This file is indexed.

/usr/lib/ruby/vendor_ruby/pdf/reader/transformation_matrix.rb is in ruby-pdf-reader 1.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# coding: utf-8

class PDF::Reader
  # co-ordinate systems in PDF files are specified using a 3x3 matrix that looks
  # something like this:
  #
  #   [ a b 0 ]
  #   [ c d 0 ]
  #   [ e f 1 ]
  #
  # Because the final column never changes, we can represent each matrix using
  # only 6 numbers. This is important to save CPU time, memory and GC pressure
  # caused by allocating too many unnecessary objects.
  class TransformationMatrix
    attr_reader :a, :b, :c, :d, :e, :f

    def initialize(a, b, c, d, e, f)
      @a, @b, @c, @d, @e, @f = a, b, c, d, e, f
    end

    def inspect
      "#{a}, #{b}, 0,\n#{c}, #{d}, #{0},\n#{e}, #{f}, 1"
    end

    def to_a
      [@a,@b,0,
       @c,@d,0,
       @e,@f,1]
    end

    # multiply this matrix with another.
    #
    # the second matrix is represented by the 6 scalar values that are changeable
    # in a PDF transformation matrix.
    #
    # WARNING: This mutates the current matrix to avoid allocating memory when
    #          we don't need too. Matrices are multiplied ALL THE FREAKING TIME
    #          so this is a worthwhile optimisation
    #
    # NOTE: When multiplying matrices, ordering matters. Double check
    #       the PDF spec to ensure you're multiplying things correctly.
    #
    # NOTE: see Section 8.3.3, PDF 32000-1:2008, pp 119
    #
    # NOTE: The if statements in this method are ordered to prefer optimisations
    #       that allocate fewer objects
    #
    # TODO: it might be worth adding an optimised path for vertical
    #       displacement to speed up processing documents that use vertical
    #       writing systems
    #
    def multiply!(a,b=nil,c=nil, d=nil,e=nil,f=nil)
      if a == 1 && b == 0 && c == 0 && d == 1 && e == 0 && f == 0
        # the identity matrix, no effect
        self
      elsif @a == 1 && @b == 0 && @c == 0 && @d == 1 && @e == 0 && @f == 0
        # I'm the identity matrix, so just copy values across
        @a = a
        @b = b
        @c = c
        @d = d
        @e = e
        @f = f
      elsif a == 1 && b == 0 && c == 0 && d == 1 && f == 0
        # the other matrix is a horizontal displacement
        horizontal_displacement_multiply!(e)
      elsif @a == 1 && @b == 0 && @c == 0 && @d == 1 && @f == 0
        # I'm a horizontal displacement
        horizontal_displacement_multiply_reversed!(a,b,c,d,e,f)
      elsif @a != 1 && @b == 0 && @c == 0 && @d != 1 && @e == 0 && @f == 0
        # I'm a xy scale
        xy_scaling_multiply_reversed!(a,b,c,d,e,f)
      elsif a != 1 && b == 0 && c == 0 && d != 1 && e == 0 && f == 0
        # the other matrix is an xy scale
        xy_scaling_multiply!(a,b,c,d,e,f)
      else
        faster_multiply!(a,b,c, d,e,f)
      end
      self
    end

    # Optimised method for when the second matrix in the calculation is
    # a simple horizontal displacement.
    #
    # Like this:
    #
    #   [ 1 2 0 ]   [ 1  0 0 ]
    #   [ 3 4 0 ] x [ 0  1 0 ]
    #   [ 5 6 1 ]   [ e2 0 1 ]
    #
    def horizontal_displacement_multiply!(e2)
      @e = @e + e2
    end

    private

    # Optimised method for when the first matrix in the calculation is
    # a simple horizontal displacement.
    #
    # Like this:
    #
    #   [ 1 0 0 ]   [ 1 2 0 ]
    #   [ 0 1 0 ] x [ 3 4 0 ]
    #   [ 5 0 1 ]   [ 5 6 1 ]
    #
    def horizontal_displacement_multiply_reversed!(a2,b2,c2,d2,e2,f2)
      newa = a2
      newb = b2
      newc = c2
      newd = d2
      newe = (@e * a2) + e2
      newf = (@e * b2) + f2
      @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf
    end

    # Optimised method for when the second matrix in the calculation is
    # an X and Y scale
    #
    # Like this:
    #
    #   [ 1 2 0 ]   [ 5 0 0 ]
    #   [ 3 4 0 ] x [ 0 5 0 ]
    #   [ 5 6 1 ]   [ 0 0 1 ]
    #
    def xy_scaling_multiply!(a2,b2,c2,d2,e2,f2)
      newa = @a * a2
      newb = @b * d2
      newc = @c * a2
      newd = @d * d2
      newe = @e * a2
      newf = @f * d2
      @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf
    end

    # Optimised method for when the first matrix in the calculation is
    # an X and Y scale
    #
    # Like this:
    #
    #   [ 5 0 0 ]   [ 1 2 0 ]
    #   [ 0 5 0 ] x [ 3 4 0 ]
    #   [ 0 0 1 ]   [ 5 6 1 ]
    #
    def xy_scaling_multiply_reversed!(a2,b2,c2,d2,e2,f2)
      newa = @a * a2
      newb = @a * b2
      newc = @d * c2
      newd = @d * d2
      newe = e2
      newf = f2
      @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf
    end

    # A general solution to multiplying two 3x3 matrixes. This is correct in all cases,
    # but slower due to excessive object allocations. It's not actually used in any
    # active code paths, but is here for reference. Use faster_multiply instead.
    #
    # Like this:
    #
    #   [ a b 0 ]   [ a b 0 ]
    #   [ c d 0 ] x [ c d 0 ]
    #   [ e f 1 ]   [ e f 1 ]
    #
    def regular_multiply!(a2,b2,c2,d2,e2,f2)
      newa = (@a * a2) + (@b * c2) + (0 * e2)
      newb = (@a * b2) + (@b * d2) + (0 * f2)
      newc = (@c * a2) + (@d * c2) + (0 * e2)
      newd = (@c * b2) + (@d * d2) + (0 * f2)
      newe = (@e * a2) + (@f * c2) + (1 * e2)
      newf = (@e * b2) + (@f * d2) + (1 * f2)
      @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf
    end

    # A general solution for multiplying two matrices when we know all values
    # in the final column are fixed. This is the fallback method for when none
    # of the optimised methods are applicable.
    #
    # Like this:
    #
    #   [ a b 0 ]   [ a b 0 ]
    #   [ c d 0 ] x [ c d 0 ]
    #   [ e f 1 ]   [ e f 1 ]
    #
    def faster_multiply!(a2,b2,c2, d2,e2,f2)
      newa = (@a * a2) + (@b * c2)
      newb = (@a * b2) + (@b * d2)
      newc = (@c * a2) + (@d * c2)
      newd = (@c * b2) + (@d * d2)
      newe = (@e * a2) + (@f * c2) + e2
      newf = (@e * b2) + (@f * d2) + f2
      @a, @b, @c, @d, @e, @f = newa, newb, newc, newd, newe, newf
    end
  end
end