This file is indexed.

/usr/share/tcltk/tcllib1.16/math/mvlinreg.tcl is in tcllib 1.16-dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# mvreglin.tcl --
#     Addition to the statistics package
#     Copyright 2007 Eric Kemp-Benedict
#     Released under the BSD license under any terms
#     that allow it to be compatible with tcllib

package require math::linearalgebra 1.0
package require math::statistics 0.4

# ::math::statistics --
#     This file adds:
#     mvlinreg = Multivariate Linear Regression
#
namespace eval ::math::statistics {
    variable epsilon 1.0e-7

    namespace export tstat mv-wls mv-ols

    namespace import -force \
        ::math::linearalgebra::mkMatrix \
        ::math::linearalgebra::mkVector \
        ::math::linearalgebra::mkIdentity \
        ::math::linearalgebra::mkDiagonal \
        ::math::linearalgebra::getrow \
        ::math::linearalgebra::setrow \
        ::math::linearalgebra::getcol \
        ::math::linearalgebra::setcol \
        ::math::linearalgebra::getelem \
        ::math::linearalgebra::setelem \
        ::math::linearalgebra::dotproduct \
        ::math::linearalgebra::matmul \
        ::math::linearalgebra::add \
        ::math::linearalgebra::sub \
        ::math::linearalgebra::solveGauss \
        ::math::linearalgebra::transpose
}

# tstats --
#     Returns inverse of the single-tailed t distribution
#     given number of degrees of freedom & confidence
#
# Arguments:
#     n        Number of degrees of freedom
#     alpha    Confidence level (defaults to 0.05)
#
# Result:
#     Inverse of the t-distribution
#
# Note:
#     Iterates until result is within epsilon of the target.
#     It is possible that the iteration does not converge
#
proc ::math::statistics::tstat {n {alpha 0.05}} {
    variable epsilon
    variable tvals

    if [info exists tvals($n:$alpha)] {
        return $tvals($n:$alpha)
    }

    set deltat [expr {100 * $epsilon}]
    # For one-tailed distribution,
    set ptarg [expr {1.000 - $alpha/2.0}]
    set maxiter 100

    # Initial value for t
    set t 2.0

    set niter 0
    while {abs([::math::statistics::cdf-students-t $n $t] - $ptarg) > $epsilon} {
        set pstar [::math::statistics::cdf-students-t $n $t]
        set pl [::math::statistics::cdf-students-t $n [expr {$t - $deltat}]]
        set ph [::math::statistics::cdf-students-t $n [expr {$t + $deltat}]]

        set t [expr {$t + 2.0 * $deltat * ($ptarg - $pstar)/($ph - $pl)}]

        incr niter
        if {$niter == $maxiter} {
            return -code error "::math::statistics::tstat: Did not converge after $niter iterations"
        }
    }

    # Cache the result to shorten the call in future
    set tvals($n:$alpha) $t

    return $t
}

# mv-wls --
#     Weighted Least Squares
#
# Arguments:
#     data       Alternating list of weights and observations
#
# Result:
#     List containing:
#     * R-squared
#     * Adjusted R-squared
#     * Coefficients of x's in fit
#     * Standard errors of the coefficients
#     * 95% confidence bounds for coefficients
#
# Note:
#     The observations are lists starting with the dependent variable y
#     and then the values of the independent variables (x1, x2, ...):
#
#     mv-wls [list w [list y x's] w [list y x's] ...]
#
proc ::math::statistics::mv-wls {data} {

    # Fill the matrices of x & y values, and weights
    # For n points, k coefficients

    # The number of points is equal to half the arguments (n weights, n points)
    set n [expr {[llength $data]/2}]

    set firstloop true
    # Sum up all y values to take an average
    set ysum 0
    # Add up the weights
    set wtsum 0
    # Count over rows (points) as you go
    set point 0
    foreach {wt pt} $data {

        # Check inputs
        if {[string is double $wt] == 0} {
            return -code error "::math::statistics::mv-wls: Weight \"$wt\" is not a number"
            return {}
        }

        ## -- Check dimensions, initialize
        if $firstloop {
            # k = num of vals in pt = 1 + number of x's (because of constant)
            set k [llength $pt]
            if {$n <= [expr {$k + 1}]} {
                return -code error "::math::statistics::mv-wls: Too few degrees of freedom: $k variables but only $n points"
                return {}
            }
            set X [mkMatrix $n $k]
            set y [mkVector $n]
            set I_x [mkIdentity $k]
            set I_y [mkIdentity $n]

            set firstloop false

        } else {
            # Have to have same number of x's for all points
            if {$k != [llength $pt]} {
                return -code error "::math::statistics::mv-wls: Point \"$pt\" has wrong number of values (expected $k)"
                # Clean up
                return {}
            }
        }

        ## -- Extract values from set of points
        # Make a list of y values
        set yval [expr {double([lindex $pt 0])}]
        setelem y $point $yval
        set ysum [expr {$ysum + $wt * $yval}]
        set wtsum [expr {$wtsum + $wt}]
        # Add x-values to the x-matrix
        set xrow [lrange $pt 1 end]
        # Add the constant (value = 1.0)
        lappend xrow 1.0
        setrow X $point $xrow
        # Create list of weights & square root of weights
        lappend w [expr {double($wt)}]
        lappend sqrtw [expr {sqrt(double($wt))}]

        incr point

    }

    set ymean [expr {double($ysum)/$wtsum}]
    set W [mkDiagonal $w]
    set sqrtW [mkDiagonal $sqrtw]

    # Calculate sum os square differences for x's
    for {set r 0} {$r < $k} {incr r} {
        set xsqrsum 0.0
        set xmeansum 0.0
        # Calculate sum of squared differences as: sum(x^2) - (sum x)^2/n
        for {set t 0} {$t < $n} {incr t} {
            set xval [getelem $X $t $r]
            set xmeansum [expr {$xmeansum + double($xval)}]
            set xsqrsum [expr {$xsqrsum + double($xval * $xval)}]
        }
        lappend xsqr [expr {$xsqrsum - $xmeansum * $xmeansum/$n}]
    }

    ## -- Set up the X'WX matrix
    set XtW [matmul [::math::linearalgebra::transpose $X] $W]
    set XtWX [matmul $XtW $X]

    # Invert
    set M [solveGauss $XtWX $I_x]

    set beta [matmul $M [matmul $XtW $y]]

    ### -- Residuals & R-squared
    # 1) Generate list of diagonals of the hat matrix
    set H [matmul $X [matmul $M $XtW]]
    for {set i 0} {$i < $n} {incr i} {
        lappend h_ii [getelem $H $i $i]
    }

    set R [matmul $sqrtW [matmul [sub $I_y $H] $y]]
    set yhat [matmul $H $y]

    # 2) Generate list of residuals, sum of squared residuals, r-squared
    set sstot 0.0
    set ssreg 0.0
    # Note: Relying on representation of Vector as a list for y, yhat
    foreach yval $y wt $w yhatval $yhat {
        set sstot [expr {$sstot + $wt * ($yval - $ymean) * ($yval - $ymean)}]
        set ssreg [expr {$ssreg + $wt * ($yhatval - $ymean) * ($yhatval - $ymean)}]
    }
    set r2 [expr {double($ssreg)/$sstot}]
    set adjr2 [expr {1.0 - (1.0 - $r2) * ($n - 1)/($n - $k)}]
    set sumsqresid [dotproduct $R $R]
    set s2 [expr {double($sumsqresid) / double($n - $k)}]

    ### -- Confidence intervals for coefficients
    set tvalue [tstat [expr {$n - $k}]]
    for {set i 0} {$i < $k} {incr i} {
        set stderr [expr {sqrt($s2 * [getelem $M $i $i])}]
        set mid [lindex $beta $i]
        lappend stderrs $stderr
        lappend confinterval [list [expr {$mid - $tvalue * $stderr}] [expr {$mid + $tvalue * $stderr}]]
    }

    return [list $r2 $adjr2 $beta $stderrs $confinterval]
}

# mv-ols --
#     Ordinary Least Squares
#
# Arguments:
#     data       List of observations, list of lists
#
# Result:
#     List containing:
#     * R-squared
#     * Adjusted R-squared
#     * Coefficients of x's in fit
#     * Standard errors of the coefficients
#     * 95% confidence bounds for coefficients
#
# Note:
#     The observations are lists starting with the dependent variable y
#     and then the values of the independent variables (x1, x2, ...):
#
#     mv-ols [list y x's] [list y x's] ...
#
proc ::math::statistics::mv-ols {data} {
    set newdata {}
    foreach pt $data {
        lappend newdata 1 $pt
    }
    return [mv-wls $newdata]
}