/usr/share/tcltk/tcllib1.16/math/wilcoxon.tcl is in tcllib 1.16-dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | # statistics_new.tcl --
# Implementation of the Wilcoxon test: test if the medians
# of two samples are the same
#
package require math::statistics
# test-Wilcoxon
# Compute the statistic that indicates if the medians of two
# samples are the same
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# Statistic for the test (if both samples have 10 or more
# values, the statistic behaves as a standard normal variable)
#
proc ::math::statistics::test-Wilcoxon {sample_a sample_b} {
#
# Construct the sorted list for both
#
set sorted {}
set count_a 0
set count_b 0
foreach sample {sample_a sample_b} code {0 1} count {count_a count_b} {
foreach v [set $sample] {
if { $v ne {} } {
incr $count
lappend sorted [list $v $code]
}
}
}
set raw_sorted [lsort -index 0 -real $sorted]
#
# Resolve the ties (TODO)
# - Make sure the previous value is never equal to the first
# - Take care of the last part of the sorted samples
#
set previous [expr {0.5*[lindex $raw_sorted 0 0] - 1.0}]
set sorted $raw_sorted
set rank 0
set sum_ranks 0
set count 0
set first 0
set index 0
foreach v [concat $raw_sorted {{} -1}] {
set sum_ranks [expr {$sum_ranks + $rank}]
incr count
set current [lindex $v 0]
if { $current != $previous } {
set new_rank [expr {$sum_ranks / $count}]
if { $index > [llength $raw_sorted] } {
set index [llength $raw_sorted]
}
for {set elem $first} {$elem < $index} {incr elem} {
lset sorted $elem 0 $new_rank
}
set previous $current
set first $index
set count 0
set sum_ranks 0
}
incr index
incr rank
}
#
# Sum the ranks for the first sample and determine
# the statistic
#
if { $count_a < 2 || $count_b < 2 } {
return -code error \
-errorcode DATA -errorinfo {Too few data in one or both samples}
}
set sum 0
foreach v $sorted {
if { [lindex $v 1] == 0 } {
set rank [lindex $v 0]
set sum [expr {$sum + $rank}]
}
}
set expected [expr {$count_a * ($count_a + $count_b + 1)/2.0}]
set stdev [expr {sqrt($count_b * $expected/6.0)}]
set statistic [expr {($sum-$expected)/$stdev}]
return $statistic
}
# SpearmanRankData --
# Auxiliary procedure to rank the data
#
# Arguments:
# sample Series of data to be ranked
#
# Returns:
# Ranks of the data
#
proc ::math::statistics::SpearmanRankData {sample} {
set counted_sample {}
set count 0
foreach v $sample {
if { $v ne {} } {
incr count
lappend counted_sample [list $v 0 $count]
}
}
set raw_sorted [lsort -index 0 -real $counted_sample]
#
# Resolve the ties (TODO)
# - Make sure the previous value is never equal to the first
# - Take care of the last part of the sorted samples
#
set previous [expr {0.5*[lindex $raw_sorted 0 0] - 1.0}]
set sorted $raw_sorted
set rank 0
set sum_ranks 0
set count 0
set first 0
set index 0
foreach v [concat $raw_sorted {{} -1}] {
set sum_ranks [expr {$sum_ranks + $rank}]
incr count
set current [lindex $v 0]
if { $current != $previous } {
set new_rank [expr {$sum_ranks / $count}]
if { $index > [llength $raw_sorted] } {
set index [llength $raw_sorted]
}
for {set elem $first} {$elem < $index} {incr elem} {
lset sorted $elem 1 $new_rank
}
set previous $current
set first $index
set count 0
set sum_ranks 0
}
incr index
incr rank
}
#
# Return the ranks of the data in the original order
#
set ranks {}
foreach values [lsort -index 2 -integer $sorted] {
lappend ranks [lindex $values 1]
}
return $ranks
}
# spearman-rank-extended --
# Compute the Spearman's rank correlation coefficient and
# associated parameters
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# List of:
# - Rank correlation coefficient
# - Number of data
# - z-score to test the null hyothesis
#
proc ::math::statistics::spearman-rank-extended {sample_a sample_b} {
#
# Filter out missing data
#
if { [llength $sample_a] != [llength $sample_b] } {
return -code error \
-errorcode DATA -errorinfo {The two samples should have the same number of data}
}
set new_sample_a {}
set new_sample_b {}
foreach a $sample_a b $sample_b {
if { $a != {} && $b != {} } {
lappend new_sample_a $a
lappend new_sample_b $b
}
}
#
# Construct the ranks
#
set rank_a [SpearmanRankData $new_sample_a]
set rank_b [SpearmanRankData $new_sample_b]
set rcorr [corr $rank_a $rank_b]
set number [llength $new_sample_a]
set zscore [expr {sqrt(($number-3)/1.06) * 0.5 * log((1.0+$rcorr)/(1.0-$rcorr))}]
return [list $rcorr $number $zscore]
}
# spearman-rank --
# Compute the Spearman's rank correlation coefficient
#
# Arguments:
# sample_a List of values in the first sample
# sample_b List of values in the second sample
#
# Result:
# Rank correlation coefficient
#
proc ::math::statistics::spearman-rank {sample_a sample_b} {
return [lindex [spearman-rank-extended $sample_a $sample_b] 0]
}
|