(define* _string*/locale
(make-ctype _bytes
(any-string-op string->bytes/locale) (false-or-op bytes->string/locale)))
(define* _string*/latin-1
(make-ctype _bytes
(any-string-op string->bytes/latin-1) (false-or-op bytes->string/latin-1)))
;; A generic _string type that usually does the right thing via a parameter
(define* default-_string-type
(make-parameter _string*/utf-8
(lambda (x)
(if (ctype? x)
x (error 'default-_string-type "expecting a C type, got ~e" x)))))
;; The type looks like an identifier, but it's actually using the parameter
(provide _string)
(define-syntax _string
(syntax-id-rules ()
[(_ . xs) ((default-_string-type) . xs)]
[_ (default-_string-type)]))
;; _symbol is defined in C, since it uses simple C strings
(provide _symbol)
(provide _path)
;; `file' type: path-expands a path string, provide _path too.
(define* _file (make-ctype _path cleanse-path #f))
;; `string/eof' type: converts an output #f (NULL) to an eof-object.
(define string-type->string/eof-type
(let ([table (make-hasheq)])
(lambda (string-type)
(hash-ref table string-type
(lambda ()
(let ([new-type (make-ctype string-type
(lambda (x) (and (not (eof-object? x)) x))
(lambda (x) (or x eof)))])
(hash-set! table string-type new-type)
new-type))))))
(provide _string/eof _bytes/eof)
(define _bytes/eof
(make-ctype _bytes
(lambda (x) (and (not (eof-object? x)) x))
(lambda (x) (or x eof))))
(define-syntax _string/eof ; make it a syntax so it depends on the _string type
(syntax-id-rules ()
[(_ . xs) ((string-type->string/eof-type _string) . xs)]
[_ (string-type->string/eof-type _string)]))
;; ----------------------------------------------------------------------------
;; Utility types
;; Call this with a name (symbol) and a list of symbols, where a symbol can be
;; followed by a '= and an integer to have a similar effect of C's enum.
(define (_enum name symbols [basetype _ufixint] #:unknown [unknown _enum])
(define sym->int '())
(define int->sym '())
(define s->c
(if name (string->symbol (format "enum:~a->int" name)) 'enum->int))
(define c->s
(if name (string->symbol (format "enum:int->~a" name)) 'int->enum))
(let loop ([i 0] [symbols symbols])
(unless (null? symbols)
(let-values ([(i rest) (if (and (pair? (cdr symbols))
(eq? '= (cadr symbols))
(pair? (cddr symbols)))
(values (caddr symbols) (cdddr symbols))
(values i (cdr symbols)))])
(set! sym->int (cons (cons (car symbols) i) sym->int))
(set! int->sym (cons (cons i (car symbols)) int->sym))
(loop (add1 i) rest))))
(make-ctype basetype
(lambda (x)
(let ([a (assq x sym->int)])
(if a
(cdr a)
(raise-arguments-error s->c (format "argument does not fit ~a" (or name "enum"))
"argument" x))))
(lambda (x)
(cond [(assq x int->sym) => cdr]
[(eq? unknown _enum)
(error c->s "expected a known ~a, got: ~s" basetype x)]
[(procedure? unknown) (unknown x)]
[else unknown]))))
;; Macro wrapper -- no need for a name
(provide (rename-out [_enum* _enum]))
(define-syntax (_enum* stx)
(syntax-case stx ()
[(_ x ...)
(with-syntax ([name (syntax-local-name)]) #'(_enum 'name x ...))]
[id (identifier? #'id) #'_enum]))
;; Call this with a name (symbol) and a list of (symbol int) or symbols like
;; the above with '= -- but the numbers have to be specified in some way. The
;; generated type will convert a list of these symbols into the logical-or of
;; their values and back.
(define (_bitmask name orig-s->i . base?)
(define basetype (if (pair? base?) (car base?) _uint))
(define s->c
(if name (string->symbol (format "bitmask:~a->int" name)) 'bitmask->int))
(define symbols->integers
(let loop ([s->i orig-s->i] [last 0])
(cond
[(null? s->i)
null]
[(and (pair? (cdr s->i)) (eq? '= (cadr s->i)) (pair? (cddr s->i)))
(cons (list (car s->i) (caddr s->i))
(loop (cdddr s->i) (integer-length (caddr s->i))))]
[(and (pair? (car s->i)) (pair? (cdar s->i)) (null? (cddar s->i))
(symbol? (caar s->i)) (integer? (cadar s->i)))
(cons (car s->i) (loop (cdr s->i) (integer-length (cadar s->i))))]
[(symbol? (car s->i))
(cons (list (car s->i) (arithmetic-shift 1 last)) (loop (cdr s->i) (add1 last)))]
[else
(error '_bitmask "bad spec in ~e" orig-s->i)])))
(make-ctype basetype
(lambda (symbols)
(if (null? symbols) ; probably common
0
(let loop ([xs (if (pair? symbols) symbols (list symbols))] [n 0])
(cond [(null? xs) n]
[(assq (car xs) symbols->integers) =>
(lambda (x) (loop (cdr xs) (bitwise-ior (cadr x) n)))]
[else (raise-arguments-error s->c (format "argument does not fit ~a" (or name "bitmask"))
"argument" symbols)]))))
(lambda (n)
(if (zero? n) ; probably common
'()
(let loop ([s->i symbols->integers] [l '()])
(if (null? s->i)
(reverse l)
(loop (cdr s->i)
(let ([i (cadar s->i)])
(if (and (not (= i 0)) (= i (bitwise-and i n)))
(cons (caar s->i) l)
l)))))))))
;; Macro wrapper -- no need for a name
(provide (rename-out [_bitmask* _bitmask]))
(define-syntax (_bitmask* stx)
(syntax-case stx ()
[(_ x ...)
(with-syntax ([name (syntax-local-name)]) #'(_bitmask 'name x ...))]
[id (identifier? #'id) #'_bitmask]))
;; ----------------------------------------------------------------------------
;; Custom function type macros
;; These macros get expanded by the _fun type. They can expand to a form that
;; looks like (keyword: value ...), where the keyword is one of:
;; * `type:' for the type that will be used,
;; * `expr:' an expression that will always be used for these arguments, as
;; if `= expr' is always given, when an expression is actually
;; given in an argument specification, it supersedes this.
;; * `bind:' for an additional binding that holds the initial value,
;; * `1st-arg:' is used to name an identifier that will be bound to the value
;; of the 1st foreign argument in pre/post chunks (good for
;; common cases where the first argument has a special meaning,
;; eg, for method calls),
;; * `prev-arg:' similar to 1st-arg: but for the previous argument,
;; * `pre:' for a binding that will be inserted before the ffi call,
;; * `post:' for a binding after the ffi call,
;; * `keywords:' specifying keywords to be used in the surrounding _fun
;; (the keywords and values follow).
;; The pre: and post: bindings can be of the form (id => expr) to use the
;; existing value. Note that if the pre: expression is not (id => expr), then
;; it means that there is no input for this argument. Also note that if a
;; custom type is used as an output type of a function, then only the post:
;; code is used -- for example, this is useful for foreign functions that
;; allocate a memory block and return it to the user. The resulting wrapper
;; looks like:
;; (let* (...bindings for arguments...
;; ...bindings for bind: identifiers...
;; ...bindings for pre-code...
;; (ret-name ffi-call)
;; ...bindings for post-code...)
;; return-expression)
;;
;; Finally, the code in a custom-function macro needs special treatment when it
;; comes to dealing with code certificates, so instead of using
;; `define-syntax', you should use `define-fun-syntax' (used in the same way).
;; _?
;; This is not a normal ffi type -- it is a marker for expressions that should
;; not be sent to the ffi function. Use this to bind local values in a
;; computation that is part of an ffi wrapper interface.
(provide _?)
(define-fun-syntax _?
(syntax-id-rules () [(_ . xs) ((type: #f) . xs)] [_ (type: #f)]))
;; (_ptr <mode> <type>)
;; This is for pointers, where mode indicates input or output pointers (or
;; both). If the mode is `o' (output), then the wrapper will not get an
;; argument for it, instead it generates the matching argument.
(provide _ptr)
(define-fun-syntax _ptr
(syntax-rules (i o io)
[(_ i t) (type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p)))]
[(_ o t) (type: _pointer
pre: (malloc t)
post: (x => (ptr-ref x t)))]
[(_ io t) (type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p))
post: (x => (ptr-ref x t)))]))
;; (_box <type>)
;; This is similar to a (_ptr io <type>) argument, where the input is expected
;; to be a box, which is unboxed on entry and modified on exit.
(provide _box)
(define-fun-syntax _box
(syntax-rules ()
[(_ t) (type: _pointer
bind: tmp ; need to save the box so we can get back to it
pre: (x => (let ([p (malloc t)]) (ptr-set! p t (unbox x)) p))
post: (x => (begin (set-box! tmp (ptr-ref x t)) tmp)))]))
;; (_list <mode> <type> [<len>])
;; Similar to _ptr, except that it is used for converting lists to/from C
;; vectors. The length is needed for output values where it is used in the
;; post code, and in the pre code of an output mode to allocate the block. (If
;; the length is 0, then NULL is passed in and an empty list is returned.) In
;; any case it can refer to a previous binding for the length of the list which
;; the C function will most likely require.
(provide _list)
(define-fun-syntax _list
(syntax-rules (i o io)
[(_ i t ) (type: _pointer
pre: (x => (list->cblock x t)))]
[(_ o t n) (type: _pointer
pre: (malloc n t)
post: (x => (cblock->list x t n)))]
[(_ io t n) (type: _pointer
pre: (x => (list->cblock x t))
post: (x => (cblock->list x t n)))]))
;; (_vector <mode> <type> [<len>])
;; Same as _list, except that it uses Scheme vectors.
(provide _vector)
(define-fun-syntax _vector
(syntax-rules (i o io)
[(_ i t ) (type: _pointer
pre: (x => (vector->cblock x t)))]
[(_ o t n) (type: _pointer
pre: (malloc n t)
post: (x => (cblock->vector x t n)))]
[(_ io t n) (type: _pointer
pre: (x => (vector->cblock x t))
post: (x => (cblock->vector x t n)))]))
;; _bytes or (_bytes o n) is for a memory block represented as a Scheme byte
;; string. _bytes is just like a byte-string, and (_bytes o n) is for
;; pre-malloc of the string. There is no need for other modes: i or io would
;; be just like _bytes since the string carries its size information (so there
;; is no real need for the `o', but it's there for consistency with the above
;; macros).
(provide (rename-out [_bytes* _bytes]))
(define-fun-syntax _bytes*
(syntax-id-rules (o)
[(_ o n) (type: _pointer
pre: (make-sized-byte-string (malloc n) n)
;; post is needed when this is used as a function output type
post: (x => (make-sized-byte-string x n)))]
[(_ . xs) (_bytes . xs)]
[_ _bytes]))
;; (_array <type> <len> ...+)
(provide _array
array? array-length array-ptr array-type
(protect-out array-ref array-set!)
(rename-out [*in-array in-array]))
(define _array
(case-lambda
[(t n)
(make-ctype (make-array-type t n)
(lambda (v) (array-ptr v))
(lambda (v) (make-array v t n)))]
[(t n . ns)
(_array (apply _array t ns) n)]))
(define-struct array (ptr type length))
(define array-ref
(case-lambda
[(a i)
(define len (array-length a))
(if (< -1 i len)
(ptr-ref (array-ptr a) (array-type a) i)
(raise-range-error 'array-ref "array" "" i a 0 (sub1 len)))]
[(a . is)
(let loop ([a a] [is is])
(if (null? is)
a
(loop (array-ref a (car is)) (cdr is))))]))
(define array-set!
(case-lambda
[(a i v)
(define len (array-length a))
(if (< -1 i len)
(ptr-set! (array-ptr a) (array-type a) i v)
(raise-range-error 'array-set! "array" "" i a 0 (sub1 len)))]
[(a i i1 . is+v)
(let ([is+v (reverse (list* i i1 is+v))])
(define v (car is+v))
(define i (cadr is+v))
(let loop ([a a] [is (reverse (cddr is+v))])
(if (null? is)
(array-set! a i v)
(loop (array-ref a (car is)) (cdr is)))))]))
;; (in-aray array [start stop step])
;; in-vector like sequence over array
(define-:vector-like-gen :array-gen array-ref)
(define-in-vector-like in-array
"array" array? array-length :array-gen)
(define-sequence-syntax *in-array
(lambda () #'in-array)
(make-in-vector-like 'in-array
"array"
#'array?
#'array-length
#'in-array
#'array-ref))
;; (_array/list <type> <len> ...+)
;; Like _list, but for arrays instead of pointers at the C level.
(provide _array/list)
(define _array/list
(case-lambda
[(t n)
(make-ctype (make-array-type t n)
(lambda (v) (list->cblock v t n))
(lambda (v) (cblock->list v t n)))]
[(t n . ns)
(_array/list (apply _array/list t ns) n)]))
;; (_array/vector <type> <len> ...+)
;; Like _vector, but for arrays instead of pointers at the C level.
(provide _array/vector)
(define _array/vector
(case-lambda
[(t n)
(make-ctype (make-array-type t n)
(lambda (v) (vector->cblock v t n))
(lambda (v) (cblock->vector v t n)))]
[(t n . ns)
(_array/vector (apply _array/vector t ns) n)]))
;; (_union <type> ...+)
(provide _union
union? union-ptr
(protect-out union-ref union-set!))
(define (_union t . ts)
(let ([ts (cons t ts)])
(make-ctype (apply make-union-type ts)
(lambda (v) (union-ptr v))
(lambda (v) (make-union v ts)))))
(define-struct union (ptr types))
(define (union-ref u i)
(ptr-ref (union-ptr u) (list-ref (union-types u) i)))
(define (union-set! u i v)
(ptr-set! (union-ptr u) (list-ref (union-types u) i) v))
;; ----------------------------------------------------------------------------
;; Tagged pointers
;; Make these operations available for unsafe interfaces (they can be used to
;; grab a hidden tag value and break code).
(provide cpointer-tag set-cpointer-tag!
cpointer-has-tag? cpointer-push-tag!)
;; Defined as syntax for efficiency, but can be used as procedures too.
(define-syntax (cpointer-has-tag? stx)
(syntax-case stx ()
[(_ cptr tag)
#'(let ([ptag (cpointer-tag cptr)])
(if (pair? ptag)
(if (null? (cdr ptag))
(eq? tag (car ptag))
(and (memq tag ptag) #t))
(eq? tag ptag)))]
[id (identifier? #'id)
#'(lambda (cptr tag) (cpointer-has-tag? cptr tag))]))
(define-syntax (cpointer-push-tag! stx)
(syntax-case stx ()
[(_ cptr tag)
#'(let ([ptag (cpointer-tag cptr)])
(set-cpointer-tag! cptr
(cond [(not ptag) tag]
[(pair? ptag) (cons tag ptag)]
[else (list tag ptag)])))]
[id (identifier? #'id)
#'(lambda (cptr tag) (cpointer-push-tag! cptr tag))]))
(define (cpointer-maker nullable?)
(case-lambda
[(tag) ((cpointer-maker nullable?) tag #f #f #f)]
[(tag ptr-type) ((cpointer-maker nullable?) tag ptr-type #f #f)]
[(tag ptr-type scheme->c c->scheme)
(let* ([tag->C (string->symbol (format "~a->C" tag))]
[error-str (format "argument is not ~a`~a' pointer"
(if nullable? "" "non-null ") tag)]
[error* (lambda (p) (raise-arguments-error tag->C error-str "argument" p))])
(define-syntax-rule (tag-or-error ptr t)
(let ([p ptr])
(if (cpointer? p)
(if (cpointer-has-tag? p t) p (error* p))
(error* p))))
(define-syntax-rule (tag-or-error/null ptr t)
(let ([p ptr])
(if (cpointer? p)
(and p (if (cpointer-has-tag? p t) p (error* p)))
(error* p))))
(make-ctype (cond
[(and nullable? ptr-type) (_or-null ptr-type)]
[ptr-type]
[else _pointer])
;; bad hack: `if's outside the lambda for efficiency
(if nullable?
(if scheme->c
(lambda (p) (tag-or-error/null (scheme->c p) tag))
(lambda (p) (tag-or-error/null p tag)))
(if scheme->c
(lambda (p) (tag-or-error (scheme->c p) tag))
(lambda (p) (tag-or-error p tag))))
(if nullable?
(if c->scheme
(lambda (p) (when p (cpointer-push-tag! p tag)) (c->scheme p))
(lambda (p) (when p (cpointer-push-tag! p tag)) p))
(if c->scheme
(lambda (p)
(if p (cpointer-push-tag! p tag) (error* p))
(c->scheme p))
(lambda (p)
(if p (cpointer-push-tag! p tag) (error* p))
p)))))]))
;; This is a kind of a pointer that gets a specific tag when converted to
;; Scheme, and accepts only such tagged pointers when going to C. An optional
;; `ptr-type' can be given to be used as the base pointer type, instead of
;; _pointer, `scheme->c' and `c->scheme' can be used for adding conversion
;; hooks.
(define* _cpointer (cpointer-maker #f))
;; Similar to the above, but can tolerate null pointers (#f).
(define* _cpointer/null (cpointer-maker #t))
(define (cast p from-type to-type)
(unless (ctype? from-type)
(raise-argument-error 'cast "ctype?" from-type))
(unless (ctype? to-type)
(raise-argument-error 'cast "ctype?" to-type))
(unless (= (ctype-sizeof to-type)
(ctype-sizeof from-type))
(raise-arguments-error 'cast
"representation sizes of from and to types differ"
"size of from type" (ctype-sizeof from-type)
"size of to size" (ctype-sizeof to-type)))
(define (convert p from-type to-type)
(let ([p2 (malloc from-type)])
(ptr-set! p2 from-type p)
(ptr-ref p2 to-type)))
(cond
[(and (cpointer? p)
(cpointer-gcable? p))
(define from-t (ctype-coretype from-type))
(define to-t (ctype-coretype to-type))
(let loop ([p p])
(cond
[(and (not (zero? (ptr-offset p)))
(or (or (eq? to-t 'pointer)
(eq? to-t 'gcpointer))))
(define o (ptr-offset p))
(define from-t (cpointer-tag p))
(define z (ptr-add p (- o)))
(when from-t
(set-cpointer-tag! z from-t))
(define q (loop z))
(define to-t (cpointer-tag q))
(define r (ptr-add q o))
(when to-t
(set-cpointer-tag! r to-t))
r]
[else
(if (and (or (eq? from-t 'pointer)
(eq? to-t 'pointer))
(or (eq? from-t 'pointer)
(eq? from-t 'gcpointer))
(or (eq? to-t 'pointer)
(eq? to-t 'gcpointer)))
(convert p (_gcable from-type) (_gcable to-type))
(convert p from-type to-type))]))]
[else
(convert p from-type to-type)]))
(define* (_or-null ctype)
(let ([coretype (ctype-coretype ctype)])
(unless (memq coretype '(pointer gcpointer fpointer))
(raise-argument-error '_or-null "(and/c ctype? (lambda (ct) (memq (ctype-coretype ct) '(pointer gcpointer fpointer))))" ctype))
(make-ctype
(case coretype
[(pointer) _pointer]
[(gcpointer) _gcpointer]
[(fpointer) _fpointer])
(lambda (v) (and v (cast v _pointer _pointer)))
(lambda (v) (and v (cast v _pointer ctype))))))
(define* (_gcable ctype)
(define t (ctype-coretype ctype))
(cond
[(eq? t 'gcpointer) ctype]
[(eq? t 'pointer)
(let loop ([ctype ctype])
(if (eq? ctype 'pointer)
_gcpointer
(make-ctype
(loop (ctype-basetype ctype))
(ctype-scheme->c ctype)
(ctype-c->scheme ctype))))]
[else
(raise-argument-error '_or-null "(and/c ctype? (lambda (ct) (memq (ctype-coretype ct) '(pointer gcpointer))))"
ctype)]))
(define (ctype-coretype c)
(let loop ([c (ctype-basetype c)])
(if (symbol? c)
c
(loop (ctype-basetype c)))))
;; A macro version of the above two functions, using the defined name for a tag
;; string, and defining a predicate too. The name should look like `_foo', the
;; predicate will be `foo?', and the tag will be "foo". In addition, `foo-tag'
;; is bound to the tag. The optional `ptr-type', `scheme->c', and `c->scheme'
;; arguments are the same as those of `_cpointer'. `_foo' will be bound to the
;; _cpointer type, and `_foo/null' to the _cpointer/null type.
(provide define-cpointer-type)
(define-syntax (define-cpointer-type stx)
(syntax-case stx ()
[(_ _TYPE) #'(define-cpointer-type _TYPE #f #f #f)]
[(_ _TYPE ptr-type) #'(define-cpointer-type _TYPE ptr-type #f #f)]
[(_ _TYPE ptr-type scheme->c c->scheme)
(and (identifier? #'_TYPE)
(regexp-match #rx"^_.+" (symbol->string (syntax-e #'_TYPE))))
(let ([name (cadr (regexp-match #rx"^_(.+)$"
(symbol->string (syntax-e #'_TYPE))))])
(define (id . strings)
(datum->syntax
#'_TYPE (string->symbol (apply string-append strings)) #'_TYPE))
(with-syntax ([TYPE (id name)]
[TYPE? (id name "?")]
[TYPE-tag (id name "-tag")]
[_TYPE/null (id "_" name "/null")])
#'(define-values (_TYPE _TYPE/null TYPE? TYPE-tag)
(let ([TYPE-tag 'TYPE])
(values (_cpointer TYPE-tag ptr-type scheme->c c->scheme)
(_cpointer/null TYPE-tag ptr-type scheme->c c->scheme)
(lambda (x)
(and (cpointer? x) (cpointer-has-tag? x TYPE-tag)))
TYPE-tag)))))]))
;; ----------------------------------------------------------------------------
;; Struct wrappers
(define (compute-offsets types alignment)
(let ([alignment (if (memq alignment '(#f 1 2 4 8 16))
alignment
#f)])
(let loop ([ts types] [cur 0] [r '()])
(if (null? ts)
(reverse r)
(let* ([algn (if alignment
(min alignment (ctype-alignof (car ts)))
(ctype-alignof (car ts)))]
[pos (+ cur (modulo (- (modulo cur algn)) algn))])
(loop (cdr ts)
(+ pos (ctype-sizeof (car ts)))
(cons pos r)))))))
;; Simple structs: call this with a list of types, and get a type that marshals
;; C structs to/from Scheme lists.
(define* (_list-struct #:alignment [alignment #f]
#:malloc-mode [malloc-mode 'atomic]
type . types)
(let* ([types (cons type types)]
[stype (make-cstruct-type types #f alignment)]
[offsets (compute-offsets types alignment)]
[len (length types)])
(make-ctype stype
(lambda (vals)
(unless (list? vals)
(raise-argument-error 'list-struct "list?" vals))
(unless (= len (length vals))
(raise-arguments-error 'list-struct "bad list length"
"expected length" len
"list length" (length vals)
"list" vals))
(let ([block (malloc stype malloc-mode)])
(for-each (lambda (type ofs val) (ptr-set! block type 'abs ofs val))
types offsets vals)
block))
(lambda (block)
(map (lambda (type ofs) (ptr-ref block type 'abs ofs))
types offsets)))))
;; (define-cstruct _foo ([slot type] ...))
;; or
;; (define-cstruct (_foo _super) ([slot type] ...))
;; defines a type called _foo for a C struct, with user-procedues: make-foo,
;; foo? foo-slot... and set-foo-slot!.... The `_' prefix is required. Objects
;; of this new type are actually cpointers, with a type tag that is "foo" and
;; (possibly more if the first type is itself a cstruct type or if a super type
;; is given,) provided as foo-tag, and tags of pointers are checked before
;; attempting to use them (see define-cpointer-type above). Note that since
;; structs are implemented as pointers, they can be used for a _pointer input
;; to a foreign function: their address will be used, to make this possible,
;; the corresponding cpointer type is defined as _foo-pointer. If a super
;; cstruct type is given, the constructor function expects values for every
;; field of the super type as well as other fields that are specified, and a
;; slot named `super' can be used to extract this initial struct -- although
;; pointers to the new struct type can be used as pointers to the super struct
;; type.
(provide define-cstruct)
(define-syntax (define-cstruct stx)
(define (make-syntax _TYPE-stx has-super? slot-names-stx slot-types-stx
alignment-stx malloc-mode-stx property-stxes property-binding-stxes
no-equal?)
(define name
(cadr (regexp-match #rx"^_(.+)$" (symbol->string (syntax-e _TYPE-stx)))))
(define slot-names (map (lambda (x) (symbol->string (syntax-e x)))
(syntax->list slot-names-stx)))
(define 1st-type
(let ([xs (syntax->list slot-types-stx)]) (and (pair? xs) (car xs))))
(define (id . strings)
(datum->syntax
_TYPE-stx (string->symbol (apply string-append strings)) _TYPE-stx))
(define (ids name-func)
(map (lambda (s)
(datum->syntax
_TYPE-stx
(string->symbol (apply string-append (name-func s)))
_TYPE-stx))
slot-names))
(define (safe-id=? x y)
(and (identifier? x) (identifier? y) (free-identifier=? x y)))
(with-syntax
([has-super? has-super?]
[struct-string (format "~a?" name)]
[(slot ...) slot-names-stx]
[(slot-type ...) slot-types-stx]
[TYPE (id name)]
[cpointer:TYPE (id "cpointer:"name)]
[struct:cpointer:TYPE (if (null? property-stxes)
#'struct:cpointer:super
(id "struct:cpointer:"name))]
[_TYPE _TYPE-stx]
[_TYPE-pointer (id "_"name"-pointer")]
[_TYPE-pointer/null (id "_"name"-pointer/null")]
[_TYPE/null (id "_"name"/null")]
[_TYPE* (id "_"name"*")]
[TYPE? (id name"?")]
[make-TYPE (id "make-"name)]
[make-wrap-TYPE (if (null? property-stxes)
#'values
(id "make-wrap-"name))]
[wrap-TYPE-type (id "wrap-"name "-type")]
[list->TYPE (id "list->"name)]
[list*->TYPE (id "list*->"name)]
[TYPE->list (id name"->list")]
[TYPE->list* (id name"->list*")]
[TYPE-tag (id name"-tag")]
[(stype ...) (ids (lambda (s) `(,name"-",s"-type")))]
[(TYPE-SLOT ...) (ids (lambda (s) `(,name"-",s)))]
[(set-TYPE-SLOT! ...) (ids (lambda (s) `("set-",name"-",s"!")))]
[(offset ...) (generate-temporaries
(ids (lambda (s) `(,s"-offset"))))]
[alignment alignment-stx]
[malloc-mode (or malloc-mode-stx #'(quote atomic))])
(with-syntax ([get-super-info
;; the 1st-type might be a pointer to this type
(if (or (safe-id=? 1st-type #'_TYPE-pointer/null)
(safe-id=? 1st-type #'_TYPE-pointer))
#'(values #f '() #f #f #f #f #f values)
#`(cstruct-info #,1st-type
(lambda () (values #f '() #f #f #f #f #f values))))]
[define-wrapper-struct (if (null? property-stxes)
#'(begin)
(with-syntax ([(prop ...) property-stxes]
[add-equality-property (if no-equal?
#'values
#'add-equality-property)])
#'(define-values (make-wrap-TYPE struct:cpointer:TYPE)
(let ()
(define-values (struct:cpointer:TYPE
cpointer:TYPE
?
ref
set)
(make-struct-type 'cpointer:TYPE
struct:cpointer:super
(if struct:cpointer:super
0
1)
0 #f
(add-equality-property
(append
(if struct:cpointer:super
null
(list
(cons prop:cpointer 0)))
(list prop ...)))
(current-inspector)
#f
(if struct:cpointer:super
null
'(0))))
(values cpointer:TYPE struct:cpointer:TYPE)))))]
[define-wrap-type (if (null? property-stxes)
#'(define (wrap-TYPE-type t)
(super-wrap-type-type t))
#'(define (wrap-TYPE-type t)
(make-ctype t
values
(lambda (p)
(and p
(make-wrap-TYPE p))))))]
[(property-binding ...) property-binding-stxes]
[(maybe-struct:TYPE ...) (if (null? property-stxes)
null
(list #'struct:cpointer:TYPE))])
#'(begin
(define-syntax TYPE
(make-struct-info
(lambda ()
(list #f ; no struct:
(quote-syntax make-TYPE)
(quote-syntax TYPE?)
(reverse (list (quote-syntax TYPE-SLOT) ...))
(reverse (list (quote-syntax set-TYPE-SLOT!) ...))
#t))))
(define-values (_TYPE _TYPE-pointer _TYPE-pointer/null TYPE? TYPE-tag
make-TYPE TYPE-SLOT ... set-TYPE-SLOT! ...
list->TYPE list*->TYPE TYPE->list TYPE->list*
maybe-struct:TYPE ...)
(let-values ([(super-pointer super-tags super-types super-offsets
super->list* list*->super
struct:cpointer:super super-wrap-type-type)
get-super-info]
property-binding ...)
(define-cpointer-type _TYPE super-pointer)
define-wrap-type
;; these make it possible to use recursive pointer definitions
(define _TYPE-pointer (wrap-TYPE-type _TYPE))
(define _TYPE-pointer/null (wrap-TYPE-type _TYPE/null))
(define-values (stype ...) (values slot-type ...))
(define types (list stype ...))
(define alignment-v alignment)
(define offsets (compute-offsets types alignment-v))
(define-values (offset ...) (apply values offsets))
(define all-tags (cons TYPE-tag super-tags))
(define _TYPE*
;; c->scheme adjusts all tags
(let* ([cst (make-cstruct-type types #f alignment-v)]
[t (_cpointer TYPE-tag cst)]
[c->s (ctype-c->scheme t)])
(wrap-TYPE-type
(make-ctype cst (ctype-scheme->c t)
;; hack: modify & reuse the procedure made by _cpointer
(lambda (p)
(if p (set-cpointer-tag! p all-tags) (c->s p))
p)))))
(define-values (all-types all-offsets)
(if (and has-super? super-types super-offsets)
(values (append super-types (cdr types))
(append super-offsets (cdr offsets)))
(values types offsets)))
(define (TYPE-SLOT x)
(unless (TYPE? x)
(raise-argument-error 'TYPE-SLOT struct-string x))
(ptr-ref x stype 'abs offset))
...
(define (set-TYPE-SLOT! x slot)
(unless (TYPE? x)
(raise-argument-error 'set-TYPE-SLOT! struct-string 0 x slot))
(ptr-set! x stype 'abs offset slot))
...
(define make-TYPE
(if (and has-super? super-types super-offsets)
;; init using all slots
(lambda vals
(if (= (length vals) (length all-types))
(let ([block (make-wrap-TYPE (malloc _TYPE* malloc-mode))])
(set-cpointer-tag! block all-tags)
(for-each (lambda (type ofs value)
(ptr-set! block type 'abs ofs value))
all-types all-offsets vals)
block)
(error '_TYPE "expecting ~s values, got ~s: ~e"
(length all-types) (length vals) vals)))
;; normal initializer
(lambda (slot ...)
(let ([block (make-wrap-TYPE (malloc _TYPE* malloc-mode))])
(set-cpointer-tag! block all-tags)
(ptr-set! block stype 'abs offset slot)
...
block))))
define-wrapper-struct
(define (list->TYPE vals) (apply make-TYPE vals))
(define (list*->TYPE vals)
(cond
[(TYPE? vals) vals]
[(= (length vals) (length all-types))
(let ([block (malloc _TYPE* malloc-mode)])
(set-cpointer-tag! block all-tags)
(for-each
(lambda (type ofs value)
(let-values
([(ptr tags types offsets T->list* list*->T struct:T wrap)
(cstruct-info
type
(lambda () (values #f '() #f #f #f #f #f values)))])
(ptr-set! block type 'abs ofs
(if list*->T (list*->T value) value))))
all-types all-offsets vals)
block)]
[else (error '_TYPE "expecting ~s values, got ~s: ~e"
(length all-types) (length vals) vals)]))
(define (TYPE->list x)
(unless (TYPE? x)
(raise-argument-error 'TYPE-list struct-string x))
(map (lambda (type ofs) (ptr-ref x type 'abs ofs))
all-types all-offsets))
(define (TYPE->list* x)
(unless (TYPE? x)
(raise-argument-error 'TYPE-list struct-string x))
(map (lambda (type ofs)
(let-values
([(v) (ptr-ref x type 'abs ofs)]
[(ptr tags types offsets T->list* list*->T struct:T wrap)
(cstruct-info
type
(lambda () (values #f '() #f #f #f #f #f values)))])
(if T->list* (T->list* v) v)))
all-types all-offsets))
(cstruct-info
_TYPE* 'set!
_TYPE all-tags all-types all-offsets TYPE->list* list*->TYPE
struct:cpointer:TYPE wrap-TYPE-type)
(values _TYPE* _TYPE-pointer _TYPE-pointer/null TYPE? TYPE-tag
make-TYPE TYPE-SLOT ... set-TYPE-SLOT! ...
list->TYPE list*->TYPE TYPE->list TYPE->list*
maybe-struct:TYPE ...)))))))
(define (err what . xs)
(apply raise-syntax-error #f
(if (list? what) (apply string-append what) what)
stx xs))
(syntax-case stx ()
[(_ type ([slot slot-type] ...) . more)
(or (stx-pair? #'type)
(stx-pair? #'(slot ...)))
(let-values ([(_TYPE _SUPER)
(syntax-case #'type ()
[(t s) (values #'t #'s)]
[_ (values #'type #f)])]
[(alignment malloc-mode properties property-bindings no-equal?)
(let loop ([more #'more]
[alignment #f]
[malloc-mode #f]
[properties null]
[property-bindings null]
[no-equal? #f])
(define (head) (syntax-case more () [(x . _) #'x]))
(syntax-case more ()
[() (values alignment
malloc-mode
(reverse properties)
(reverse property-bindings)
no-equal?)]
[(#:alignment) (err "missing expression for #:alignment" (head))]
[(#:alignment a . rest)
(not alignment)
(loop #'rest #'a malloc-mode properties property-bindings no-equal?)]
[(#:alignment a . rest)
(err "multiple specifications of #:alignment" (head))]
[(#:malloc-mode) (err "missing expression for #:malloc-mode" (head))]
[(#:malloc-mode m . rest)
(not malloc-mode)
(loop #'rest alignment #'m properties property-bindings no-equal?)]
[(#:alignment m . rest)
(err "multiple specifications of #:malloc-mode" (head))]
[(#:property) (err "missing property expression for #:property" (head))]
[(#:property prop) (err "missing value expression for #:property" (head))]
[(#:property prop val . rest)
(let ()
(define prop-id (car (generate-temporaries '(prop))))
(define val-id (car (generate-temporaries '(prop-val))))
(loop #'rest
alignment
malloc-mode
(list* #`(cons #,prop-id #,val-id) properties)
(list* (list (list val-id) #'val)
(list (list prop-id) #'(check-is-property prop))
property-bindings)
no-equal?))]
[(#:no-equal . rest)
(if no-equal?
(err "multiple specifications of #:no-equal" (head))
(loop #'rest alignment malloc-mode properties property-bindings #t))]
[(x . _) (err (if (keyword? (syntax-e #'x))
"unknown keyword" "unexpected form")
#'x)]
[else (err "bad syntax")]))])
(unless (identifier? _TYPE)
(err "expecting a `_name' identifier or `(_name _super-name)'"
_TYPE))
(unless (regexp-match? #rx"^_." (symbol->string (syntax-e _TYPE)))
(err "cstruct name must begin with a `_'" _TYPE))
(for ([s (in-list (syntax->list #'(slot ...)))])
(unless (identifier? s)
(err "bad field name, expecting an identifier" s)))
(if _SUPER
(make-syntax _TYPE #t
#`(#,(datum->syntax _TYPE 'super _TYPE) slot ...)
#`(#,_SUPER slot-type ...)
alignment
malloc-mode
properties
property-bindings
no-equal?)
(make-syntax _TYPE #f #'(slot ...) #`(slot-type ...)
alignment malloc-mode properties property-bindings no-equal?)))]
[(_ type () . more)
(identifier? #'type)
(err "must have either a supertype or at least one field")]
;; specific errors for bad slot specs, leave the rest for a generic error
[(_ type (bad ...) . more)
(err "bad field specification, expecting `[name ctype]'"
(ormap (lambda (s) (syntax-case s () [[n ct] #t] [_ s]))
(syntax->list #'(bad ...))))]
[(_ type bad . more)
(err "bad field specification, expecting a sequence of `[name ctype]'"
#'bad)]))
;; Add `prop:equal+hash' to use pointer equality
;; if `props' does not already have `prop:equal+hash'
;; property:
(define (add-equality-property props)
(if (ormap (lambda (p) (equal? (car p) prop:equal+hash)) props)
props
(append props
(list (cons prop:equal+hash
(list (lambda (a b eql?)
(ptr-equal? a b))
(lambda (a hsh)
(hsh (cast a _pointer _pointer)))
(lambda (a hsh)
(hsh (cast a _pointer _pointer)))))))))
;; helper for the above: keep runtime information on structs
(define cstruct-info
(let ([table (make-weak-hasheq)])
(lambda (cstruct msg/fail-thunk . args)
(cond [(eq? 'set! msg/fail-thunk)
(hash-set! table cstruct (make-ephemeron cstruct args))]
[(and cstruct ; might get a #f if there were no slots
(hash-ref table cstruct (lambda () #f)))
=> (lambda (xs)
(let ([v (ephemeron-value xs)])
(if v (apply values v) (msg/fail-thunk))))]
[else (msg/fail-thunk)]))))
;; another helper:
(define (check-is-property p)
(unless (struct-type-property? p)
(raise-argument-error 'define-cstruct "struct-type-property?" p))
p)
;; ----------------------------------------------------------------------------
;;
(define prim-synonyms
#hasheq((double* . double)
(fixint . long)
(ufixint . ulong)
(fixnum . long)
(ufixnum . ulong)
(path . bytes)
(symbol . bytes)
(scheme . pointer)))
(define (ctype->layout c)
(let ([b (ctype-basetype c)])
(cond
[(ctype? b) (ctype->layout b)]
[(list? b) (map ctype->layout b)]
[(vector? b) (vector (ctype->layout (vector-ref b 0)) (vector-ref b 1))]
[else (hash-ref prim-synonyms b b)])))
;; ----------------------------------------------------------------------------
;; Misc utilities
;; Used by set-ffi-obj! to get the actual value so it can be kept around
(define (get-lowlevel-object x type)
(let ([basetype (ctype-basetype type)])
(if (ctype? basetype)
(let ([s->c (ctype-scheme->c type)])
(get-lowlevel-object (if s->c (s->c x) x) basetype))
(values x type))))
;; Converting Scheme lists to/from C vectors (going back requires a length)
(define* (list->cblock l type [need-len #f])
(define len (length l))
(when need-len
(unless (= len need-len)
(error 'list->cblock "list does not have the expected length: ~e" l)))
(if (null? l)
#f ; null => NULL
(let ([cblock (malloc len type)])
(let loop ([l l] [i 0])
(unless (null? l)
(ptr-set! cblock type i (car l))
(loop (cdr l) (add1 i))))
cblock)))
(provide (protect-out cblock->list))
(define (cblock->list cblock type len)
(cond [(zero? len) '()]
[(cpointer? cblock)
(let loop ([i (sub1 len)] [r '()])
(if (< i 0)
r
(loop (sub1 i) (cons (ptr-ref cblock type i) r))))]
[else (error 'cblock->list
"expecting a non-void pointer, got ~s" cblock)]))
;; Converting Scheme vectors to/from C vectors
(define* (vector->cblock v type [need-len #f])
(let ([len (vector-length v)])
(when need-len
(unless (= need-len len)
(error 'vector->cblock "vector does not have the expected length: ~e" v)))
(if (zero? len)
#f ; #() => NULL
(let ([cblock (malloc len type)])
(let loop ([i 0])
(when (< i len)
(ptr-set! cblock type i (vector-ref v i))
(loop (add1 i))))
cblock))))
(provide (protect-out cblock->vector))
(define (cblock->vector cblock type len)
(cond [(zero? len) '#()]
[(cpointer? cblock)
(let ([v (make-vector len)])
(let loop ([i (sub1 len)])
(unless (< i 0)
(vector-set! v i (ptr-ref cblock type i))
(loop (sub1 i))))
v)]
[else (error 'cblock->vector
"expecting a non-void pointer, got ~s" cblock)]))
(define killer-thread #f)
(define* register-finalizer
;; We bind `killer-executor' as a location variable, instead of a module
;; variable, so that the loop for `killer-thread' doesn't have a namespace
;; (via a prefix) in its continuation:
(let ([killer-executor (make-stubborn-will-executor)])
;; The "stubborn" kind of will executor (for `killer-executor') is
;; provided by '#%foreign, and it doesn't get GC'ed if any
;; finalizers are attached to it (while the normal kind can get
;; GCed even if a thread that is otherwise inaccessible is blocked
;; on the executor). Also it registers level-2 finalizers (which
;; are run after non-late weak boxes are cleared).
(lambda (obj finalizer)
(unless killer-thread
;; We need to make a thread that runs in a privildged custodian and
;; that doesn't retain the current namespace --- either directly
;; or indirectly through some parameter setting in the current thread.
(let ([priviledged-custodian ((get-ffi-obj 'scheme_make_custodian #f (_fun _pointer -> _scheme)) #f)]
[no-cells ((get-ffi-obj 'scheme_empty_cell_table #f (_fun -> _gcpointer)))]
[min-config ((get-ffi-obj 'scheme_minimal_config #f (_fun -> _gcpointer)))]
[thread/details (get-ffi-obj 'scheme_thread_w_details #f (_fun _scheme
_gcpointer ; config
_gcpointer ; cells
_pointer ; break_cell
_scheme ; custodian
_int ; suspend-to-kill?
-> _scheme))]
[logger (current-logger)]
[cweh #f]) ; <- avoids a reference to a module-level binding
(set! cweh call-with-exception-handler)
(set! killer-thread
(thread/details (lambda ()
(let retry-loop ()
(call-with-continuation-prompt
(lambda ()
(cweh
(lambda (exn)
(log-message logger
'error
(if (exn? exn)
(exn-message exn)
(format "~s" exn))
#f)
(abort-current-continuation void))
(lambda ()
(let loop () (will-execute killer-executor) (loop))))))
(retry-loop)))
min-config
no-cells
#f ; default break cell
priviledged-custodian
0))))
(will-register killer-executor obj finalizer))))
|