/usr/share/doc/racket/reference/numbers.html is in racket-doc 6.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"/><title>4.2 Numbers</title><link rel="stylesheet" type="text/css" href="../scribble.css" title="default"/><link rel="stylesheet" type="text/css" href="extras.css" title="default"/><link rel="stylesheet" type="text/css" href="icons.css" title="default"/><link rel="stylesheet" type="text/css" href="../racket.css" title="default"/><link rel="stylesheet" type="text/css" href="../manual-style.css" title="default"/><link rel="stylesheet" type="text/css" href="../manual-racket.css" title="default"/><link rel="stylesheet" type="text/css" href="../manual-racket.css" title="default"/><link rel="stylesheet" type="text/css" href="../doc-site.css" title="default"/><script type="text/javascript" src="../scribble-common.js"></script><script type="text/javascript" src="../manual-racket.js"></script><script type="text/javascript" src="../manual-racket.js"></script><script type="text/javascript" src="../doc-site.js"></script><script type="text/javascript" src="../local-redirect/local-redirect.js"></script><script type="text/javascript" src="../local-redirect/local-user-redirect.js"></script><!--[if IE 6]><style type="text/css">.SIEHidden { overflow: hidden; }</style><![endif]--></head><body id="doc-racket-lang-org"><div class="tocset"><div class="tocview"><div class="tocviewlist tocviewlisttopspace"><div class="tocviewtitle"><table cellspacing="0" cellpadding="0"><tr><td style="width: 1em;"><a href="javascript:void(0);" title="Expand/Collapse" class="tocviewtoggle" onclick="TocviewToggle(this,"tocview_0");">►</a></td><td></td><td><a href="index.html" class="tocviewlink" data-pltdoc="x"><span style="font-weight: bold">The Racket Reference</span></a></td></tr></table></div><div class="tocviewsublisttop" style="display: none;" id="tocview_0"><table cellspacing="0" cellpadding="0"><tr><td align="right">1 </td><td><a href="model.html" class="tocviewlink" data-pltdoc="x">Language Model</a></td></tr><tr><td align="right">2 </td><td><a href="notation.html" class="tocviewlink" data-pltdoc="x">Notation for Documentation</a></td></tr><tr><td align="right">3 </td><td><a href="syntax.html" class="tocviewlink" data-pltdoc="x">Syntactic Forms</a></td></tr><tr><td align="right">4 </td><td><a href="data.html" class="tocviewselflink" data-pltdoc="x">Datatypes</a></td></tr><tr><td align="right">5 </td><td><a href="structures.html" class="tocviewlink" data-pltdoc="x">Structures</a></td></tr><tr><td align="right">6 </td><td><a href="mzlib_class.html" class="tocviewlink" data-pltdoc="x">Classes and Objects</a></td></tr><tr><td align="right">7 </td><td><a href="mzlib_unit.html" class="tocviewlink" data-pltdoc="x">Units</a></td></tr><tr><td align="right">8 </td><td><a href="contracts.html" class="tocviewlink" data-pltdoc="x">Contracts</a></td></tr><tr><td align="right">9 </td><td><a href="match.html" class="tocviewlink" data-pltdoc="x">Pattern Matching</a></td></tr><tr><td align="right">10 </td><td><a href="control.html" class="tocviewlink" data-pltdoc="x">Control Flow</a></td></tr><tr><td align="right">11 </td><td><a href="concurrency.html" class="tocviewlink" data-pltdoc="x">Concurrency and Parallelism</a></td></tr><tr><td align="right">12 </td><td><a href="Macros.html" class="tocviewlink" data-pltdoc="x">Macros</a></td></tr><tr><td align="right">13 </td><td><a href="input-and-output.html" class="tocviewlink" data-pltdoc="x">Input and Output</a></td></tr><tr><td align="right">14 </td><td><a href="security.html" class="tocviewlink" data-pltdoc="x">Reflection and Security</a></td></tr><tr><td align="right">15 </td><td><a href="os.html" class="tocviewlink" data-pltdoc="x">Operating System</a></td></tr><tr><td align="right">16 </td><td><a href="memory.html" class="tocviewlink" data-pltdoc="x">Memory Management</a></td></tr><tr><td align="right">17 </td><td><a href="unsafe.html" class="tocviewlink" data-pltdoc="x">Unsafe Operations</a></td></tr><tr><td align="right">18 </td><td><a href="running.html" class="tocviewlink" data-pltdoc="x">Running Racket</a></td></tr><tr><td align="right"></td><td><a href="doc-bibliography.html" class="tocviewlink" data-pltdoc="x">Bibliography</a></td></tr><tr><td align="right"></td><td><a href="doc-index.html" class="tocviewlink" data-pltdoc="x">Index</a></td></tr></table></div></div><div class="tocviewlist"><table cellspacing="0" cellpadding="0"><tr><td style="width: 1em;"><a href="javascript:void(0);" title="Expand/Collapse" class="tocviewtoggle" onclick="TocviewToggle(this,"tocview_1");">►</a></td><td>4 </td><td><a href="data.html" class="tocviewlink" data-pltdoc="x">Datatypes</a></td></tr></table><div class="tocviewsublist" style="display: none;" id="tocview_1"><table cellspacing="0" cellpadding="0"><tr><td align="right">4.1 </td><td><a href="booleans.html" class="tocviewlink" data-pltdoc="x">Booleans and Equality</a></td></tr><tr><td align="right">4.2 </td><td><a href="" class="tocviewselflink" data-pltdoc="x">Numbers</a></td></tr><tr><td align="right">4.3 </td><td><a href="strings.html" class="tocviewlink" data-pltdoc="x">Strings</a></td></tr><tr><td align="right">4.4 </td><td><a href="bytestrings.html" class="tocviewlink" data-pltdoc="x">Byte Strings</a></td></tr><tr><td align="right">4.5 </td><td><a href="characters.html" class="tocviewlink" data-pltdoc="x">Characters</a></td></tr><tr><td align="right">4.6 </td><td><a href="symbols.html" class="tocviewlink" data-pltdoc="x">Symbols</a></td></tr><tr><td align="right">4.7 </td><td><a href="regexp.html" class="tocviewlink" data-pltdoc="x">Regular Expressions</a></td></tr><tr><td align="right">4.8 </td><td><a href="keywords.html" class="tocviewlink" data-pltdoc="x">Keywords</a></td></tr><tr><td align="right">4.9 </td><td><a href="pairs.html" class="tocviewlink" data-pltdoc="x">Pairs and Lists</a></td></tr><tr><td align="right">4.10 </td><td><a href="mpairs.html" class="tocviewlink" data-pltdoc="x">Mutable Pairs and Lists</a></td></tr><tr><td align="right">4.11 </td><td><a href="vectors.html" class="tocviewlink" data-pltdoc="x">Vectors</a></td></tr><tr><td align="right">4.12 </td><td><a href="boxes.html" class="tocviewlink" data-pltdoc="x">Boxes</a></td></tr><tr><td align="right">4.13 </td><td><a href="hashtables.html" class="tocviewlink" data-pltdoc="x">Hash Tables</a></td></tr><tr><td align="right">4.14 </td><td><a href="sequences_streams.html" class="tocviewlink" data-pltdoc="x">Sequences and Streams</a></td></tr><tr><td align="right">4.15 </td><td><a href="dicts.html" class="tocviewlink" data-pltdoc="x">Dictionaries</a></td></tr><tr><td align="right">4.16 </td><td><a href="sets.html" class="tocviewlink" data-pltdoc="x">Sets</a></td></tr><tr><td align="right">4.17 </td><td><a href="procedures.html" class="tocviewlink" data-pltdoc="x">Procedures</a></td></tr><tr><td align="right">4.18 </td><td><a href="void.html" class="tocviewlink" data-pltdoc="x">Void</a></td></tr><tr><td align="right">4.19 </td><td><a href="undefined.html" class="tocviewlink" data-pltdoc="x">Undefined</a></td></tr></table></div></div><div class="tocviewlist"><table cellspacing="0" cellpadding="0"><tr><td style="width: 1em;"><a href="javascript:void(0);" title="Expand/Collapse" class="tocviewtoggle" onclick="TocviewToggle(this,"tocview_2");">▼</a></td><td>4.2 </td><td><a href="" class="tocviewselflink" data-pltdoc="x">Numbers</a></td></tr></table><div class="tocviewsublistbottom" style="display: block;" id="tocview_2"><table cellspacing="0" cellpadding="0"><tr><td align="right">4.2.1 </td><td><a href="number-types.html" class="tocviewlink" data-pltdoc="x">Number Types</a></td></tr><tr><td align="right">4.2.2 </td><td><a href="generic-numbers.html" class="tocviewlink" data-pltdoc="x">Generic Numerics</a></td></tr><tr><td align="right">4.2.3 </td><td><a href="flonums.html" class="tocviewlink" data-pltdoc="x">Flonums</a></td></tr><tr><td align="right">4.2.4 </td><td><a href="fixnums.html" class="tocviewlink" data-pltdoc="x">Fixnums</a></td></tr><tr><td align="right">4.2.5 </td><td><a href="extflonums.html" class="tocviewlink" data-pltdoc="x">Extflonums</a></td></tr></table></div></div></div></div><div class="maincolumn"><div class="main"><div class="navsettop"><span class="navleft"><form class="searchform"><input class="searchbox" style="color: #888;" type="text" value="...search manuals..." title="Enter a search string to search the manuals" onkeypress="return DoSearchKey(event, this, "6.1", "../");" onfocus="this.style.color="black"; this.style.textAlign="left"; if (this.value == "...search manuals...") this.value="";" onblur="if (this.value.match(/^ *$/)) { this.style.color="#888"; this.style.textAlign="center"; this.value="...search manuals..."; }"/></form> <a href="../index.html" title="up to the documentation top" data-pltdoc="x" onclick="return GotoPLTRoot("6.1");">top</a></span><span class="navright"> <a href="booleans.html" title="backward to "4.1 Booleans and Equality"" data-pltdoc="x">← prev</a> <a href="data.html" title="up to "4 Datatypes"" data-pltdoc="x">up</a> <a href="number-types.html" title="forward to "4.2.1 Number Types"" data-pltdoc="x">next →</a></span> </div><h4 x-source-module="(lib "scribblings/reference/reference.scrbl")" x-part-tag=""numbers"">4.2<tt> </tt><a name="(part._numbers)"></a>Numbers</h4><blockquote class="refpara"><blockquote class="refcolumn"><blockquote class="refcontent"><p><span class="imageleft"><img src="finger.png" alt="+" width="24" height="24"/></span><a href="http://download.racket-lang.org/docs/6.1/html/local-redirect/index.html?doc=guide&rel=numbers.html&version=6.1" class="Sq" data-pltdoc="x">Numbers</a> in <a href="http://download.racket-lang.org/docs/6.1/html/local-redirect/index.html?doc=guide&rel=index.html&version=6.1" class="Sq" data-pltdoc="x"><span style="font-weight: bold">The Racket Guide</span></a> introduces numbers.</p></blockquote></blockquote></blockquote><p>All <a name="(tech._number)"></a><span style="font-style: italic">numbers</span> are <a name="(tech._complex._number)"></a><span style="font-style: italic">complex numbers</span>. Some of them are
<a name="(tech._real._number)"></a><span style="font-style: italic">real numbers</span>, and all of the real numbers that can be
represented are also <a name="(tech._rational._number)"></a><span style="font-style: italic">rational numbers</span>, except for
<a name="(idx._(gentag._92._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal">+inf.0</span> (positive <a name="(idx._(gentag._93._(lib._scribblings/reference/reference..scrbl)))"></a>infinity), <a name="(idx._(gentag._94._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal">+inf.f</span> (single-precision variant),
<a name="(idx._(gentag._95._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal"><span class="nobreak">-i</span>nf.0</span> (negative infinity), <a name="(idx._(gentag._96._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal"><span class="nobreak">-i</span>nf.f</span> (single-precision variant),
<a name="(idx._(gentag._97._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal">+nan.0</span> (<a name="(idx._(gentag._98._(lib._scribblings/reference/reference..scrbl)))"></a>not-a-number), and <a name="(idx._(gentag._99._(lib._scribblings/reference/reference..scrbl)))"></a><span class="RktVal">+nan.f</span> (single-precision variant). Among the
rational numbers, some are <a name="(tech._integer)"></a><span style="font-style: italic">integers</span>, because <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._round%29%29" class="RktValLink" data-pltdoc="x">round</a></span>
applied to the number produces the same number.</p><blockquote class="refpara"><blockquote class="refcolumn"><blockquote class="refcontent"><p><span class="imageleft"><img src="magnify.png" alt="+" width="24" height="24"/></span>See <a href="reader.html#%28part._parse-number%29" data-pltdoc="x">Reading Numbers</a> for information on the
syntax of number literals.</p></blockquote></blockquote></blockquote><p>Orthogonal to those categories, each number is also either an
<a name="(tech._exact._number)"></a><span style="font-style: italic">exact number</span> or an <a name="(tech._inexact._number)"></a><span style="font-style: italic">inexact number</span>. Unless
otherwise specified, computations that involve an inexact number
produce inexact results. Certain operations on inexact numbers,
however, produce an exact number, such as multiplying an inexact
number with an exact <span class="RktVal">0</span>. Some operations, which can produce an
irrational number for rational arguments (e.g., <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._sqrt%29%29" class="RktValLink" data-pltdoc="x">sqrt</a></span>), may
produce inexact results even for exact arguments.</p><p>In the case of complex numbers, either the real and imaginary parts
are both exact or inexact, or the number has an exact zero real part
and an inexact imaginary part; a complex number with an exact zero
imaginary part is a real number.</p><p>Inexact real numbers are implemented as either single- or
double-precision <a name="(idx._(gentag._100._(lib._scribblings/reference/reference..scrbl)))"></a>IEEE floating-point numbers—<wbr></wbr>the latter
by default, and the former only when a computation starts with
numerical constants specified as single-precision numbers. Inexact
real numbers that are represented as double-precision floating-point
numbers are <a name="(tech._flonum)"></a><span style="font-style: italic">flonums</span>.</p><p>The precision and size of exact numbers is limited only by available
memory (and the precision of operations that can produce irrational
numbers). In particular, adding, multiplying, subtracting, and
dividing exact numbers always produces an exact result.</p><p>Inexact numbers can be coerced to exact form, except for the inexact
numbers <span class="RktVal">+inf.0</span>, <span class="RktVal">+inf.f</span>,
<span class="RktVal"><span class="nobreak">-i</span>nf.0</span>, <span class="RktVal"><span class="nobreak">-i</span>nf.f</span>, <span class="RktVal">+nan.0</span>, and <span class="RktVal">+nan.f</span>, which
have no exact form. <a name="(idx._(gentag._101._(lib._scribblings/reference/reference..scrbl)))"></a>Dividing a
number by exact zero raises an exception; dividing a non-zero number
other than <span class="RktVal">+nan.0</span> or <span class="RktVal">+nan.f</span> by an inexact zero returns <span class="RktVal">+inf.0</span>,
<span class="RktVal">+inf.f</span>, <span class="RktVal"><span class="nobreak">-i</span>nf.0</span>
or <span class="RktVal"><span class="nobreak">-i</span>nf.f</span>, depending on the sign and precision of the dividend. The
<span class="RktVal">+nan.0</span> value is not <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._~3d%29%29" class="RktValLink" data-pltdoc="x">=</a></span> to itself, but <span class="RktVal">+nan.0</span>
is <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span> to itself, and <span class="RktVal">+nan.f</span> is similarly <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span> but
not <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._~3d%29%29" class="RktValLink" data-pltdoc="x">=</a></span> to itself. Conversely, <span class="RktPn">(</span><span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._~3d%29%29" class="RktValLink" data-pltdoc="x">=</a></span><span class="stt"> </span><span class="RktVal">0.0</span><span class="stt"> </span><span class="RktVal"><span class="nobreak">-0</span>.0</span><span class="RktPn">)</span> is
<span class="RktVal">#t</span>, but <span class="RktPn">(</span><span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span><span class="stt"> </span><span class="RktVal">0.0</span><span class="stt"> </span><span class="RktVal"><span class="nobreak">-0</span>.0</span><span class="RktPn">)</span> is <span class="RktVal">#f</span>, and the
same for <span class="RktVal">0.0f0</span> and <span class="RktVal"><span class="nobreak">-0</span>.0f0</span> (which are single-precision variants). The datum
<span class="RktVal">-nan.0</span> refers to the same constant as <span class="RktVal">+nan.0</span>,
and <span class="RktVal">-nan.f</span> is the same as <span class="RktVal">+nan.f</span>.</p><p>Calculations with infinites produce results consistent with IEEE
double- or single-precision floating point where IEEE specifies the result; in
cases where IEEE provides no specification,
the result corresponds to the limit approaching
infinity, or <span class="RktVal">+nan.0</span> or <span class="RktVal">+nan.f</span> if no such limit exists.</p><p>A <a name="(tech._fixnum)"></a><span style="font-style: italic">fixnum</span> is an exact integer whose two’s complement
representation fit into 31 bits on a 32-bit platform or 63 bits on a
64-bit platform; furthermore, no allocation is required when computing
with fixnums. See also the <a href="fixnums.html" class="RktModLink" data-pltdoc="x"><span class="RktSym">racket/fixnum</span></a> module, below.</p><p>Two fixnums that are <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._~3d%29%29" class="RktValLink" data-pltdoc="x">=</a></span> are also the same
according to <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eq~3f%29%29" class="RktValLink" data-pltdoc="x">eq?</a></span>. Otherwise, the result of <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eq~3f%29%29" class="RktValLink" data-pltdoc="x">eq?</a></span>
applied to two numbers is undefined, except that numbers produced
by the default reader in <span class="RktSym"><a href="Reading.html#%28def._%28%28quote._~23~25kernel%29._read-syntax%29%29" class="RktValLink" data-pltdoc="x">read-syntax</a></span> mode are <a href="reader.html#%28tech._interned%29" class="techoutside" data-pltdoc="x"><span class="techinside">interned</span></a> and therefore <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eq~3f%29%29" class="RktValLink" data-pltdoc="x">eq?</a></span>
when they are <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span>.</p><p>Two numbers are <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span> when they are both inexact with the same precision or both
exact, and when they are <span class="RktSym"><a href="generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._~3d%29%29" class="RktValLink" data-pltdoc="x">=</a></span> (except for <span class="RktVal">+nan.0</span>, <span class="RktVal">+nan.f</span>,
<span class="RktVal">0.0</span>, <span class="RktVal">0.0f0</span>, <span class="RktVal"><span class="nobreak">-0</span>.0</span>, and <span class="RktVal"><span class="nobreak">-0</span>.0f0</span>, as noted above). Two numbers are
<span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._equal~3f%29%29" class="RktValLink" data-pltdoc="x">equal?</a></span> when they are <span class="RktSym"><a href="booleans.html#%28def._%28%28quote._~23~25kernel%29._eqv~3f%29%29" class="RktValLink" data-pltdoc="x">eqv?</a></span>.</p><p>See <a href="reader.html#%28part._parse-number%29" data-pltdoc="x">Reading Numbers</a>
for information on <span class="RktSym"><a href="Reading.html#%28def._%28%28quote._~23~25kernel%29._read%29%29" class="RktValLink" data-pltdoc="x">read</a></span>ing
numbers and <a href="printing.html#%28part._print-number%29" data-pltdoc="x">Printing Numbers</a>
for information on <span class="RktSym"><a href="Writing.html#%28def._%28%28quote._~23~25kernel%29._print%29%29" class="RktValLink" data-pltdoc="x">print</a></span>ing numbers.</p><table cellspacing="0" cellpadding="0"><tr><td><p><span class="hspace"> </span><a href="number-types.html" class="toclink" data-pltdoc="x">4.2.1<span class="hspace"> </span>Number Types</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html" class="toclink" data-pltdoc="x">4.2.2<span class="hspace"> </span>Generic Numerics</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Arithmetic%29" class="toclink" data-pltdoc="x">4.2.2.1<span class="hspace"> </span>Arithmetic</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Number_.Comparison%29" class="toclink" data-pltdoc="x">4.2.2.2<span class="hspace"> </span>Number Comparison</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Powers_and_.Roots%29" class="toclink" data-pltdoc="x">4.2.2.3<span class="hspace"> </span>Powers and Roots</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Trigonometric_.Functions%29" class="toclink" data-pltdoc="x">4.2.2.4<span class="hspace"> </span>Trigonometric Functions</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Complex_.Numbers%29" class="toclink" data-pltdoc="x">4.2.2.5<span class="hspace"> </span>Complex Numbers</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Bitwise_.Operations%29" class="toclink" data-pltdoc="x">4.2.2.6<span class="hspace"> </span>Bitwise Operations</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Random_.Numbers%29" class="toclink" data-pltdoc="x">4.2.2.7<span class="hspace"> </span>Random Numbers</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Number--.String_.Conversions%29" class="toclink" data-pltdoc="x">4.2.2.8<span class="hspace"> </span>Number–String Conversions</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="generic-numbers.html#%28part._.Extra_.Constants_and_.Functions%29" class="toclink" data-pltdoc="x">4.2.2.9<span class="hspace"> </span>Extra Constants and Functions</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="flonums.html" class="toclink" data-pltdoc="x">4.2.3<span class="hspace"> </span>Flonums</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="flonums.html#%28part._.Flonum_.Arithmetic%29" class="toclink" data-pltdoc="x">4.2.3.1<span class="hspace"> </span>Flonum Arithmetic</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="flonums.html#%28part._flvectors%29" class="toclink" data-pltdoc="x">4.2.3.2<span class="hspace"> </span>Flonum Vectors</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="fixnums.html" class="toclink" data-pltdoc="x">4.2.4<span class="hspace"> </span>Fixnums</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="fixnums.html#%28part._.Fixnum_.Arithmetic%29" class="toclink" data-pltdoc="x">4.2.4.1<span class="hspace"> </span>Fixnum Arithmetic</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="fixnums.html#%28part._fxvectors%29" class="toclink" data-pltdoc="x">4.2.4.2<span class="hspace"> </span>Fixnum Vectors</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="extflonums.html" class="toclink" data-pltdoc="x">4.2.5<span class="hspace"> </span>Extflonums</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="extflonums.html#%28part._.Extflonum_.Arithmetic%29" class="toclink" data-pltdoc="x">4.2.5.1<span class="hspace"> </span>Extflonum Arithmetic</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="extflonums.html#%28part._.Extflonum_.Constants%29" class="toclink" data-pltdoc="x">4.2.5.2<span class="hspace"> </span>Extflonum Constants</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="extflonums.html#%28part._extflvectors%29" class="toclink" data-pltdoc="x">4.2.5.3<span class="hspace"> </span>Extflonum Vectors</a></p></td></tr><tr><td><p><span class="hspace"> </span><a href="extflonums.html#%28part._extflutils%29" class="toclink" data-pltdoc="x">4.2.5.4<span class="hspace"> </span>Extflonum Byte Strings</a></p></td></tr></table><div class="navsetbottom"><span class="navleft"><form class="searchform"><input class="searchbox" style="color: #888;" type="text" value="...search manuals..." title="Enter a search string to search the manuals" onkeypress="return DoSearchKey(event, this, "6.1", "../");" onfocus="this.style.color="black"; this.style.textAlign="left"; if (this.value == "...search manuals...") this.value="";" onblur="if (this.value.match(/^ *$/)) { this.style.color="#888"; this.style.textAlign="center"; this.value="...search manuals..."; }"/></form> <a href="../index.html" title="up to the documentation top" data-pltdoc="x" onclick="return GotoPLTRoot("6.1");">top</a></span><span class="navright"> <a href="booleans.html" title="backward to "4.1 Booleans and Equality"" data-pltdoc="x">← prev</a> <a href="data.html" title="up to "4 Datatypes"" data-pltdoc="x">up</a> <a href="number-types.html" title="forward to "4.2.1 Number Types"" data-pltdoc="x">next →</a></span> </div></div></div><div id="contextindicator"> </div></body></html>
|