/usr/share/racket/pkgs/swindle/misc.rkt is in racket-common 6.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 | ;;; Written by Eli Barzilay: Maze is Life! (eli@barzilay.org)
;;> A lot of miscellaneous functionality that is needed for Swindle, or
;;> useful by itself.
#lang s-exp swindle/base
(require mzlib/list) (provide (all-from mzlib/list))
(require mzlib/etc) (provide (all-from mzlib/etc))
(require mzlib/string) (provide (all-from mzlib/string))
;; these are needed to make regexp-case work in scheme/base too
(require (rename scheme/base base-else else) (rename scheme/base base-=> =>))
;; ----------------------------------------------------------------------------
;;>>... Convenient syntax definitions
;;>> (define* ...)
;;> Like `define', except that the defined identifier is automatically
;;> `provide'd. Doesn't provide the identifier if outside of a module
;;> context.
(provide define*)
(define-syntax (define* stx)
(syntax-case stx ()
[(_ x . xs)
(memq (syntax-local-context) '(module module-begin))
(let ([name (let loop ([x #'x])
(syntax-case x () [(x . xs) (loop #'x)] [_ x]))])
(if name
#`(begin (provide #,name) (define x . xs))
#`(define x . xs)))]
[(_ x . xs) #`(define x . xs)]))
;;>> (make-provide-syntax orig-def-syntax provide-def-syntax)
;;> Creates `provide-def-syntax' as a syntax that is the same as
;;> `orig-def-syntax' together with an automatic `provide' form for the
;;> defined symbol, which should be either the first argument or the first
;;> identifier in a list (it does not work for recursive nesting). The
;;> `provide' form is added only if the form appears at a module
;;> top-level. The convention when this is used is to use a "*" suffix
;;> for the second identifier.
(provide make-provide-syntax)
(define-syntax make-provide-syntax
(syntax-rules ()
[(_ form form*)
(define-syntax (form* stx)
(syntax-case stx ()
[(_ (id . as) . r)
(memq (syntax-local-context) '(module module-begin))
#'(begin (provide id) (form (id . as) . r))]
[(_ id . r)
(memq (syntax-local-context) '(module module-begin))
#'(begin (provide id) (form id . r))]
[(_ . r) #'(form . r)]))]))
;;>> (define-syntax* ...)
;;> Defined as the auto-provide form of `define-syntax'.
(provide define-syntax*)
(make-provide-syntax define-syntax define-syntax*)
;;>> (defsyntax ...)
;;>> (defsyntax* ...)
;;>> (letsyntax (local-syntaxes ...) ...)
;;> These are just shorthands for `define-syntax', `define-syntax*', and
;;> `let-syntax'. This naming scheme is consistent with other definitions
;;> in this module (and the rest of Swindle).
(define-syntax* defsyntax
(syntax-rules () [(_ . args) (define-syntax . args)]))
(make-provide-syntax defsyntax defsyntax*) (provide defsyntax*)
(define-syntax* letsyntax
(syntax-rules () [(_ . args) (let-syntax . args)]))
;;>> (defsubst name body)
;;>> (defsubst* name body)
;;>> (letsubst ([name body] ...) letbody ...)
;;> These are convenient ways of defining simple pattern transformer
;;> syntaxes (simple meaning they're much like inlined functions). In
;;> each of these forms, the `name' can be either a `(name arg ...)' which
;;> will define a simple macro or an identifier which will define a
;;> symbol-macro. For example:
;;> => (defsubst (my-if cond then else)
;;> (if (and cond (not (eq? 0 cond))) then else))
;;> => (my-if 1 (echo 2) (echo 3))
;;> 2
;;> => (my-if 0 (echo 2) (echo 3))
;;> 3
;;> => (define x (list 1 2 3))
;;> => (defsubst car-x (car x))
;;> => car-x
;;> 1
;;> => (set! car-x 11)
;;> => x
;;> (11 2 3)
;;> Actually, if a `(name arg ...)' is used, then the body can have more
;;> pattern/expansions following -- but since this form translates to a
;;> usage of `syntax-rules', the `name' identifier should normally be `_'
;;> in subsequent patterns. For example:
;;> => (defsubst (my-if cond then else)
;;> (if (and cond (not (eq? 0 cond))) then else)
;;> (_ cond then)
;;> (and cond (not (eq? 0 cond)) then))
;;> => (my-if 0 1)
;;> #f
;;> Finally, note that since these are just patterns that get handled by
;;> syntax-rules, all the usual pattern stuff applies, like using `...'.
(defsyntax defsubst-process
(syntax-rules ()
[(_ name (acc ...)) (define-syntax name (syntax-rules () acc ...))]
[(_ name (acc ...) n+a subst . more)
(defsubst-process name (acc ... (n+a subst)) . more)]))
(defsyntax* defsubst
(syntax-rules ()
[(_ (name . args) subst)
(define-syntax name
(syntax-rules () [(name . args) subst]))]
[(_ (name . args) subst . more)
(defsubst-process name () (name . args) subst . more)]
[(_ name subst)
(define-syntax (name stx)
(syntax-case stx () ; syntax-rules won't handle identifier expansion
;; doesn't matter here, but see `letsubst' for an explanation on `___'
[(___ . args) (syntax/loc stx (subst . args))]
[___ (syntax/loc stx subst)]))]))
(make-provide-syntax defsubst defsubst*) (provide defsubst*)
;; a let version of the above
(defsyntax* (letsubst stx)
(syntax-case stx ()
[(_ ([name body] ...) letbody ...)
(quasisyntax/loc stx
(let-syntax
#,(map
(lambda (name body)
;; use `___' in the following, if we use `name', then it would
;; not be possible to make an X subst that expand to something
;; with the previous X, so (let ([x 1]) (letsubst ([x x]) x))
;; will loop forever instead of returning 1.
(syntax-case name ()
[(name . args)
(quasisyntax/loc body
(name (syntax-rules () [(___ . args) #,body])))]
[name (identifier? #'name)
(quasisyntax/loc body
(name
(lambda (stx)
(syntax-case stx ()
[(___ . args) (syntax/loc stx (#,body . args))]
[___ (syntax/loc stx #,body)]))))]))
(syntax-e #'(name ...)) (syntax-e #'(body ...)))
letbody ...))]))
;;>> (defmacro name body)
;;>> (defmacro* name body)
;;>> (letmacro ([name body] ...) letbody ...)
;;> These are just like Racket's define-macro (from mzlib/defmacro) with
;;> two major extensions:
;;> * If `name' is a simple identifier then a symbol-macro is defined (as
;;> with `defsubst' above).
;;> * A `letmacro' form for local macros is provided.
(require (for-syntax (submod compatibility/defmacro dmhelp)))
(provide defmacro letmacro)
(define-syntaxes (defmacro letmacro)
(let ()
(define (syntax-null? x)
(or (null? x) (and (syntax? x) (null? (syntax-e x)))))
(define (syntax-pair? x)
(or (pair? x) (and (syntax? x) (pair? (syntax-e x)))))
(define (syntax-car x) (if (pair? x) (car x) (car (syntax-e x))))
(define (syntax-cdr x) (if (pair? x) (cdr x) (cdr (syntax-e x))))
(define (check-args stx name args)
(unless (identifier? name)
(raise-syntax-error
#f "expected an identifier for the macro name" stx name))
(let loop ([args args])
(cond [(syntax-null? args) 'ok]
[(identifier? args) 'ok]
[(syntax-pair? args)
(unless (identifier? (syntax-car args))
(raise-syntax-error
#f "expected an identifier for a macro argument"
stx (syntax-car args)))
(loop (syntax-cdr args))]
[else
(raise-syntax-error
#f "not a valid argument sequence after the macro name"
stx)])))
(values
(lambda (stx) ; defmacro
(syntax-case stx ()
[(_ (name . args) body0 body ...)
(begin
(check-args stx #'name #'args)
#'(define-syntax name
(let ([p (lambda args body0 body ...)])
(lambda (stx)
(let ([l (syntax->list stx)])
(unless (and l (procedure-arity-includes?
p (sub1 (length l))))
(raise-syntax-error #f "bad form" stx))
(let ([ht (make-hash-table)])
(datum->syntax-object
stx
(dm-subst
ht (apply p (cdr (dm-syntax->datum stx ht))))
stx)))))))]
[(_ name body) (identifier? #'name)
#'(define-syntax name
(lambda (stx)
(syntax-case stx ()
[(_ . xs) (quasisyntax/loc stx
(#,(datum->syntax-object stx body stx) . xs))]
[_ (datum->syntax-object stx body stx)])))]))
(lambda (stx) ; letmacro
(syntax-case stx ()
[(_ ([name body] ...) letbody ...)
(quasisyntax/loc stx
(let-syntax
#,(map
(lambda (name body)
(if (identifier? name)
(quasisyntax/loc body
(#,name
(lambda (stx)
(syntax-case stx ()
[(_1 . xs)
(quasisyntax/loc stx
(#,(datum->syntax-object stx body stx)
. xs))]
[_1 (datum->syntax-object stx #,body stx)]))))
(syntax-case name ()
[(name . args)
(begin
(check-args stx #'name #'args)
(quasisyntax/loc body
(name
(let ([p (lambda args #,body)])
(lambda (stx)
(let ([l (syntax->list stx)])
(unless
(and l (procedure-arity-includes?
p (sub1 (length l))))
(raise-syntax-error #f "bad form" stx))
(let ([ht (make-hash-table)])
(datum->syntax-object
stx
(dm-subst
ht (apply p (cdr (dm-syntax->datum
stx ht))))
stx))))))))])))
(syntax-e #'(name ...)) (syntax-e #'(body ...)))
letbody ...))])))))
(make-provide-syntax defmacro defmacro*) (provide defmacro*)
;; ----------------------------------------------------------------------------
;;>>... Controlling syntax
;;>> (define-syntax-parameter name default)
;;>> (define-syntax-parameter* name default)
;;> Creates a `syntax parameter'. Syntax parameters are things that you
;;> can use just like normal parameters, but they are syntax transformers,
;;> and the information they store can be used by other syntax
;;> transformers. The purpose of having them around is to parameterize
;;> the way syntax transformation is used -- so they should be used as
;;> global option changes, not for frequent side effect: they change their
;;> value at syntax expansion time. Note that using it stores the literal
;;> syntax that is passed to them -- there is no way to evaluate the given
;;> argument, for example, if some parameter expects a boolean -- then
;;> `(not #t)' will not work! The syntax parameter itself is invoked
;;> wither with no arguments to retrieve its value, or with an argument to
;;> set it. Retrieving or setting the value in this way is meaningful
;;> only in an interactive context since using it in a function just
;;> expands to the current value:
;;> => (define-syntax-parameter -foo- 1)
;;> => (-foo-)
;;> 1
;;> => (define (foo) (-foo-))
;;> => (-foo- 2)
;;> => (-foo-)
;;> 2
;;> => (foo)
;;> 1
(defsyntax* define-syntax-parameter
(syntax-rules ()
[(_ name default)
(define-syntax name
(let ([p (make-parameter #'default)])
(lambda stx
(if (null? stx)
(p) ; when the value is used in other transformers
(syntax-case (car stx) ()
[(_ new) (begin (p #'new) #'(void))]
[(_) (p)])))))]))
(make-provide-syntax define-syntax-parameter define-syntax-parameter*)
(provide define-syntax-parameter*)
;; ----------------------------------------------------------------------------
;;>>... Setters and more list accessors
;;>> (set-caar! place x)
;;>> (set-cadr! place x)
;;>> (set-cdar! place x)
;;>> (set-cddr! place x)
;;>> (set-caaar! place x)
;;>> (set-caadr! place x)
;;>> (set-cadar! place x)
;;>> (set-caddr! place x)
;;>> (set-cdaar! place x)
;;>> (set-cdadr! place x)
;;>> (set-cddar! place x)
;;>> (set-cdddr! place x)
;;>> (set-caaaar! place x)
;;>> (set-caaadr! place x)
;;>> (set-caadar! place x)
;;>> (set-caaddr! place x)
;;>> (set-cadaar! place x)
;;>> (set-cadadr! place x)
;;>> (set-caddar! place x)
;;>> (set-cadddr! place x)
;;>> (set-cdaaar! place x)
;;>> (set-cdaadr! place x)
;;>> (set-cdadar! place x)
;;>> (set-cdaddr! place x)
;;>> (set-cddaar! place x)
;;>> (set-cddadr! place x)
;;>> (set-cdddar! place x)
;;>> (set-cddddr! place x)
;;> These are all defined so it is possible to use `setf!' from "setf.rkt"
;;> with these standard and library-provided functions.
#|
(define* set-caar! (lambda (p v) (set-car! (car p) v)))
(define* set-cadr! (lambda (p v) (set-car! (cdr p) v)))
(define* set-cdar! (lambda (p v) (set-cdr! (car p) v)))
(define* set-cddr! (lambda (p v) (set-cdr! (cdr p) v)))
(define* set-caaar! (lambda (p v) (set-car! (caar p) v)))
(define* set-caadr! (lambda (p v) (set-car! (cadr p) v)))
(define* set-cadar! (lambda (p v) (set-car! (cdar p) v)))
(define* set-caddr! (lambda (p v) (set-car! (cddr p) v)))
(define* set-cdaar! (lambda (p v) (set-cdr! (caar p) v)))
(define* set-cdadr! (lambda (p v) (set-cdr! (cadr p) v)))
(define* set-cddar! (lambda (p v) (set-cdr! (cdar p) v)))
(define* set-cdddr! (lambda (p v) (set-cdr! (cddr p) v)))
(define* set-caaaar! (lambda (p v) (set-car! (caaar p) v)))
(define* set-caaadr! (lambda (p v) (set-car! (caadr p) v)))
(define* set-caadar! (lambda (p v) (set-car! (cadar p) v)))
(define* set-caaddr! (lambda (p v) (set-car! (caddr p) v)))
(define* set-cadaar! (lambda (p v) (set-car! (cdaar p) v)))
(define* set-cadadr! (lambda (p v) (set-car! (cdadr p) v)))
(define* set-caddar! (lambda (p v) (set-car! (cddar p) v)))
(define* set-cadddr! (lambda (p v) (set-car! (cdddr p) v)))
(define* set-cdaaar! (lambda (p v) (set-cdr! (caaar p) v)))
(define* set-cdaadr! (lambda (p v) (set-cdr! (caadr p) v)))
(define* set-cdadar! (lambda (p v) (set-cdr! (cadar p) v)))
(define* set-cdaddr! (lambda (p v) (set-cdr! (caddr p) v)))
(define* set-cddaar! (lambda (p v) (set-cdr! (cdaar p) v)))
(define* set-cddadr! (lambda (p v) (set-cdr! (cdadr p) v)))
(define* set-cdddar! (lambda (p v) (set-cdr! (cddar p) v)))
(define* set-cddddr! (lambda (p v) (set-cdr! (cdddr p) v)))
|#
;;>> (1st list)
;;>> (2nd list)
;;>> (3rd list)
;;>> (4th list)
;;>> (5th list)
;;>> (6th list)
;;>> (7th list)
;;>> (8th list)
;;> Quick list accessors -- no checking is done, which makes these
;;> slightly faster than the bindings provided by mzlib/list.
(define* 1st car)
(define* 2nd cadr)
(define* 3rd caddr)
(define* 4th cadddr)
(define* 5th (lambda (x) (car (cddddr x))))
(define* 6th (lambda (x) (cadr (cddddr x))))
(define* 7th (lambda (x) (caddr (cddddr x))))
(define* 8th (lambda (x) (cadddr (cddddr x))))
;;>> (set-1st! list x)
;;>> (set-2nd! list x)
;;>> (set-3rd! list x)
;;>> (set-4th! list x)
;;>> (set-5th! list x)
;;>> (set-6th! list x)
;;>> (set-7th! list x)
;;>> (set-8th! list x)
;;> Setter functions for the above.
#|
(define* set-1st! set-car!)
(define* set-2nd! set-cadr!)
(define* set-3rd! set-caddr!)
(define* set-4th! set-cadddr!)
(define* set-5th! (lambda (p v) (set-car! (cddddr p) v)))
(define* set-6th! (lambda (p v) (set-car! (cdr (cddddr p)) v)))
(define* set-7th! (lambda (p v) (set-car! (cddr (cddddr p)) v)))
(define* set-8th! (lambda (p v) (set-car! (cdddr (cddddr p)) v)))
|#
;;>> (head pair)
;;>> (tail pair)
;;>> (set-head! pair x)
;;>> (set-tail! pair x)
;;> Synonyms for `first', `rest', `set-first!', `set-rest!'.
(define* head first)
(define* tail rest)
;(define* set-head! set-first!)
;(define* set-tail! set-rest!)
;;>> (set-second! list x)
;;>> (set-third! list x)
;;>> (set-fourth! list x)
;;>> (set-fifth! list x)
;;>> (set-sixth! list x)
;;>> (set-seventh! list x)
;;>> (set-eighth! list x)
;;> Defined to allow `setf!' with these mzlib/list functions. Note that
;;> there is no error checking (unlike the accessor functions which are
;;> provided by mzlib/list).
#|
(define* set-second! set-2nd!)
(define* set-third! set-3rd!)
(define* set-fourth! set-4th!)
(define* set-fifth! set-5th!)
(define* set-sixth! set-6th!)
(define* set-seventh! set-7th!)
(define* set-eighth! set-8th!)
|#
;;>> (nth list n)
;;>> (nthcdr list n)
;;> Functions for pulling out the nth element and the nth tail of a list.
;;> Note the argument order which is unlike the one in CL.
(define* nth list-ref)
(define* (nthcdr l n)
(if (zero? n) l (nthcdr (cdr l) (- n 1))))
;;>> (list-set! list n x)
;;>> (set-nth! list n x)
;;> A function to set the nth element of a list, also provided as
;;> `set-nth!' to allow using `setf!' with `nth'.
#|
(define* (list-set! lst index new)
(set-car! (nthcdr lst index) new))
(define* set-nth! list-set!)
|#
;;>> (set-list-ref! list n x)
;;>> (set-vector-ref! vector n x)
;;>> (set-string-ref! string n x)
;;> These are defined as `list-set!', `vector-set!', and `string-set!', so
;;> the accessors can be used with `setf!'.
; (define* set-list-ref! list-set!)
(define* set-vector-ref! vector-set!)
(define* set-string-ref! string-set!)
;;>> (last list)
;;>> (set-last! list x)
;;> Accessing a list's last element, and modifying it.
(define* (last l)
(car (last-pair l)))
#|
(define* (set-last! l x)
(set-car! (last-pair l) x))
|#
;;>> (set-unbox! box x)
;;> Allow using `setf!' with `unbox'. Note: this is an alias for
;;> `set-box!' which is an inconsistent name with other Scheme `set-foo!'
;;> functions -- the result is that you can also do `(setf! (box foo) x)'
;;> and bogusly get the same effect.
(define* set-unbox! set-box!)
;;>> (set-hash-table-get! table key [default] value)
;;> This is defined to be able to `setf!' into a `hash-table-get'
;;> accessor. The form that `setf!' assembles always puts the new value
;;> last, but it is still useful to have a default thunk which results in
;;> an optional argument in an unusual place (and this argument is ignored
;;> by this, which is why it is defined as a macro). For example:
;;> => (define t (make-hash-table))
;;> => (inc! (hash-table-get t 'foo))
;;> hash-table-get: no value found for key: foo
;;> => (inc! (hash-table-get t 'foo (thunk 0)))
;;> => (hash-table-get t 'foo)
;;> 1
(defsubst*
(set-hash-table-get! table key value) (hash-table-put! table key value)
(_ table key thunk value) (hash-table-put! table key value))
;; ----------------------------------------------------------------------------
;;>>... Utilities
;;>> (eprintf fmt-string args ...)
;;> Same as `printf' but it uses `current-error-port'.
(define* (eprintf . args)
(apply fprintf (current-error-port) args))
;;>> concat
;;> A shorter alias for `string-append'.
(define* concat string-append)
;;>> (symbol-append sym ...)
;;> Self explanatory.
(define* (symbol-append . symbols)
(string->symbol (apply string-append (map symbol->string symbols))))
;;>> (maptree func tree)
;;> Applies given function to a tree made of cons cells, and return the
;;> results tree with the same shape.
(define* (maptree f x)
(let loop ([x x])
(cond [(list? x) (map loop x)]
[(pair? x) (cons (loop (car x)) (loop (cdr x)))]
[else (f x)])))
;;>> (map! func list ...)
;;> Same as `map' -- but destructively modifies the first list to hold the
;;> results of applying the function. Assumes all lists have the same
;;> length.
#|
(define* (map! f l . rest)
(if (null? rest)
(let loop ([xs l])
(if (null? xs) l (begin (set-car! xs (f (car xs))) (loop (cdr xs)))))
(let loop ([xs l] [ls rest])
(if (null? xs) l (begin (set-car! xs (apply f (car xs) (map car ls)))
(loop (cdr xs) (map cdr ls)))))))
|#
;;>> (maptree! func tree)
;;> Same as `maptree' -- but destructively modifies the list to hold the
;;> results of applying the function.
#|
(define* (maptree! f x)
(if (pair? x)
(begin (let loop ([x x])
(defsubst (do-part get set)
(let ([y (get x)])
(cond [(pair? y) (loop y)]
[(not (null? y)) (set x (f y))])))
(do-part car set-car!)
(do-part cdr set-cdr!))
x)
(f x))) ; can't be destructive here
|#
;;>> (mappend func list ...)
;;>> (mappend! func list ...)
;;> Common idiom for doing a `(map func list ...)' and appending the
;;> results. `mappend!' uses `append!'.
(define* (mappend f . ls)
(apply append (apply map f ls)))
#|
(define* (mappend! f . ls)
(apply append! (apply map f ls)))
|#
;;>> (mapply func list-of-lists)
;;> Apply the given `func' on every list in `list-of-lists' and return the
;;> results list.
(define* (mapply f ls)
(map (lambda (args) (apply f args)) ls))
;;>> (negate predicate?)
;;> Returns a negated predicate function.
(define* (negate pred?)
(lambda x (not (pred? . x))))
;;>> (position-of x list)
;;> Finds `x' in `list' and returns its index.
(define* (position-of x lst)
(let loop ([i 0] [l lst])
(cond [(null? l) #f]
[(eq? x (car l)) i]
[else (loop (add1 i) (cdr l))])))
;;>> (find-if predicate? list)
;;> Find and return an element of `list' which satisfies `predicate?', or
;;> #f if none found.
(define* (find-if pred? l)
(let loop ([l l])
(cond [(null? l) #f]
[(pred? (car l)) (car l)]
[else (loop (cdr l))])))
;;>> (some predicate? list ...)
;;>> (every predicate? list ...)
;;> Similar to Racket's `ormap' and `andmap', except that when multiple
;;> lists are given, the check stops as soon as the shortest list ends.
(define* (some pred? l . rest) ; taken from slib/comlist.scm,
(cond [(null? rest) ; modified to check only up to the
(let mapf ([l l]) ; length of the shortest list.
(and (not (null? l))
(or (pred? (car l)) (mapf (cdr l)))))]
[else (let mapf ([l l] [rest rest])
(and (not (or (null? l) (memq '() rest)))
(or (apply pred? (car l) (map car rest))
(mapf (cdr l) (map cdr rest)))))]))
(define* (every pred? l . rest) ; taken from slib/comlist.scm
(cond [(null? rest) ; modified to check only up to the
(let mapf ([l l]) ; length of the shortest list.
(or (null? l)
(and (pred? (car l)) (mapf (cdr l)))))]
[else (let mapf ([l l] [rest rest])
(or (null? l) (if (memq '() rest) #t #f)
(and (apply pred? (car l) (map car rest))
(mapf (cdr l) (map cdr rest)))))]))
;;>> (with-output-to-string thunk)
;;> Run `thunk' collecting generated output into a string.
(define* (with-output-to-string thunk)
(let ([str (open-output-string)])
(parameterize ([current-output-port str]) (thunk))
(get-output-string str)))
;;>> (1+ x)
;;>> (1- x)
;;> Synonyms for `add1' and `sub1'.
(define* 1+ add1)
(define* 1- sub1)
;; ----------------------------------------------------------------------------
;;>>... Multi-dimensional hash-tables
;; Using lists of `eq?' keys, based on Racket's hash tables (MzScheme doesn't
;; have custom hashes). Use weak hash-tables so no space is redundantly
;; wasted.
;;>> (make-l-hash-table)
;;>> (l-hash-table-get table keys [failure-thunk])
;;>> (l-hash-table-put! table keys value)
;;>> (set-l-hash-table-get! table key [default] value)
;;> These functions are similar to Racket's hash-table functions, except
;;> that they work with a list of keys (compared with `eq?'). If it was
;;> possible to use a custom equality hash-table, then then would use
;;> something like
;;> (lambda (x y) (and (= (length x) (length y)) (andmap eq? x y))).
;;> The implementation uses a hash-table of hash-tables, all of them weak,
;;> since it is supposed to be used for memoization.
;;>
;;> `set-l-hash-table-get!' is defined to work with `setf!'.
;; Internal values, used below.
(define *nothing* (list "*"))
(define (return-nothing) *nothing*)
(defsubst l-hash-vector-length 10)
(define* (make-l-hash-table)
(make-vector (add1 l-hash-vector-length) *nothing*))
(define* (l-hash-table-get table keys . thunk)
(let ([len (length keys)])
(let loop ([obj (vector-ref table (min len l-hash-vector-length))]
[keys (if (< len l-hash-vector-length) keys (cons len keys))])
(cond [(eq? obj *nothing*)
(if (null? thunk)
(error 'l-hash-table-get "no value found.") ((car thunk)))]
[(null? keys) obj]
[(not (hash-table? obj))
(error 'l-hash-table-get "got to a premature value.")]
[else (loop (hash-table-get obj (car keys) return-nothing)
(cdr keys))]))))
(define* (l-hash-table-put! table keys value)
(let* ([len (length keys)]
[obj (vector-ref table (min len l-hash-vector-length))])
(when (eq? obj *nothing*)
(set! obj (if (zero? len) value (make-hash-table 'weak)))
(vector-set! table (min len l-hash-vector-length) obj))
(unless (zero? len)
(let loop ([obj obj]
[keys (if (< len l-hash-vector-length) keys (cons len keys))])
(cond [(not (hash-table? obj))
(error 'l-hash-table-put! "got to a premature value.")]
[(null? (cdr keys)) (hash-table-put! obj (car keys) value)]
[else (let ([value (hash-table-get
obj (car keys) return-nothing)])
(when (eq? value *nothing*)
(set! value (make-hash-table 'weak))
(hash-table-put! obj (car keys) value))
(loop value (cdr keys)))])))))
(defsubst*
(set-l-hash-table-get! table key value) (l-hash-table-put! table key value)
(_ table key thunk value) (l-hash-table-put! table key value))
;; Simple memoization.
;;>> (memoize func)
;;> Return a memoized version of `func'. Note that if `func' is
;;> recursive, it should be arranged for it to call the memoized version
;;> rather then call itself directly.
(define* (memoize f)
(let ([table (make-l-hash-table)])
(lambda args
(l-hash-table-get
table args
(thunk
(let ([r (apply f args)]) (l-hash-table-put! table args r) r))))))
;;>> (memoize! func-name)
;;> Changes the given function binding to a memoized version.
(defsubst* (memoize! f) (set! f (memoize f)))
;; ---------------------------------------------------------------------------
;;>>... Generic iteration and list comprehension
;; Idea originated in a post on c.l.s by Based on Phil Bewig (July 2002), but
;; went light years beyond that.
;;>> (collect [dir] (var base expr) clause ...)
;;> Sophisticated iteration syntax. The iteration is specified by the
;;> given clauses, where `var' serves as an accumulator variable that
;;> collects a value beginning with `base' and continuing with `expr' --
;;> similar to a single binding in a `do' form with a variable, an initial
;;> value and an update expression. But there are much more iteration
;;> options than a `do' form: this form supports a generic
;;> list-comprehension and related constructs. Forms that use this
;;> construct are:
;;>
;;>> (loop-for clause ...)
;;> Use when no value collection is needed, and the default for
;;> expressions is to do them instead of using them as a filter.
;;> Implemented as:
;;> (collect => (acc (void) acc) do clause ...)
(defsubst* (loop-for clause ...)
(collect => (acc (void) acc) do clause ...))
;;>
;;>> (list-of expr clause ...)
;;> Implemented as:
;;> (reverse! (collect (acc '() (cons expr acc)) clause ...))
(defsubst* (list-of expr clause ...)
(reverse (collect (acc '() (cons expr acc)) clause ...)))
;;>
;;>> (sum-of expr clause ...)
;;> Implemented as:
;;> (collect (acc 0 (+ expr acc)) clause ...)
(defsubst* (sum-of expr clause ...)
(collect (acc 0 (+ expr acc)) clause ...))
;;>
;;>> (product-of expr clause ...)
;;> Implemented as:
;;> (collect (acc 1 (* expr acc)) clause ...)
(defsubst* (product-of expr clause ...)
(collect (acc 1 (* expr acc)) clause ...))
;;>
;;>> (count-of clause ...)
;;> Only count matching cases, implemented as:
;;> (sum-of 1 clause ...)
(defsubst* (count-of clause ...)
(sum-of 1 clause ...))
;;>
;;> Each clause is either:
;;> * (v <- ...): a binding generator clause;
;;> * (v <- ... and v <- ...): parallel generator clauses;
;;> * (v is is-expr): bind `v' to the result of `is-expr';
;;> * while expr: a `while' keyword followed by an expression will
;;> abort the whole loop if that expression evaluates to
;;> #f;
;;> * until expr: an `until' keyword followed by an expression will
;;> abort the whole loop if that expression evaluates to
;;> a non-#f value;
;;> * when ...: filter by the following expressions -- if an
;;> expression evaluates to #f, stop processing this
;;> iteration (default for all macros except for
;;> `loop-for');
;;> * unless ...: filter by the negation of the following expressions;
;;> * do ...: execute the following expressions, used for side
;;> effects (default for the `loop-for' macro);
;;> * expr: expression is used according to the current mode set
;;> by a `when', `unless', or `do', keyword that
;;> precedes it.
;;> The effect of this form is to iterate each generator variable
;;> according to generating `<-' clauses (see below for these) and
;;> parallel clauses, and evaluate the `expr' with each combination, which
;;> composes a result out of iteration-bound values and an accumulated
;;> result. Generation is done in a nested fashion, where the rightmost
;;> generator spin fastest. Parallel generators (specified with an infix
;;> `and') make all iterations happen simultaneously, ending as soon as
;;> the first one ends. An `is' clause is used for binding arbitrary
;;> variables, a `do' clause is used to execute code for general
;;> side-effects, and other clauses are used to filter results before
;;> continuing down the clause list. Each clause can use variables bound
;;> by previous clauses, and the `expr' can use all bound variables as
;;> well as the given accumulator variable.
;;>
;;> An optional first token can be used to specify the direction which is
;;> used to accumulate the result. It can be one of these two tokens:
;;> `<=': A "backward" collection, the default (similar to `foldl');
;;> `=>': A "forward" collection (similar to `foldr').
;;> The default "backward" direction works by generating an accumulator
;;> carrying loop, as in this code (this code is for demonstration, not
;;> what `collect' creates):
;;> (let loop ([x foo] [acc '()])
;;> (if (done? x) acc (loop (next x) (cons (value x) acc))))
;;> which is a common Scheme idiom for such operations. The problem is
;;> that this accumulation happens in reverse -- requiring reversing the
;;> final result (which is done by the `list-of' macro). A "forward"
;;> direction does a naive recursive loop:
;;> (let loop ([x foo])
;;> (if (done? x) '() (cons (value x) (loop (next x)))))
;;> collecting values in the correct order, but the problem is that it
;;> keeps a computation context which makes memory consumption
;;> inefficient. The default style is usually preferred, since reversing
;;> a list is a cheap operation, but it is not possible when infinite
;;> lists (streams) are used since it is impossible to reverse them. In
;;> these cases, the "forward" style should be used, but the `expr' must
;;> take care not to evaluate the iteration "variable" immediately, using
;;> `delay' or a similar mechanism (this "variable" is not bound to a
;;> value but substituted with an expression (a symbol macro)). For
;;> example, here's a quick lazy list usage:
;;> => (defsubst (lcons x y) (delay (cons x y)))
;;> => (define (lcar s) (car (force s)))
;;> => (define (lcdr s) (cdr (force s)))
;;> => (define x (collect (_ '() (lcons x _)) (x <- 0 ..)))
;;> ; loops indefinitely
;;> => (define x (collect => (_ '() (lcons x _)) (x <- 0 ..)))
;;> => (lcar (lcdr (lcdr x)))
;;> 2
;;> Note that the `loop-for' macro uses a "forward" direction, but this is
;;> only because it is slightly faster since it doesn't require an extra
;;> binding.
;;> [The direction can be changed for a single part by using a "<-!"
;;> keyword instead of "<-", but this is an experimental feature since I
;;> don't know if it's actually useful for anything. Do not try to mix
;;> this with the `while' and `until' keywords which are implemented
;;> differently based on the direction.]
;;>
(defsyntax* (collect stx)
(define (split id stxs)
(let loop ([stxs '()] [stxss '()]
[l (if (syntax? stxs) (syntax->list stxs) stxs)])
(cond [(null? l) (reverse (cons (reverse stxs) stxss))]
[(and (identifier? (car l)) (module-identifier=? id (car l)))
(loop '() (cons (reverse stxs) stxss) (cdr l))]
[else (loop (cons (car l) stxs) stxss (cdr l))])))
(define (gen-loop generate add-aux! &optional hacked)
(with-syntax ([generate generate]
[(cur step done? value)
(generate-temporaries '(cur step done? value))])
(add-aux! #'((cur step done? value) (apply values generate)))
(with-syntax ([value #'(if value (value cur) cur)])
(with-syntax ([value (if hacked
#`(let ([r value]) (set! #,hacked r) r)
#'value)])
#'(cur cur (step cur) (and done? (done? cur)) value)))))
(define (gen var args add-aux! hack-var! &optional seq?)
(define (hack!) (when (and seq? hack-var!) (hack-var! var)))
(define (gen1 arg) (if seq? arg (gen-loop arg add-aux!)))
(with-syntax ([v var])
(syntax-case args (then until while .. ..<)
;;> Generator forms are one of the following ("..", "then", "until",
;;> "while" are literal tokens), see below for what values are generated:
;;> * (v <- sequence):
;;> iterate `v' on values from `sequence';
[(arg) (gen1 #'(collect-iterator arg))]
;;> * (v <- 1st [2nd] .. [last]):
;;> iterate on an enumerated range, including last element of range;
[(a b .. z) (gen1 #'(collect-numerator a b z ))]
[(a b .. ) (gen1 #'(collect-numerator a b #f ))]
[(a .. z) (gen1 #'(collect-numerator a #f z ))]
[(a .. ) (gen1 #'(collect-numerator a #f #f ))]
;;> * (v <- 1st [2nd] ..< last):
;;> iterate on an enumerated range, excluding last element of range;
[(a b ..< z) (gen1 #'(collect-numerator a b z '< ))]
[(a ..< z) (gen1 #'(collect-numerator a #f z '< ))]
;;> * (v <- 1st [2nd] .. while last):
;;> iterate on an enumerated range, excluding last element of range;
[(a b .. while z) (gen1 #'(collect-numerator a b z 'while))]
[(a .. while z) (gen1 #'(collect-numerator a #f z 'while))]
;;> * (v <- 1st [2nd] .. until last):
;;> iterate on an enumerated range, excluding last element of range;
[(a b .. until z) (gen1 #'(collect-numerator a b z 'until))]
[(a .. until z) (gen1 #'(collect-numerator a #f z 'until))]
;;> * (v <- x then next-e [{while|until} cond-e]):
;;> start with the `x' expression, continue with the `next-e' expression
;;> (which can use `v'), do this while/until `cond-e' is true if a
;;> condition is given;
[(arg then next) (hack!)
(if seq? ; making seq? => convert to composable funcs
#'(list arg (lambda (v) next) #f #f)
#'(v arg next #f v))]
[(arg then next while cond) (hack!)
(if seq?
#'(list arg (lambda (v) next) (lambda (v) (not cond)) #f)
#'(v arg next (not cond) v))]
[(arg then next until cond) (hack!)
(if seq?
#'(list arg (lambda (v) next) (lambda (v) cond) #f)
#'(v arg next cond v))]
;;> * (v <- x {while|until} cond-e):
;;> repeat using the `x' expression while/until `cond-e' is true;
[(arg while cond) (hack!)
(if seq?
#'(list #f #f #f (lambda (_) (if cond arg collect-final)))
#'(v #f #f #f (begin (set! v arg) (if cond v collect-final))))]
[(arg until cond) (hack!)
(if seq?
#'(list #f #f #f (lambda (_) (if cond collect-final arg)))
#'(v #f #f #f (begin (set! v arg) (if cond collect-final v))))]
;;> * (v <- func arg ...):
;;> applies `func' to `arg ...', the result is expected to be some
;;> "iterator value" which is used to do the iteration -- iteration
;;> values are created by `collect-iterator' and `collect-numerator',
;;> see below for their description and return values.
;;> * (v <- gen1 <- gen2 <- ...):
;;> generator clauses can have multiple parts specified by more `<-'s,
;;> all of them will run sequentially;
[(f x ...)
(let ([argss (split #'<- args)])
(if (= 1 (length argss))
(gen1 #'(f x ...))
(let ([hacked #f])
(with-syntax
([(gen ...)
(map (lambda (as)
(gen var as add-aux!
(lambda (v) (set! hacked v) (hack-var! v))
#t))
argss)])
(gen-loop #'(sequential-generators gen ...)
add-aux! hacked)))))])))
(define-values (acc base0 expr clauses fwd?)
(syntax-case stx (<= =>)
[(_ <= (acc base expr) clause ...)
(values #'acc #'base #'expr #'(clause ...) #f)]
[(_ => (acc base expr) clause ...)
(values #'acc #'base #'expr #'(clause ...) #t)]
[(_ (acc base expr) clause ...)
(values #'acc #'base #'expr #'(clause ...) #f)]))
(define need-break? #f)
(define loop-body
(let c-loop ([base base0] [clauses clauses] [mode 'when] [rev? #f])
(syntax-case clauses (<- <-! is do when unless while until)
[() (if (if rev? (not fwd?) fwd?)
#`(letsubst ([#,acc #,base]) #,expr)
expr)]
[((var <-! arg ...) rest ...)
(c-loop base #'((var <- arg ...) rest ...) mode 'rev!)]
[((var <- arg ...) rest ...)
;;> * (v1 <- gen1 ... and v2 <- gen2 ...):
;;> finally, an infix `and' specifies parallel generators, binding
;;> several variables.
(let ([rev? (if (eq? 'rev! rev?) #t #f)]
[gens (split #'and #'(var <- arg ...))]
[loop-id (car (generate-temporaries '(loop)))]
[aux '()] [hacked-vars '()])
(for-each
(lambda (g)
(syntax-case g (<-)
[(var <- arg ...) (identifier? #'var) #f]
[_ (raise-syntax-error
#f "expected a generator clause" stx g)]))
gens)
(with-syntax ([((var <- arg ...) ...) gens])
;; Hack needed: generator variables are defined later in the loop
;; just before their code, after the place where the expression
;; appear in setup code. This is usually not a problem since
;; functions are applied the same, but when using expression
;; iteration (`then') in a sequential range which is in
;; simultaneous iteration where real expressions are turned to
;; functions (which are define before variables the might
;; reference). This could be eliminated, restricting expressions
;; from referencing variables that are bound in parallel, but this
;; is usually the power of using expression (which can be claimed
;; redundant). The hack is doing this:
;; (let ([x #f] ...)
;; ... (let ([x (let ([r value]) (set! x r) r)])))
;; The problem is that the extra junk makes it run twice slower,
;; so do this only for bindings that has the above scenario
;; (parallel of sequential of expression generators). To test it,
;; do this:
;; (list-of (list c x y)
;; (c <- 1 .. 5 and x <- 1 <- 'x then y
;; and y <- 1 <- 'y then x))
;; but this always works:
;; (list-of (list c x y)
;; (c <- 1 .. 5 and x <- 'x then y and y <- 'y then x))
(with-syntax ([((cur fst next done? value) ...)
(map (lambda (v as)
(gen v as
(lambda (a) (set! aux (cons a aux)))
(lambda (v)
(set! hacked-vars
(cons v hacked-vars)))))
(syntax->list #'(var ...))
(syntax->list #'((arg ...) ...)))]
[loop loop-id]
[(aux ...) (reverse aux)] [acc acc] [base base])
(with-syntax
([body
(let* ([fwd? (if rev? (not fwd?) fwd?)]
[return (if fwd? #'base #'acc)]
[body (if fwd?
(c-loop #`(#,loop-id next ...)
#'(rest ...) mode rev?)
#`(loop next ...
#,(c-loop #'acc #'(rest ...)
mode rev?)))])
#`(let-values (aux ...)
(let loop ([cur fst] ...
#,@(if fwd? #'() #'((acc base))))
(if (or done? ...)
#,return
#,(let vloop ([vars (syntax->list #'(var ...))]
[values (syntax->list
#'(value ...))])
(if (null? vars)
body
#`(let ([#,(car vars) #,(car values)])
(if (eq? #,(car vars) collect-final)
#,return
#,(vloop (cdr vars)
(cdr values))))))))))])
(if (null? hacked-vars)
#'body
(with-syntax ([(var ...) (reverse hacked-vars)])
#'(let ([var #f] ...) body)))))))]
[((var is is-expr) rest ...)
#`(let ([var is-expr]) #,(c-loop base #'(rest ...) mode rev?))]
[(while cond rest ...)
#`(if cond
#,(c-loop base #'(rest ...) mode rev?)
#,(if (if rev? (not fwd?) fwd?)
base0 (begin (set! need-break? #t) #`(break #,base))))]
[(until cond rest ...)
#`(if cond
#,(if (if rev? (not fwd?) fwd?)
base0 (begin (set! need-break? #t) #`(break #,base)))
#,(c-loop base #'(rest ...) mode rev?))]
[(do rest ...) (c-loop base #'(rest ...) 'do rev?)]
[(when rest ...) (c-loop base #'(rest ...) 'when rev?)]
[(unless rest ...) (c-loop base #'(rest ...) 'unless rev?)]
[(expr rest ...)
(with-syntax ([cont (c-loop base #'(rest ...) mode rev?)])
(case mode
[(when) #`(if expr cont #,base)]
[(unless) #`(if expr #,base cont)]
[(do) #`(begin expr cont)]))])))
(if need-break?
#`(let/ec break #,loop-body) loop-body))
;;>
(define (sequential-generators gen . rest)
(let-values ([(new) #f] [(fst step done? value) (values . gen)])
(define (next!)
(and (pair? rest)
(begin (set! gen (car rest)) (set! rest (cdr rest))
(set! fst (1st gen)) (set! step (2nd gen))
(set! done? (3rd gen)) (set! value (4th gen))
#t)))
(list fst
(lambda (x)
(let ([r (step (if new (begin0 new (set! new #f)) x))])
(if (and done? (done? r)) (if (next!) fst collect-final) r)))
(lambda (x)
(and (null? rest)
(or (eq? x collect-final) (and done? (done? x)))))
(lambda (x)
(let ([r (if value (value x) x)])
(if (eq? r collect-final)
(let* ([n? (next!)] [r (and n? (if value (value fst) fst))])
(set! new fst)
(if (or (not n?) (done? fst)) collect-final r))
r))))))
(define (function->iterator f &optional done? include-last?)
(define arity
(cond [(procedure-arity-includes? f 0) 0]
[(procedure-arity-includes? f 1) 1]
[else (error 'function->iterator
"don't know how to iterate over function ~e" f)]))
(when (and done? include-last?)
(set! done?
(let ([d? done?])
(lambda (x) (when (d? x) (set! f (lambda _ collect-final))) #f))))
(when (eq? 1 arity) (set! f (function-iterator f collect-final)))
(list (void) void #f
(if done?
(lambda (_)
(let ([x (f)])
(if (or (eq? x collect-final) (done? x)) collect-final x)))
(lambda (_) (f)))))
;;> Iteration is possible on one of the following sequence values:
(define* (collect-iterator seq)
(define (out-of-range r) (lambda (x) (<= r x)))
(cond
;;> * list: iterate over the list's element;
[(list? seq) (list seq cdr null? car)]
;;> * vector: iterate over the vector's elements;
[(vector? seq) (list 0 add1 (out-of-range (vector-length seq))
(lambda (i) (vector-ref seq i)))]
;;> * string: iterate over characters in the string;
[(string? seq) (list 0 add1 (out-of-range (string-length seq))
(lambda (i) (string-ref seq i)))]
;;> * integer n: iterate on values from 0 to n-1;
[(integer? seq) (list 0 add1 (out-of-range seq) #f)]
;;> * procedure f:
[(procedure? seq)
;;> - if f accepts zero arguments, begin with (f) and iterate by
;;> re-applying (f) over and over, so the only way to end this
;;> iteration is by returning `collect-final' (see below);
;;> - otherwise, if f accepts one argument, it is taken as a generator
;;> function: it is passed a one-argument procedure `yield' which can
;;> be used to suspend its execution returning the given value, and it
;;> will be continued when more values are required (see
;;> `function-iterator' below);
(function->iterator seq)]
;;> * hash-table: iterate over key-value pairs -- this is done with a
;;> generator function:
;;> (lambda (yield)
;;> (hash-table-for-each seq (lambda (k v) (yield (cons k v)))))
[(hash-table? seq)
(collect-iterator (lambda (yield)
(hash-table-for-each
seq (lambda (k v) (yield (cons k v))))))]
;;> * other values: repeated infinitely.
[else (list seq identity #f #f)]))
;;> Note that iteration over non-lists is done efficiently, iterating over
;;> a vector `v' is better than iterating over `(vector->list v)'.
;;>
;;> Enumeration is used whenever a ".." token is used to specify a range.
;;> There are different enumeration types based on different input types,
;;> and all are modified by the token used:
;;> * "..": a normal inclusive range;
;;> * "..<": a range that does not include the last element;
;;> * ".. while": a range that continues while a predicate is true;
;;> * ".. until": a range that continues until a predicate is true.
;;> The "..<" token extends to predicates in the expected way: the element
;;> that satisfies the predicate is the last one and it is not included in
;;> the enumeration -- unlike "..".
;;> These are the possible types that can be used with an enumeration:
(define* (collect-numerator from second to &optional flag)
(define (check-type pred? &optional not-to)
(and (pred? from) (or (not second) (pred? second))
(or not-to (not to) (pred? to))))
(define (to->pred)
(and to (let ([to (if (and (procedure? to)
(procedure-arity-includes? to 1))
to (lambda (x) (equal? x to)))])
(if (eq? 'while flag) (negate to) to))))
(when (and (memq flag '(while until))
(not (and (procedure? to) (procedure-arity-includes? to 1))))
(set! to (lambda (x) (equal? x to))))
;;> * num1 [num2] .. [num3]: go from num1 to num3 in num3 in num2-num1
;;> steps, if num2 is not given then use +1/-1 steps, if num3 is not
;;> given don't stop;
;;> * num1 [num2] .. pred: go from num1 by num2-num1 steps (defaults to
;;> 1), up to the number that satisfies the given predicate;
(cond [(check-type number?)
(let* ([step
(cond [second (- second from)]
[(and (number? to) (> from to)) -1]
[else 1])]
[gt?
(case flag
[(#f) (if (positive? step) > <)]
[(<) (if (positive? step) >= <=)]
[else (error 'collect-numerator "internal error")])])
(list from
(lambda (x) (+ x step))
(if (number? to) (lambda (x) (gt? x to)) #f)
#f))]
;;> * char1 [char2] .. [char3/pred]: the same as with numbers, but on
;;> character ranges;
[(check-type char? #t)
(let ([numerator (collect-numerator
(char->integer from)
(and second (char->integer second))
(cond [(char? to) (char->integer to)]
[(and (procedure? to)
(procedure-arity-includes? to 1))
(compose to integer->char)]
[else to])
flag)])
(list (1st numerator) (2nd numerator) (3rd numerator)
integer->char))]
;;> * func .. [pred/x]: use `func' the same way as in an iterator above,
;;> use `pred' to identify the last element, if `pred' is omitted repeat
;;> indefinitely;
[(and (procedure? from) (not second))
(let ([to (to->pred)])
(function->iterator from to (and (not flag) to)))]
;;> * fst [next] .. [pred]: start with `fst', continue by repeated
;;> applications of the `next' function on it, and use `pred' to
;;> identify the last element, if `pred' is omitted repeat indefinitely,
;;> if `next' is omitted repeat `fst', and if both `fst' and `next' are
;;> numbers or characters then use their difference for stepping. (Note
;;> that to repeat a function value you should use `identity' as for
;;> `next' or the function will be used as described above.)
[else
(cond [(and (number? from) (number? second))
(let ([d (- second from)]) (set! second (lambda (x) (+ x d))))]
[(not second) (set! second identity)]
[(not (and (procedure? second)
(procedure-arity-includes? second 1)))
(error 'collect-numerator
"don't know how to enumerate ~e ~e .. ~e"
from second to)])
(if (not to)
(list from second #f #f)
(let ([to (to->pred)])
(if (or flag (not to))
(list from second to #f)
(let ([almost-done? (to from)] [done? #f])
(list from (lambda (x)
(if almost-done?
(set! done? #t)
(let ([next (second x)])
(when (to next) (set! almost-done? #t))
next)))
(lambda (_) done?) #f)))))]))
;;>
;;> Here is a long list of examples for clarification, all using
;;> `list-of', but the generalization should be obvious:
;;> => (list-of x [x <- '(1 2 3)])
;;> (1 2 3)
;;> => (list-of (list x y) [x <- '(1 2 3)] [y <- 1 .. 2])
;;> ((1 1) (1 2) (2 1) (2 2) (3 1) (3 2))
;;> => (list-of (format "~a~a~a" x y z)
;;> [x <- '(1 2)] [y <- #(a b)] [z <- "xy"])
;;> ("1ax" "1ay" "1bx" "1by" "2ax" "2ay" "2bx" "2by")
;;> => (list-of (+ x y) [x <- '(1 2 3)] [y <- 20 40 .. 100])
;;> (21 41 61 81 101 22 42 62 82 102 23 43 63 83 103)
;;> => (list-of (+ x y) [x <- '(1 2 3) and y <- 20 40 .. 100])
;;> (21 42 63)
;;> => (list-of y [x <- 0 .. and y <- '(a b c d e f g h i)] (even? x))
;;> (a c e g i)
;;> => (list-of y [x <- 0 .. and y <- '(a b c d e f g h i)]
;;> when (even? x) do (echo y))
;;> a
;;> c
;;> e
;;> g
;;> i
;;> (a c e g i)
;;> => (list-of (list x y) [x <- 3 and y <- 'x])
;;> ((0 x) (1 x) (2 x))
;;> => (list-of (list x y) [x <- 3 and y <- 'x ..])
;;> ((0 x) (1 x) (2 x))
;;> => (list-of (list x y) [x <- #\0 .. and y <- '(a b c d)])
;;> ((#\0 a) (#\1 b) (#\2 c) (#\3 d))
;;> => (list-of x [x <- '(1 2 3) then (cdr x) until (null? x)])
;;> ((1 2 3) (2 3) (3))
;;> => (list-of (list x y)
;;> [x <- '(1 2 3) then (cdr y) until (null? x) and
;;> y <- '(10 20 30) then (cdr x) until (null? y)])
;;> (((1 2 3) (10 20 30)) ((20 30) (2 3)) ((3) (30)))
;;> => (list-of x [x <- (lambda (yield) 42)])
;;> ()
;;> => (list-of x [x <- (lambda (yield) (yield 42))])
;;> (42)
;;> => (list-of x [x <- (lambda (yield) (yield (yield 42)))])
;;> (42 42)
;;> => (list-of x [x <- (lambda (yield)
;;> (for-each (lambda (x) (echo x) (yield x))
;;> '(3 2 1 0)))])
;;> 3
;;> 2
;;> 1
;;> 0
;;> (3 2 1 0)
;;> => (list-of x [x <- (lambda (yield)
;;> (for-each (lambda (x) (echo x) (yield (/ x)))
;;> '(3 2 1 0)))])
;;> 3
;;> 2
;;> 1
;;> 0
;;> /: division by zero
;;> => (list-of x
;;> [c <- 3 and
;;> x <- (lambda (yield)
;;> (for-each (lambda (x) (echo x) (yield (/ x)))
;;> '(3 2 1 0)))])
;;> 3
;;> 2
;;> 1
;;> (1/3 1/2 1)
;;> => (define h (make-hash-table))
;;> => (set! (hash-table-get h 'x) 1
;;> (hash-table-get h 'y) 2
;;> (hash-table-get h 'z) 3)
;;> => (list-of x [x <- h])
;;> ((y . 2) (z . 3) (x . 1))
;;> => (list-of x [x <- 4 <- 4 .. 0 <- '(1 2 3)])
;;> (0 1 2 3 4 3 2 1 0 1 2 3)
;;> => (list-of (list x y)
;;> [x <- 1 .. 3 <- '(a b c) and
;;> y <- (lambda (y) (y 'x) (y 'y)) <- "abcd"])
;;> ((1 x) (2 y) (3 #\a) (a #\b) (b #\c) (c #\d))
;;>
;;> Note that parallel iteration is useful both for enumerating results,
;;> and for walking over a finite prefix of an infinite iteration.
;;>
;;> The following is an extensive list of various ranges:
;;> => (list-of x [x <- 0 .. 6])
;;> (0 1 2 3 4 5 6)
;;> => (list-of x [x <- 0 ..< 6])
;;> (0 1 2 3 4 5)
;;> => (list-of x [x <- 0 .. -6])
;;> (0 -1 -2 -3 -4 -5 -6)
;;> => (list-of x [x <- 0 ..< -6])
;;> (0 -1 -2 -3 -4 -5)
;;> => (list-of x [x <- 0 2 .. 6])
;;> (0 2 4 6)
;;> => (list-of x [x <- 0 2 ..< 6])
;;> (0 2 4)
;;> => (list-of x [x <- 0 -2 ..< -6])
;;> (0 -2 -4)
;;> => (list-of x [x <- #\a .. #\g])
;;> (#\a #\b #\c #\d #\e #\f #\g)
;;> => (list-of x [x <- #\a ..< #\g])
;;> (#\a #\b #\c #\d #\e #\f)
;;> => (list-of x [x <- #\a #\c .. #\g])
;;> (#\a #\c #\e #\g)
;;> => (list-of x [x <- #\a #\c ..< #\g])
;;> (#\a #\c #\e)
;;> => (list-of x [x <- #\g #\e ..< #\a])
;;> (#\g #\e #\c)
;;> => (list-of x [x <- 6 5 .. zero?])
;;> (6 5 4 3 2 1 0)
;;> => (list-of x [x <- 6 5 ..< zero?])
;;> (6 5 4 3 2 1)
;;> => (list-of x [x <- 6 5 .. until zero?])
;;> (6 5 4 3 2 1)
;;> => (list-of x [x <- 6 5 .. while positive?])
;;> (6 5 4 3 2 1)
;;> => (list-of x [x <- '(1 2 3) cdr .. null?])
;;> ((1 2 3) (2 3) (3) ())
;;> => (list-of x [x <- '(1 2 3) cdr ..< null?])
;;> ((1 2 3) (2 3) (3))
;;> => (list-of x [x <- '(1 2 3) cdr .. until null?])
;;> ((1 2 3) (2 3) (3))
;;> => (list-of x [x <- '(1 2 3) cdr .. while pair?])
;;> ((1 2 3) (2 3) (3))
;;> => (list-of x [x <- #\a #\d .. while char-alphabetic?])
;;> (#\a #\d #\g #\j #\m #\p #\s #\v #\y)
;;> => (list-of x [x <- #\a #\d .. char-alphabetic?])
;;> (#\a)
;;> => (list-of x [x <- #\a #\d ..< char-alphabetic?])
;;> ()
;;> => (list-of x [x <- 0 1 .. positive?])
;;> (0 1)
;;> => (list-of x [x <- 1 2 .. positive?])
;;> (1)
;;> => (list-of x [x <- 1 2 ..< positive?])
;;> ()
;;> => (list-of x [x <- '(a b c) ..< pair?])
;;> ()
;;> => (list-of x [x <- '(a b c) .. pair?])
;;> ((a b c))
;;> => (list-of x [x <- '(a b c) cdr .. pair?])
;;> ((a b c))
;;> => (list-of x [x <- read-line .. eof-object?])
;;> ...list of remaining input lines, including #<eof>...
;;> => (list-of x [x <- read-line ..< eof-object?])
;;> ...list of remaining input lines, excluding #<eof>...
;;> => (list-of x [x <- read-line ..< eof])
;;> ...the same...
;;>
;;>> collect-final
;;> This value can be used to terminate iterations: when it is returned as
;;> the iteration value (not the state), the iteration will terminate
;;> without using it.
(define* collect-final (list "*"))
;;>> (function-iterator f [final-value])
;;> `f' is expected to be a function that can accept a single input value.
;;> It is applied on a `yield' function that can be used to return a value
;;> at any point. The return value is a function of no argument, which
;;> returns on every application values that were passed to `yield'. When
;;> `f' terminates, the final result of the iterated return value depends
;;> on the optional argument -- if none was supplied, the actual return
;;> value is returned, if a thunk was supplied it is applied for a return
;;> value, and if any other value was given it is returned. After
;;> termination, calling the iterated function again results in an error.
;;> (The supplied `yield' function returns its supplied value to the
;;> calling context when resumed.)
;;> => (define (foo yield) (yield 1) (yield 2) (yield 3))
;;> => (define bar (function-iterator foo))
;;> => (list (bar) (bar) (bar))
;;> (1 2 3)
;;> => (bar)
;;> 3
;;> => (bar)
;;> function-iterator: iterated function #<procedure:foo> exhausted.
;;> => (define bar (function-iterator foo 'done))
;;> => (list (bar) (bar) (bar) (bar))
;;> (1 2 3 done)
;;> => (bar)
;;> function-iterator: iterated function #<procedure:foo> exhausted.
;;> => (define bar (function-iterator foo (thunk (error 'foo "done"))))
;;> => (list (bar) (bar) (bar))
;;> (1 2 3)
;;> => (bar)
;;> foo: done
(define* (function-iterator f . finally)
(define ret #f)
(define (done)
(set! cnt (thunk (error 'function-iterator
"iterated function ~e exhausted." f))))
(define cnt
(cond [(null? finally) (thunk (let ([r (f yield)]) (done) (ret r)))]
[(and (procedure? (car finally))
(procedure-arity-includes? (car finally) 0))
(thunk (f yield) (done) (ret ((car finally))))]
[else (thunk (f yield) (done) (ret (car finally)))]))
(define (yield v) (let/cc k (set! cnt (thunk (k v))) (ret v)))
(thunk (let/cc ret1 (set! ret ret1) (cnt))))
;;>> (collect-iterator sequence)
;;>> (collect-numerator from second to [flag])
;;> These functions are used to construct iterations. `collect-iterator'
;;> is the function used to create iteration over a sequence object and it
;;> is used by `(x <- sequence)' forms of `collect'. `collect-numerator'
;;> create range iterations specified with `(x <- from second to)' forms,
;;> where unspecified values are passed as `#f', and the flag argument is
;;> a `<', `while', or `until' symbol for ranges specified with "..<",
;;> ".. while" and ".. until". These functions are available for
;;> implementing new iteration constructs, for example:
;;> => (define (in-values producer)
;;> (collect-iterator (call-with-values producer list)))
;;> => (list-of x [x <- in-values (thunk (values 1 2 3))])
;;> (1 2 3)
;;> The return value that specifies an iteration is a list of four items:
;;> 1. the initial state value;
;;> 2. a `step' function that gets a state and returns the next one;
;;> 3. a predicate for the end state (#f for none);
;;> 4. a function that computes a value from the state variable.
;;> But usually the functions are more convenient.
;;>
;;> Finally, remember that you can return `collect-final' as the value to
;;> terminate any iteration.
;; ----------------------------------------------------------------------------
;;>>... Convenient printing
;;>> *echo-display-handler* [h]
;;>> *echo-write-handler* [h]
;;> Currently, Racket's I/O can be customized only on a per port basis.
;;> This means that installing the object printing generic later will
;;> change only the standard ports, and for new ports a handleres should
;;> always be installed. This means that `echos' will not work with
;;> objects since it uses a new port -- so use these parameters to allow
;;> to change them later to the Swindle printer.
(define* *echo-display-handler* (make-parameter display))
(define* *echo-write-handler* (make-parameter write))
;;>> (echo arg ...)
;;> This is a handy printout utility that offers an alternative approach
;;> to `printf'-like output (it's a syntax, but it can be used as a
;;> regular function too, see below). When applied, it simply prints its
;;> arguments one by one, using certain keywords to control its behavior:
;;> * :>e - output on the current-error-port;
;;> * :>o - output on the current-output-port (default);
;;> * :>s - accumulate output in a string which is the return value
;;> (string output sets `:n-' as default (unless
;;> pre-specified));
;;> * :> p - output on the given port `p', or a string if `#f';
;;> * :>> o - use `o', a procedure that gets a value and a port, as the
;;> output handler (the procedure can take one value and
;;> display it on the current output port);
;;> * :d - use `display' output (default);
;;> * :w - use `write' output;
;;> * :d1 :w1 - change to a `display' or `write' output just for the next
;;> argument;
;;> * :s- - no spaces between arguments;
;;> * :s+ - add spaces between arguments (default);
;;> * :n- - do not print a final newline;
;;> * :n+ - terminate the output with a newline (default);
;;> * :n - output a newline now;
;;> * : or :: - avoid a space at this point;
;;> * :\{ - begin a list construct (see below).
;;> Keywords that require additional argument are ignored if no argument
;;> is given.
;;>
;;> Recursive processing of a list begins with a `:\{' and ends with a
;;> `:\}' (which can be simpler if `read-curly-brace-as-paren' is off).
;;> Inside a list context, values are inspected and any lists cause
;;> iteration for all elements. In each iteration, all non-list arguments
;;> are treated normally, but lists are dissected and a single element is
;;> printed in each step, terminating when the shortest list ends (and
;;> repeating a last `dotted' element of a list):
;;> => (define abc '(a b c))
;;> => (echo :\{ "X" abc :\})
;;> X a X b X c
;;> => (echo :\{ "X" abc '(1 2 3 4) :\})
;;> X a 1 X b 2 X c 3
;;> => (echo :\{ "X" abc '(1 . 2) :\})
;;> X a 1 X b 2 X c 2
;;> Inside a list context, the `:^' keyword can be used to stop this
;;> iteration if it is the last:
;;> => (echo :s- :\{ abc :^ ", " :\})
;;> a, b, c
;;> Nesting of lists is also simple, following these simple rules, by
;;> nesting the `:\{' ... `:\}' construct:
;;> => (echo :s- :\{ "<" :\{ '((1 2) (3 4 5) 6 ()) :^ "," :\} ">"
;;> :^ "-" :\})
;;> <1,2>-<3,4,5>-<6>-<>
;;> Note that this example is similar to the CL `format':
;;> (format t "~{<~{~a~^,~}>~^-~}" '((1 2) (3 4 5) 6 ()))
;;> except that `echo' treats a dotted element (a non-list in this case)
;;> as repeating as needed.
;;>
;;> There are two additional special keywords that are needed only in
;;> uncommon situations:
;;> * :k- - turn off keyword processing
;;> * :k+ - turn keyword processing on
;;> Usually, when `echo' is used, it is processed by a macro that detects
;;> all keywords, even if there is a locally bound variable with a keyword
;;> name. This means that keywords are only ones that are syntactically
;;> so, not expressions that evaluate to keywords. The two cases where
;;> this matters are -- when `echo' is used for its value (using it as a
;;> value, not in a head position) no processing is done so all keywords
;;> will just get printed; and when `echo' is used in a context where a
;;> variable has a keyword name and you want to use its value (which not a
;;> great idea anyway, so there is no way around it). The first case is
;;> probably more common, so the variable `echo:' is bound to a special
;;> value that will force treating the next value as a keyword (if it
;;> evaluates to one) -- it can also be used to turn keyword processing on
;;> (which means that all keyword values will have an effect). Here is a
;;> likely examples where `echo:' should be used:
;;> => (define (echo-values vals)
;;> (apply echo "The given values are:" echo: :w vals))
;;> => (echo-values '("a" "b" "c"))
;;> The given values are: "a" "b" "c"
;;> => (echo-values '(:a :b :c))
;;> The given values are: :a :b :c
;;> And here are some tricky examples:
;;> => (echo :>s 2)
;;> "2"
;;> => (define e echo) ; `e' is the real `echo' function
;;> => (e :>s 2) ; no processing done here
;;> :>s 2
;;> => (e echo: :>s 2) ; explicit key
;;> "2"
;;> => (e echo: :k+ :>s 2) ; turn on keywords
;;> "2"
;;> => (let ([:>s 1]) (echo :>s 2)) ; `:>s' was processed by `echo'
;;> "2"
;;> => (let ([:>s 1]) (e :>s 2)) ; `:>s' was not processed
;;> 1 2
;;> => (let ([:>s 1]) (e echo: :>s 2)) ; `:>s' is not a keyword here!
;;> 1 2
;;> => (let ([:>s 1]) (echo echo: :>s 2)) ; `echo:' not needed
;;> "2"
;;>
;;> Finally, it is possible to introduce new keywords to `echo'. This is
;;> done by calling it with the `:set-user' keyword, which expects a
;;> keyword to attach a handler to, and the handler itself. The handler
;;> can be a simple value or a keyword that will be used instead:
;;> => (echo :set-user :foo "foo")
;;> => (echo 1 :foo 2)
;;> 1 foo 2
;;> => (echo :set-user :foo :n)
;;> => (echo 1 :foo 2)
;;> 1
;;> 2
;;> The `:set-user' keyword can appear with other arguments, it has a
;;> global effect in any case:
;;> => (echo 1 :foo :set-user :foo "FOO" 2 :foo 3
;;> :set-user :foo "bar" :foo 4)
;;> 1
;;> 2 FOO 3 bar 4
;;> => (echo 1 :foo 2)
;;> 1 bar 2
;;> If the handler is a function, then when this keyword is used, the
;;> function is applied on arguments pulled from the remaining `echo'
;;> arguments that follow (if the function can get any number of
;;> arguments, then all remaining arguments are taken). The function can
;;> work in two ways: (1) when it is called, the `current-output-port'
;;> will be the one that `echo' currently prints to, so it can just print
;;> stuff; (2) if the function returns a list (or a single value which is
;;> not `#f' or `void'), then these values will be used instead of the
;;> taken arguments. Some examples:
;;> => (echo :set-user :foo (thunk "FOO") 1 :foo 2)
;;> 1 FOO 2
;;> => (echo :set-user :add1 add1 1 :add1 2)
;;> 1 3
;;> => (echo :set-user :+1 (lambda (n) (list n '+1= (add1 n))) :+1 2)
;;> 2 +1= 3
;;> => (echo :set-user :<> (lambda args (append '("<") args '(">")))
;;> :<> 1 2 3)
;;> < 1 2 3 >
;;> Care should be taken when user keywords are supposed to handle other
;;> keywords -- the `echo:' tag will usually be among the arguments except
;;> when `:k+' was used and an argument value was received. This exposes
;;> the keyword treatment hack and might change in the future.
;;>
;;> To allow user handlers to change settings temporarily, there are
;;> `:push' and `:pop' keywords that will save and restore the current
;;> state (space and newline flags, output type and port etc). For
;;> example:
;;> => (echo :set-user :@
;;> (lambda (l)
;;> (echo-quote
;;> list :push :s- :\{ "\"" l "\"" :^ ", " :\} :pop)))
;;> => (echo 1 :@ '(2 3 4) 5)
;;> 1 "2", "3", "4" 5
;;> The above example shows another helper tool -- the `echo-quote'
;;> syntax: `(echo-quote head arg ...)' will transform into `(head ...)',
;;> where keyword arguments are prefix with the `echo:' tag. Without it,
;;> things would look much worse.
;;>
;;> In addition to `:set-user' there is an `:unset-user' keyword which
;;> cancels a keyword handler. Note that built-in keywords cannot be
;;> overridden or unset.
;;>> (echo-quote head arg ...) [h]
;;> This macro will result in `(head arg ...)', where all keywords in the
;;> argument list are preceded with the `echo:' tag. It is a convenient
;;> form to use for defining new echo keyword handlers.
(defsyntax* (echo-quote stx)
(define (process args)
(syntax-case args ()
[() #'()]
[(x . more) (with-syntax ([more (process #'more)])
(if (syntax-keyword? #'x)
;; `datum' protects from using a local binding
#'(echo: (#%datum . x) . more) #'(x . more)))]
[x #'x])) ; only in case of (echo ... . x)
(syntax-case stx ()
[(_ head . args) (quasisyntax/loc stx (head . #,(process #'args)))]))
(provide (rename echo-syntax echo))
(defsyntax (echo-syntax stx)
(syntax-case stx ()
[(_ . args) (syntax/loc stx (echo-quote echo . args))]
[_ #'echo]))
;; A table for user-defined keywords
(define echo-user-table (make-hash-table))
;; Make an echo keyword handler for a given procedure. The handler gets the
;; current list of arguments and returns the new list of arguments.
(define (make-echo-handler keyword proc)
(let* ([arity (procedure-arity proc)]
[at-least (and (arity-at-least? arity)
(arity-at-least-value arity))]
[required (or at-least arity)])
(unless (integer? required)
(error 'echo "handler function for `~.s' has bad arity" keyword))
(lambda (args)
(if (< (length args) required)
(error 'echo "user-keyword `~.s' didn't get enough arguments" keyword)
(let*-values ([(proc-args rest-args)
(if at-least
(values args '())
(let loop ([rest args] [args '()] [n required])
(if (zero? n)
(values (reverse args) rest)
(loop (cdr rest) (cons (car rest) args)
(sub1 n)))))]
[(result) (apply proc proc-args)])
(cond [(list? result) (append result rest-args)]
[(and result (not (void? result)))
(if (keyword? result)
(list* echo: result rest-args) (cons result rest-args))]
[else rest-args]))))))
(define (echo . args)
(define break: "break:")
(define call: "call:")
(let ([printer (*echo-display-handler*)] [out (current-output-port)]
[spaces? #t] [newline? 'x] [first? #t] [str? #f] [keys? #f]
[states '()])
(define (getarg) (begin0 (car args) (set! args (cdr args))))
(define (push-state!)
(set! states (cons (list printer out spaces? newline? first? str? keys?)
states)))
(define (pop-state!)
(if (null? states)
(error 'echo "tried to restore a state, but none saved")
(let ([s (car states)])
(set! states (cdr states))
(set!-values (printer out spaces? newline? first? str? keys?)
(apply values s)))))
(define (set-out! arg)
(set! out (or arg (open-output-string)))
(set! str? (not arg))
(unless (output-port? out)
(error 'echo "expected an output-port or #f, given ~e" out)))
(define (printer1! hparam)
(unless (or (null? args) (eq? echo: (car args)))
(let ([p (hparam)])
(unless (eq? printer p)
(let ([v (getarg)] [op printer])
(set! printer p)
(set! args (list* v echo: :>> op args)))))))
(define (process-list)
(define level 1)
(define ((do-lists args))
;; this returns a thunk so the whole thing is not expanded in one shot
(let loop ([args args] [cars '()] [cdrs '()] [last? '?])
(if (null? args)
(reverse
(if last? cars (list* (do-lists (reverse cdrs)) call: cars)))
(let* ([1st (car args)] [p? (pair? 1st)])
(if (and last? (eq? 1st break:))
(reverse cars)
(if (null? 1st)
'()
(loop (cdr args)
(if (eq? 1st break:)
cars (cons (if p? (car 1st) 1st) cars))
(cons (if p? (cdr 1st) 1st) cdrs)
(if p?
(or (eq? last? #t) (null? (cdr 1st)))
last?))))))))
(let loop ([l-args '()])
(define (pop-key-tags)
(when (and (pair? l-args) (eq? echo: (car l-args)))
(set! l-args (cdr l-args)) (pop-key-tags)))
(when (null? args)
(error 'echo "found a `~.s' with no matching `~.s'" :\{ :\}))
(let ([arg (getarg)])
(define (next) (loop (cons arg l-args)))
(cond
[(eq? arg echo:) (set! keys? (or keys? 'just-one)) (next)]
[(and keys? (keyword? arg))
(unless (eq? keys? #t) (set! keys? #f))
(case arg
[(:\})
(set! level (sub1 level))
(if (zero? level)
(begin
(pop-key-tags)
(set! args (append ((do-lists (reverse l-args))) args)))
(next))]
[(:\{)
(set! level (add1 level)) (next)]
[(:^)
(when (eq? 1 level) (set! arg break:) (pop-key-tags))
(next)]
[else (next)])]
[else (next)]))))
(let loop ()
(unless (null? args)
(let ([arg (getarg)])
(cond
[(eq? arg call:) (set! args (append ((getarg)) args))]
[(eq? arg echo:) (set! keys? (or keys? 'just-one))]
[(and keys? (keyword? arg))
(unless (eq? keys? #t) (set! keys? #f))
(case arg
[(:>e) (set-out! (current-error-port))]
[(:>o) (set-out! (current-output-port))]
[(:>s) (set-out! #f)]
[(:>) (unless (or (null? args) (eq? echo: (car args)))
(set-out! (getarg)))]
[(:>>) (unless (or (null? args) (eq? echo: (car args)))
(let ([p (getarg)])
(set! printer (if (eq? 1 (procedure-arity p))
(lambda (x _) (p x)) p))))]
[(:d) (set! printer (*echo-display-handler*))]
[(:w) (set! printer (*echo-write-handler*))]
[(:d1) (printer1! *echo-display-handler*)]
[(:w1) (printer1! *echo-write-handler*)]
[(:s-) (set! spaces? (and spaces? (not first?) 'just-one))]
[(:s+) (set! spaces? #t)]
[(:n-) (set! newline? #f)]
[(:n+) (set! newline? #t)]
[(:n) (newline out) (set! first? #t)]
[(:: :) (set! first? #t)]
[(:push) (push-state!)]
[(:pop) (pop-state!)]
[(:\{) (process-list)]
[(:\} :^) (error 'echo "unexpected list keyword `~.s'" arg)]
[(:k-) (set! keys? #f)]
[(:k+) (set! keys? #t)]
[(:set-user :unset-user)
(let loop ([keyword echo:])
(if (null? args)
(error 'echo "expecting a keyword+handler after `~.s'" arg)
(let ([x (getarg)])
(cond
[(eq? keyword echo:) (loop x)]
[(not (keyword? keyword))
(error 'echo "got a `~.s' with a non-keyword `~.s'"
arg keyword)]
[(eq? arg :unset-user)
(hash-table-put! echo-user-table keyword #f)]
[(eq? x echo:) (loop keyword)]
[else (let ([handler (if (procedure? x)
(make-echo-handler keyword x) x)])
(hash-table-put! echo-user-table keyword handler)
(when (and newline? (not (eq? #t newline))
(null? args))
(set! newline? #f)))]))))]
[else
(let ([user (hash-table-get echo-user-table arg (thunk #f))])
(if user
(set! args
(cond [(procedure? user) (user args)]
[(keyword? user) (list* echo: user args)]
[else (cons user args)]))
(error 'echo "unknown keyword: `~.s'" arg)))])]
[first? (printer arg out) (set! first? #f)]
[spaces? (display " " out) (printer arg out)
(unless (eq? spaces? #t) (set! spaces? #f))]
[else (printer arg out)])
(loop))))
(when (and newline? (or (not str?) (eq? newline? #t))) (newline out))
(when str? (get-output-string out))))
;;>> (echos arg ...)
;;> Just uses `echo' with `:>s'.
(provide (rename echos-syntax echos))
(defsyntax (echos-syntax stx)
(syntax-case stx ()
[(_ . args) (syntax/loc stx (echo-syntax :>s . args))]
[_ #'echos]))
(define (echos . args)
(echo echo: :>s . args))
;;>> echo:
;;> See the `echo' description for usage of this value.
(define* echo: "echo:")
;; ----------------------------------------------------------------------------
;; Simple macros
;;>> (named-lambda name args body ...)
;;> Like `lambda', but the name is bound to itself in the body.
(defsubst* (named-lambda name args . body)
(letrec ([name (lambda args . body)]) name))
;;>> (thunk body ...)
;;> Returns a procedure of no arguments that will have the given body.
(defsubst* (thunk body ...) (lambda () body ...))
;;>> (while condition body ...)
;;>> (until condition body ...)
;;> Simple looping constructs.
(defsubst* (while cond body ...)
(let loop () (when cond (begin body ... (loop)))))
(defsubst* (until cond body ...)
(while (not cond) body ...))
;;>> (dotimes (i n) body ...)
;;> Loop `n' times, evaluating the body when `i' is bound to 0,1,...,n-1.
(defsubst* (dotimes [i n] body0 body ...)
(let ([n* n])
(let loop ([i 0])
(when (< i n*) body0 body ... (loop (add1 i))))))
;;>> (dolist (x list) body ...)
;;> Loop with `x' bound to elements of `list'.
(defsubst* (dolist [x lst] body0 body ...)
(for-each (lambda (x) body0 body ...) lst))
;;>> (no-errors body ...)
;;> Execute body, catching all errors and returning `#f' if one occurred.
(defsubst* (no-errors body ...)
(with-handlers ([void (lambda (x) #f)]) body ...))
;;>> (no-errors* body ...)
;;> Execute body, catching all errors and returnsthe exception if one
;;> occured.
(defsubst* (no-errors* body ...)
(with-handlers ([void identity]) body ...))
;;>> (regexp-case string clause ...)
;;> Try to match the given `string' against several regexps. Each clause
;;> has one of the following forms:
;;> * (re => function): if `string' matches `re', apply `function' on the
;;> resulting list.
;;> * ((re args ...) body ...): if `string' matches `re', bind the tail of
;;> results (i.e, excluding the whole match result) to the given
;;> arguments and evaluate the body. The whole match result (the first
;;> element of `regexp-match') is bound to `match'.
;;> * (re body ...): if `string' matches `re', evaluate the body -- no
;;> match results are available.
;;> * (else body ...): should be the last clause which is evaluated if all
;;> previous cases failed.
(defsyntax* (regexp-case stx)
(define (do-clause c)
(syntax-case c (else base-else => base-=>)
[(else body ...) c]
[(base-else body ...) #'(else body ...)]
[(re => func) #'((regexp-match re s) => (lambda (r) (apply func r)))]
[(re base-=> func) #'((regexp-match re s) => (lambda (r) (apply func r)))]
[((re . args) body ...)
#`((regexp-match re s) =>
(lambda (r)
(apply (lambda (#,(datum->syntax-object c 'match c) . args)
body ...)
r)))]
[(re body ...) #'((regexp-match re s) body ...)]))
(syntax-case stx ()
[(_ str clause ...)
#`(let ([s str])
(cond #,@(map do-clause (syntax->list #'(clause ...)))))]))
|