/usr/share/tkgate/doc/menagerie.html is in tkgate-doc 2.0~b10-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 | <HTML>
<HEAD>
<TITLE>TKGate User Documention (Index)</TITLE>
<META http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" href="tkgate.css" type="text/css">
</HEAD>
<BODY>
<H2>E. Sample Gmac Input File</H2>
This appendix contains a complete listing of the Gmac input file for
the Menagerie CPU including as a sample circuit.
<br><br>
<hr>
<pre>
//
// Copyright (C) 1987-2000 by Jeffery P. Hansen
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// Last edit by hansen on Thu Jul 26 20:56:44 2007
//
// Microcode memory bank declarations
microcode bank[31:0] iunit.m1;
microcode bank[63:32] iunit.m2;
map bank[7:0] iunit.map;
macrocode bank[7:0] memory.m1;
// Microcode field declarations
//
// Microcode branching. mpcop specifies the basic operation.
//
field mpcop[1:0]={
next=0, // Increment mpc
reinit=1, // Restart CPU
jmap=2, // Jump from map value
jump=3 // Jump from condition
};
//
// Specifies the condition on which to jump if mpcop is "jump".
//
field mpccond[12:10]={
jne=0, // Jump if not equal
jcarry=1, // Jump on carry
jeq=2, // Jump if equal
jlt=3, // Jump if less than
jgt=4, // Jump if greater than
jle=5, // Jump if less than or equal
jge=6, // Jump if greater than or equal
jmp=7 // Jump always
};
//
// Address to jump to if mpcop is "jump" and condition specified
// by mpccond is true. This field can not be used at the same
// time as the idata field.
//
field mpcaddr[9:2];
//
// Specifies 8 bits of data to be used by the EUNIT. This field
// can not be used on jump microinstructions.
//
field idata[9:2];
//
// Specifies the A and B operands of the ALU.
//
// qreg Use Q register
// din Use data in
// idata Use idata field from microinstruction
// reg Use register file
//
field aop[15:14]={qreg=0, din=1, idata=2, reg=3};
field bop[17:16]={qreg=0, din=1, idata=2, reg=3};
field ~ldir[13]; // Load instruction register
field cin[18]; // Carry in
field ~clq[19]; // Clear Q register
field ~ldq[20]; // 16-bit load of Q register
field ~lddata[21]; // Load EUNIT data from external bus
field ~ldopr[22]; // Load operand register
field ~wa[23]; // Write register file on SA
field sa[27:24]; // Register address A
field sb[31:28]; // Register address B
//
// These fields specify the ALU function.
//
field ALU_FUNC[36:32];
field ALU_SHOP[33:32]={arshift=0, lshift=1, rshift=2, roll=3};
field ALU_BCOMP[32];
field ALU_AZERO[33];
field ALU_OP[36:34]={shift=0,xor=1,and=2,or=3,mul=4,add=5,mod=6,div=7};
field ~incpc[37]; // Increment PC
field ~ldmar[38]; // Load MAR
field ~ldmdr[39]; // Load MDR
field ~ldpc[40]; // Load PC
field ~rd[41]; // Read main memory
field ~rdmdr[42]; // Read MDR onto external data bus
field ~wrt[43]; // Write main memory
field spc[44]; // Address main memory from PC
field ~isa[45]; // Use sa address from macro instruction
field ~isb[46]; // Use sb address from macro instruction
field ~ifunc[47]; // Use function code from macro instruction
field ~icond[48]; // Use branch condition from macro instruction
field ~ldql[49]; // 8-bit load of lower half of Q register
field ~ldqh[50]; // 8-bit load of upper half of Q register
field ~dout[51]; // Output EUNIT data to external bus
field ~ldcc[52]; // Load condition code register
field ~ldhmdr[53]; // Load mdr from high byte of data bus
field ~rdpc[54]; // Read PC onto external bus
field ~incmar[55]; // Increment mar (can't use with incpc)
field extra[63:56]; // Extra bits
//////////////////////////////////////////////////////////////////////
//
// +-+-+-+-+-+-+-+-+
// |7|6|5|4|3|2|1|0|
// +-+-+-+-+-+-+-+-+
//
// Basic instruction types are encoded by the high two bits of the
// first byte of the instruction. For certain types (e.g., ALU
// types) some bits are masked when forming the map address. Bits
// contributing to the map vector are marked with a *.
//
// Move Instruction
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 1 1 s|a a|b b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
// * * * * * * * *
//
// s = size (1 = byte, 0 = word)
// aa = operand mode 1
// bb = operand mode 2
//
// Single operand instruction (push, pop, call, etc.)
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 0|0| op |b b| | reg1 |0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
// * * * * * * * *
//
//
// Branch instruction (jmp, jne, etc.)
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 0|1|cond |b b| | reg1 |0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
// * * * * *
//
//
// ALU Instruction
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1| func |b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
// * * *
//
// func = ALU function
// a = operand mode
//
// Other instructions
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 0| op |b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
// * * * * * * * *
//
//
registers R0=0, R1=1, R2=2, R3=3, R4=4, R5=5, R6=6, R7=7, R8=8, R9=9, R10=10, R11=11, R12=12, R13=13, FP=14, SP=15;
operands basic {
%1,%2 = { +0[0] = 0; +1[7:4]=%1; +1[3:0]=%2; };
%1,#2 = { +0[0] = 1; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
};
operands runiop {
%1 = { +0[1:0] = 0; +1[7:4]=%1; +1[3:0]=0; };
#1 = { +0[1:0] = 1; +1=0; +2=#1[7:0]; +3=#1[15:8]; };
(%1) = { +0[1:0] = 2; +1[7:4]=%1; +1[3:0]=0; };
#2(%1) = { +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
};
operands wuniop {
%1 = { +0[1:0] = 0; +1[7:4]=%1; +1[3:0]=0; };
(%1) = { +0[1:0] = 2; +1[7:4]=%1; +1[3:0]=0; };
#2(%1) = { +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
};
//
// Operands for move instructions
//
operands movoprs {
%1,%2 = { +0[3:2] = 0; +0[1:0] = 0; +1[7:4]=%1; +1[3:0]=%2; };
%1,#2 = { +0[3:2] = 0; +0[1:0] = 1; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
%1,(%2) = { +0[3:2] = 0; +0[1:0] = 2; +1[7:4]=%1; +1[3:0]=%2; };
%1,#3(%2) = { +0[3:2] = 0; +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=%2; +2=#3[7:0]; +3=#3[15:8]; };
%1,(#2) = { +0[3:2] = 0; +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
(%1),%2 = { +0[3:2] = 2; +0[1:0] = 0; +1[7:4]=%1; +1[3:0]=%2; };
(%1),#2 = { +0[3:2] = 2; +0[1:0] = 1; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
(%1),(%2) = { +0[3:2] = 2; +0[1:0] = 2; +1[7:4]=%1; +1[3:0]=%2; };
(%1),#3(%2) = { +0[3:2] = 2; +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=%2; +2=#3[7:0]; +3=#3[15:8]; };
(%1),(#2) = { +0[3:2] = 2; +0[1:0] = 3; +1[7:4]=%1; +1[3:0]=0; +2=#2[7:0]; +3=#2[15:8]; };
#1(%2),%3 = { +0[3:2] = 3; +0[1:0] = 0; +1[7:4]=%2; +1[3:0]=%3; +2=#1[7:0]; +3=#1[15:8]; };
#1(%2),#3 = { +0[3:2] = 3; +0[1:0] = 1; +1[7:4]=%2; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; +4=#3[7:0]; +5=#3[15:8]; };
#1(%2),(%3) = { +0[3:2] = 3; +0[1:0] = 2; +1[7:4]=%2; +1[3:0]=%3; +2=#1[7:0]; +3=#1[15:8]; };
#1(%2),#4(%3) = { +0[3:2] = 3; +0[1:0] = 3; +1[7:4]=%2; +1[3:0]=%3; +2=#1[7:0]; +3=#1[15:8]; +4=#4[7:0]; +5=#4[15:8]; };
#1(%2),(#3) = { +0[3:2] = 3; +0[1:0] = 3; +1[7:4]=%2; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; +4=#3[7:0]; +5=#3[15:8]; };
(#1),%2 = { +0[3:2] = 3; +0[1:0] = 0; +1[7:4]=0; +1[3:0]=%2; +2=#1[7:0]; +3=#1[15:8]; };
(#1),#2 = { +0[3:2] = 3; +0[1:0] = 1; +1[7:4]=0; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; +4=#2[7:0]; +5=#2[15:8]; };
(#1),(%2) = { +0[3:2] = 3; +0[1:0] = 2; +1[7:4]=0; +1[3:0]=%2; +2=#1[7:0]; +3=#1[15:8]; };
(#1),#3(%2) = { +0[3:2] = 3; +0[1:0] = 3; +1[7:4]=0; +1[3:0]=%2; +2=#1[7:0]; +3=#1[15:8]; +4=#3[7:0]; +5=#3[15:8]; };
(#1),(#2) = { +0[3:2] = 3; +0[1:0] = 3; +1[7:4]=0; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; +4=#2[7:0]; +5=#2[15:8]; };
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 0|1 1 1 1 1|0| |0 0 0 0|0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
//
op nop {
map nop : 0x3e;
+0=0x3e;
operands {
- = { +1=0; };
};
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 0|0 0 0 0 0|0| |0 0 0 0|0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
//
op halt {
map halt : 0x0;
+0=0;
operands {
- = { +1=0; };
};
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 0|0 0 0 0 1|0| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
//
op cmp {
map cmp_rr : 0x2;
map cmp_ri : 0x3;
+0[7:1]=0x1;
operands basic;
};
// Generic branch operation
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 0|1|x x x|b b| |0 0 0 0| reg1 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
// Example:
// br #7, loop
//
// Jump always to loop. 7 is a code indicating the condition always.
//
op jp {
map br_r : 0xa0;
map br_i : 0xa1;
map br_d : 0xa2;
map br_x : 0xa3;
+0[7:5] = 0x5;
operands {
#1,%2 = { +0[1:0] = 0; +0[4:2] = #1; +1[7:4]=%2; +1[3:0]=0; };
#1,#2 = { +0[1:0] = 1; +0[4:2] = #1; +1=0; +2=#2[7:0]; +3=#2[15:8]; };
#1,(%2) = { +0[1:0] = 2; +0[4:2] = #1; +1[7:4]=%2; +1[3:0]=0; };
#1,#3(%2) = { +0[1:0] = 3; +0[4:2] = #1; +1[7:4]=%2; +1[3:0]=0; +2=#3[7:0]; +3=#3[15:8]; };
};
};
op jne {
+0[7:5] = 0x5;
+0[4:2] = 0x0;
operands runiop;
};
op jcarry {
+0[7:5] = 0x5;
+0[4:2] = 0x1;
operands runiop;
};
op jeq {
+0[7:5] = 0x5;
+0[4:2] = 0x2;
operands runiop;
};
op jlt {
+0[7:5] = 0x5;
+0[4:2] = 0x3;
operands runiop;
};
op jgt {
+0[7:5] = 0x5;
+0[4:2] = 0x4;
operands runiop;
};
op jle {
+0[7:5] = 0x5;
+0[4:2] = 0x5;
operands runiop;
};
op jge {
+0[7:5] = 0x5;
+0[4:2] = 0x6;
operands runiop;
};
op jmp {
+0[7:5] = 0x5;
+0[4:2] = 0x7;
operands runiop;
};
// Generic ALU operation
//
// Note this is not a real instruction but is here for illustrative
// purposes only. Map entries must be made for each function code
// to use this instruction for real.
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|x x x x x|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
// Example:
// alu #0x14, R1, R2
//
// Does ALU operation 0x14 (addition) on R1 and R2, storing result in R1.
//
//op alu {
// map alu_rr : 0x40;
// map alu_ri : 0x41;
// +0[7:6] = 0x1;
// operands {
// #1,%2,%3 = { +0[0] = 0; +0[5:1]=#1; +1[7:4]=%2; +1[3:0]=%3; };
// #1,%2,#3 = { +0[0] = 1; +0[5:1]=#1; +1[7:4]=0; +1[3:0]=%2; +2=#3[7:0]; +3=#3[15:8]; };
// };
//};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|1 0 1 0 0|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op add {
map alu_rr : 0x68;
map alu_ri : 0x69;
+0[7:0]=0x68;
operands basic;
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|1 0 1 0 1|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op sub {
map alu_rr : 0x6a;
map alu_ri : 0x6b;
+0[7:0]=0x6a;
operands basic;
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|1 0 0 0 0|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op mul {
map xalu_rr : 0x60;
map xalu_ri : 0x61;
+0[7:0]=0x60;
operands basic;
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|1 1 1 0 0|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op div {
map xalu_rr : 0x78;
map xalu_ri : 0x79;
+0[7:0]=0x78;
operands basic;
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|1 1 0 0 0|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op mod {
map xalu_rr : 0x70;
map xalu_ri : 0x71;
+0[7:0]=0x70;
operands basic;
};
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 1|0 1 0 0 0|b| | reg1 | reg2 |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
op and {
map alu_rr : 0x50;
map alu_ri : 0x51;
+0[7:0]=0x50;
operands basic;
};
// Call subroutine
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 0|0|0 0 0|b b| | reg1 |0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
// Example:
//
// call foo, #8
//
// This will perform the following actions:
// sp = sp - 2
// [sp] = pc
// sp = sp - 2
// [sp] = fp
// fp = sp
// sp = sp+8
// pc = foo
//
op call {
map call_ri : 0x80;
map call_ii : 0x81;
map call_di : 0x82;
map call_xi : 0x83;
+0[7:4] = 0x8;
operands {
#1,%2 = { +0[1:0] = 0; +1[7:4]=%2; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; };
#1,#2 = { +0[1:0] = 1; +1=0; +2=#1[7:0]; +3=#1[15:8]; +4=#2[7:0]; +5=#2[15:8]; };
#1,(%2) = { +0[1:0] = 2; +1[7:4]=%2; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; };
#1,#2(%3) = { +0[1:0] = 3; +1[7:4]=%3; +1[3:0]=0; +2=#1[7:0]; +3=#1[15:8]; +4=#2[7:0]; +5=#2[15:8]; };
#1 = { +0[1:0] = 1; +1=0; +2=0; +3=0; +4=#1[7:0]; +5=#1[15:8]; };
};
};
// Return from subroutine
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |0 0|0 0 0 1 0|0| |0 0 0 0|0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
// Example:
//
// ret
//
// This will perform the following actions:
// sp = fp
// fp = [sp]
// sp = sp + 2
// pc = [sp]
// sp = sp + 2
//
//
op ret {
map ret : 0x4;
+0=4;
operands {
- = { +1=0; };
};
};
// Push a word on the stack
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |1 0|0|0 0 1|b b| | reg1 |0 0 0 0|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ...
//
// Example:
//
// pushw R1
//
op pushw {
map pushw_r : 0x84;
map pushw_i : 0x85;
map pushw_d : 0x86;
map pushw_x : 0x87;
+0[7:2]=0x21;
operands runiop;
};
op movb {
map movb_rr : 0xf0;
map movb_ri : 0xf1;
map movb_rd : 0xf2;
map movb_rx : 0xf3;
map movb_dr : 0xf8;
map movb_di : 0xf9;
map movb_dd : 0xfa;
map movb_dx : 0xfb;
map movb_xr : 0xfc;
map movb_xi : 0xfd;
map movb_xd : 0xfe;
map movb_xx : 0xff;
+0[7:4]=0xf;
operands movoprs;
};
op movw {
map movw_rr : 0xe0;
map movw_ri : 0xe1;
map movw_rd : 0xe2;
map movw_rx : 0xe3;
map movw_dr : 0xe8;
map movw_di : 0xe9;
map movw_dd : 0xea;
map movw_dx : 0xeb;
map movw_xr : 0xec;
map movw_xi : 0xed;
map movw_xd : 0xee;
map movw_xx : 0xef;
+0[7:4]=0xe;
operands movoprs;
};
/////////////////////////////////////////////////////////////////////////////
//
// The microcode for the Menagerie CPU begins here.
//
// The CPU begins executing microinstuctions at address 0. The instructions
// in the start block are executed only once. The next block consists of
// the instuction fetch sequnce. The multiple labels account for partial
// fetches that are done by some of the macrocode routines.
//
// For macro instructions which have no operands or have only only one operand,
// there is usually a plain label for that instruction. For example the
// microinstruction labeled 'ret' implements the 'ret' macroinstruction. This
// mapping is defined by the 'map ret : 0x4;' line in the operand declaration
// for the ret macroinstruction.
//
// For macro instructions with multiple addressing modes, labels are generally
// of the form 'op_??' where each character after the '_' denotes an addressing
// mode for an operand. By convension, the characters:
//
// r register direct
// i immediate
// d register indirect
// x indexed
//
// are used.
//
begin microcode @ 0
start: clq; // Q <- 0
idata=0x1 ALU_AZERO ALU_OP=add bop=idata ldqh; // Q.H <- 1
ALU_AZERO ALU_OP=add bop=qreg dout ldpc; // PC <- Q
mpcop=jump mpccond=jmp mpcaddr=fetch; // jump to 'fetch'
mpcop=next;
fetch: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
fetch1: incpc spc rd ldmdr rdmdr ldir; // mdr <- [PC]; PC++; ir <- mdr;
fetch2: mpcop=jmap rdmdr ldopr; // opr <- mdr; jump to opcode
mpcop=next;
halt: mpcop=jump mpccond=jmp mpcaddr=halt extra=0x1;
mpcop=jump mpccond=jmp mpcaddr=halt extra=0x1;
//
// Standard ALU operations (add, sub, and, or, etc.)
//
alu_rr: mpcop=jump mpccond=jmp mpcaddr=fetch2 ifunc
isa isb wa aop=reg bop=reg ldcc incpc spc rd ldmdr; // Ra = Ra (op) Rb; CC; jump to fetch
incpc spc rd ldmdr rdmdr ldir;
alu_ri: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch ifunc
aop=reg bop=qreg wa isa ldcc; // Ra = Ra (op) Q; CC; jump to fetch
mpcop=next;
//
// 2-cycle ALU operations (mul, div, mod). These are the same as the alu_??
// ops except the ALU inputs and function code are held for 2 clock cycles
// due to the longer delay in computing these functions.
//
xalu_rr: mpcop=next ifunc isa isb aop=reg bop=reg; // Ra (op) Rb;
mpcop=jump mpccond=jmp mpcaddr=fetch2 ifunc
isa isb wa aop=reg bop=reg ldcc incpc spc rd ldmdr; // Ra = Ra (op) Rb; CC; jump to fetch
incpc spc rd ldmdr rdmdr ldir;
xalu_ri: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
mpcop=next ifunc isa isb aop=reg bop=qreg; // Ra (op) Q;
mpcop=jump mpccond=jmp mpcaddr=fetch ifunc
aop=reg bop=qreg wa isa ldcc; // Ra = Ra (op) Q; CC; jump to fetch
mpcop=next;
cmp_rr: mpcop=jump mpccond=jmp mpcaddr=fetch ALU_OP=add ALU_BCOMP extra=0x22
isa isb aop=reg bop=reg ldcc; // Ra - Rb; CC; jump to fetch
mpcop=next;
cmp_ri: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch ALU_OP=add ALU_BCOMP
aop=reg bop=qreg isa ldcc; // Ra - Q; CC; jump to fetch
mpcop=next;
br_i: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
btest: mpcop=jump mpcaddr=bdojmp icond; // jump to bdojmp if cond
mpcop=next;
mpcop=jump mpccond=jmp mpcaddr=fetch; // jump to fetch
mpcop=next;
bdojmp: mpcop=jump mpccond=jmp mpcaddr=fetch ALU_AZERO ALU_OP=add
bop=qreg dout ldpc; // PC <- Q, jump to fetch
mpcop=next;
br_r: mpcop=jump mpccond=jmp mpcaddr=btest extra=0x10
isa aop=reg sb=0 bop=reg ALU_OP=add ldq; // Q <- Ra; jump to btest
mpcop=next;
br_d: mpcop=jump mpccond=jmp mpcaddr=btest;
mpcop=next;
br_x: mpcop=jump mpccond=jmp mpcaddr=btest;
mpcop=next;
call_ii:
// Push the PC
aop=reg sa=0xf bop=idata idata=2 ALU_OP=add ALU_BCOMP
dout ldmar wa extra=0x11; // SP-2 -> mar; SP = SP - 2;
rdpc lddata aop=din bop=idata idata=4 ALU_OP=add ldq; // Q = PC+4
ALU_AZERO ALU_OP=add bop=qreg dout ldmdr; // Q.L -> mdr
wrt; // [mar] <- mdr;
incmar ALU_AZERO ALU_OP=add bop=qreg dout ldhmdr; // Q.H -> mdr; mar++;
mpcop=next;
wrt; // [mar] <- mdr;
mpcop=next;
// Push the FP
aop=reg sa=0xf bop=idata idata=2 ALU_OP=add ALU_BCOMP
dout ldmar wa; // SP-2 -> mar; SP = SP - 2;
ALU_AZERO bop=reg sb=0xe ALU_OP=add dout ldmdr; // FP.L -> mdr
wrt; // [mar] <- mdr;
incmar ALU_AZERO bop=reg sb=0xe ALU_OP=add dout ldhmdr; // SP.H -> mdr; mar++;
mpcop=next;
wrt; // [mar] <- mdr;
aop=reg sa=0xe bop=reg sb=0xf
ALU_AZERO ALU_OP=add wa; // FP <- SP
// Dec SP
incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
aop=reg sa=0xf bop=qreg ALU_OP=add wa; // SP = SP + Q
// PC = branch address
incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch ALU_AZERO bop=qreg
ALU_OP=add dout ldpc; // PC <- Q
mpcop=next;
call_ri: mpcop=jump mpccond=jmp mpcaddr=fetch;
mpcop=next;
call_di: mpcop=jump mpccond=jmp mpcaddr=fetch;
mpcop=next;
call_xi: mpcop=jump mpccond=jmp mpcaddr=fetch;
mpcop=next;
ret: ALU_AZERO bop=reg sb=0xe ALU_OP=add sa=0xf wa dout ldmar extra=0x12; // SP <- FP; mar <- FP;
aop=reg sa=0xf bop=idata idata=4 ALU_OP=add wa rd incmar ldmdr; // SP <- SP+4; mdr <- [mar++]
ALU_AZERO bop=din lddata ALU_OP=add ldql rd rdmdr incmar ldmdr; // Q.L <- mdr; mdr <- [mar++]
ALU_AZERO bop=din lddata ALU_OP=add ldqh rdmdr; // Q.H <- mdr;
ALU_AZERO bop=qreg ALU_OP=add sa=0xe wa rd incmar ldmdr; // FP <- Q; mdr <- [mar++]
ALU_AZERO bop=din lddata ALU_OP=add ldql rd incmar rdmdr ldmdr; // Q.L <- mdr; mdr <- [mar++]
ALU_AZERO bop=din lddata ALU_OP=add ldqh rdmdr; // Q.H <- mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch1
ALU_AZERO bop=qreg ALU_OP=add dout ldpc; // PC <- Q; jump fetch1
incpc spc rd ldmdr; // mdr <- [PC]; PC++;
pushw_d: mpcop=next;
pushw_x: mpcop=next;
pushw_r: aop=reg sa=0xf bop=idata idata=2 ALU_OP=add ALU_BCOMP
extra=0x13 dout ldmar wa; // mar <- SP-2; SP = SP - 2;
aop=reg isa bop=idata idata=0 ALU_OP=add dout ldmdr; // mdr <- Rb.L;
wrt; // [mar] <- mdr;
aop=reg isa bop=idata idata=0 ALU_OP=add dout ldhmdr incmar; // mdr <- Rb.H; mar++;
mpcop=next;
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
pushw_i: incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
aop=reg sa=0xf bop=idata idata=2 ALU_OP=add ALU_BCOMP
extra=0x13 dout ldmar wa; // mar <- SP-2; SP = SP - 2;
aop=qreg bop=idata idata=0 ALU_OP=add dout ldmdr; // mdr <- Q.L;
wrt; // [mar] <- mdr;
aop=qreg bop=idata idata=0 ALU_OP=add dout ldhmdr incmar; // mdr <- Q.H; mar++;
mpcop=next;
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
movw_rr: mpcop=jump mpccond=jmp mpcaddr=fetch2 ALU_AZERO ALU_OP=add
isa isb wa aop=reg bop=reg ldcc extra=1
incpc spc rd ldmdr; // Ra <- Rb; jump to fetch2; mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldir; // mdr <- [PC]; PC++; ir <- mdr;
movb_rr: ALU_AZERO ALU_OP=add isb aop=reg bop=reg ldcc extra=1 ldql; // Q.L <- Rb;
mpcop=jump mpccond=jmp mpcaddr=fetch2 aop=idata bop=idata
ALU_OP=add ldqh incpc spc rd ldmdr; // Q.H <- 0; jump to fetch2;mdr <- [PC]; PC++;
ALU_AZERO ALU_OP=add bop=qreg isa wa
incpc spc rd ldmdr rdmdr ldir; // Ra <- Q; mdr <- [PC]; PC++; ir <- mdr;
movw_ri: incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch ALU_OP=add ALU_AZERO
aop=reg bop=qreg wa isa ldcc; // Ra = Q; CC; jump to fetch
mpcop=next;
movb_ri:incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO bop=reg sb=0; // Q.H = 0;
mpcop=jump mpccond=jmp mpcaddr=fetch ALU_OP=add ALU_AZERO
aop=reg bop=qreg wa isa ldcc; // Ra = Q; CC; jump to fetch
mpcop=next;
movb_rd:isb aop=idata bop=reg idata=0 ALU_OP=add ldmar dout extra=3; // mar <- Rb
_mbrd: rd ldmdr; // mdr <- [mar]
mpcop=jump mpccond=jmp mpcaddr=fetch lddata rdmdr isa wa; // Ra <- mdr
ALU_OP=add idata=0 bop=idata aop=reg isa ldcc; // CC
movw_rd: isb aop=idata bop=reg idata=0 ALU_OP=add ldmar dout extra=3; // mar <- Rb
_mwrd: rd ldmdr incmar; // mdr <- [mar++]
rd ldmdr lddata rdmdr bop=din ALU_AZERO ALU_OP=add ldql; // Q.L <- mdr; mdr <- [mar++]
lddata rdmdr bop=din ALU_AZERO ALU_OP=add ldqh; // Q.H <- mdr;
mpcop=jump mpccond=jmp mpcaddr=fetch ALU_AZERO bop=qreg
ALU_OP=add isa wa ldcc; // Ra <- Q; CC
mpcop=next;
movb_rx: incpc spc rd ldmdr extra=9; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mbrd rdmdr ldqh
ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr; goto _mbrd
isb aop=qreg bop=reg
ALU_OP=add ldmar dout; // mar <- Rb+Q;
movw_rx: incpc spc rd ldmdr extra=9; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql
ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mwrd rdmdr ldqh ALU_OP=add
ALU_AZERO lddata bop=din; // Q.H = mdr;
isb aop=qreg bop=reg ALU_OP=add
ldmar dout; // mar <- Rb+Q
movb_dr: isa aop=reg bop=idata idata=0 ALU_OP=add ldmar dout ldcc; // mar <- Ra
_mbdr: isb aop=idata bop=reg idata=0 ALU_OP=add ldmdr dout; // mdr <- Rb
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
movw_dr: isa aop=reg bop=idata idata=0 ALU_OP=add ldmar dout ldcc; // mar <- Ra
_mwdr: isb aop=idata bop=reg idata=0 ALU_OP=add ldmdr dout; // mdr <- Rb.L
wrt; // [mar] <- mdr;
isb aop=idata bop=reg idata=0 ALU_OP=add ldhmdr dout incmar; // mdr <- Rb.H; mar++;
mpcop=next;
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
movb_xr: incpc spc rd ldmdr extra=9; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mbdr rdmdr ldqh ALU_OP=add
ALU_AZERO lddata bop=din; // Q.H = mdr; jump to _mbdr
isa aop=reg bop=qreg ALU_OP=add ldmar dout ldcc; // mar <- Ra+Q
movw_xr: incpc spc rd ldmdr extra=9; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mwdr rdmdr ldqh ALU_OP=add
ALU_AZERO lddata bop=din; // Q.H = mdr; jump to _mwdr
isa aop=reg bop=qreg ALU_OP=add ldmar dout ldcc; // mar <- Ra+Q
movw_xx: mpcop=next extra=7;
movb_xx: mpcop=next extra=7;
movw_xd: mpcop=next extra=7;
movb_xd: mpcop=next extra=7;
movw_dd: mpcop=next extra=7;
movb_dd: mpcop=next extra=7;
movw_dx: mpcop=next extra=7;
movb_dx: mpcop=next extra=7;
mpcop=next extra=7;
movw_di: isa bop=idata idata=0 ALU_OP=add dout ldmar; // mar <- Ra
_mwdi: incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
rdmdr ldqh ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr;
aop=idata bop=qreg idata=0 ALU_OP=add ldmdr dout; // mdr <- Q.L
wrt; // [mar] <- mdr;
aop=idata bop=qreg idata=0 ALU_OP=add ldhmdr dout incmar; // mdr <- Q.H; mar++;
mpcop=next;
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
movb_di: aop=reg isa bop=idata idata=0 ALU_OP=add dout ldmar extra=0x21;// mar <- Ra
_mbdi: incpc spc rd ldmdr; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
aop=idata bop=qreg idata=0 ALU_OP=add ldmdr dout; // mdr <- Q.L
mpcop=jump mpccond=jmp mpcaddr=fetch wrt; // [mar] <- mdr; jump to fetch
mpcop=next;
movw_xi: incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mwdi rdmdr ldqh
ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr; goto _mwdi
isa aop=reg bop=qreg ALU_OP=add dout ldmar; // mar <- Ra+Q
movb_xi: incpc spc rd ldmdr extra=2; // mdr <- [PC]; PC++;
incpc spc rd ldmdr rdmdr ldql ALU_OP=add ALU_AZERO lddata bop=din; // mdr <- [PC]; PC++; Q.L <- mdr
mpcop=jump mpccond=jmp mpcaddr=_mbdi rdmdr ldqh
ALU_OP=add ALU_AZERO lddata bop=din; // Q.H = mdr; goto _mwdi
isa aop=reg bop=qreg ALU_OP=add dout ldmar; // mar <- Ra+Q
nop: mpcop=jump mpccond=jmp mpcaddr=fetch extra=0x15;
mpcop=next;
end
/////////////////////////////////////////////////////////////////////////////
//
// General notes on assembler
// Registers are not saved accross function calls unless explicitly saved.
// Functions return values in R1.
// The register R0 is a special "always 0" register. Writing to R0 will have no
// effect other than to set condition codes.
//
//
begin macrocode @ 0x100
ttydata: .symbol 0x11 // tty data in/out register
ttystatus: .symbol 0x10 // tty status register
//
// Nodes have the format (note that pointers are two bytes):
//
// struct node {
// struct node *yes_b;
// struct node *no_b;
// char text[100];
// };
//
nsize: .symbol 104 // Size of a tree node. That is "sizeof(struct node)".
yes_b: .symbol 0 // Pointer to yes side
no_b: .symbol 2 // Pointer to no side
text: .symbol 4 // Text of node (animal name or question)
//
// Execution starts here.
//
start:
movw SP, 0 // Initialize stack pointer
movw FP, 0 // Initialize frame pointer
call main // Call main program
sdone: jmp sdone // Infinite loop when main ends
////////////////////
// main()
//
.proc main
movw R13, mend // Use R13 as a sort of heap pointer
pushw welcome // Push the "Welcome to" message
call printf // Print the message
add SP,2 // Restore stack pointer
movw (root),top_node // Initialize root node
movw (known),1 // Know one animal
loop:
pushw think // Push the "Think of an animal..." message
call printf // Print the message
add SP,2 // Restore stack pointer
movw R1, (known) // Put number of known animals in R1
pushw R1 // Push that number on the stack
pushw numk // Push the "I know %d animals" message
call printf // Call printf to print message
add SP,4 // Restore stack
movw R1,(root) // Put the root pointer in R1
pushw R1 // Push the pointer on the stack
call find_animal // Ask questions to find animal
add SP,2 // Restore the stack
movw (root),R1 // Save new root
jmp loop // Go back and guess another animal
ret // Return to call (actually we should never get here)
.end
////////////////////
// find_animal(p) Find the animal. p is the root node in question tree
//
.proc find_animal
tree: .symbol -2 // Local variable for tree pointer
sub SP,2 // Allocate space for local variables
movw R1, 4(FP) // Get the pointer to top node
movw tree(FP),R1 // Store it in "tree"
movw R2,yes_b(R1) // Get pointer in "yes" branch of tree
cmp R2,0 // Compare against 0
jne get_response // If not 0, then treat as question node
pushw R1 // Push pointer to top node
call get_final // As the final question, and insert new node if necessary
add SP,2 // Restore stack
movw tree(FP),R1 // Save new root node in "tree"
jmp done // All done, go to final cleanup
get_response:
movw R1,tree(FP) // Put current node pointer in R1
movw R4,R1 // R4 = R1
add R4,text // Add offset to make R4 pointer to question
pushw R4 // Push text of question
call print // Print question in tree node
add SP,2 // Restore stack
pushw qprompt // Push "?" prompt
call print // Print the "? "
add SP,2 // Restore stack
pushw buf // Push address of buffer in which to get response
call gets // Read response from user
add SP,2 // Restore stack
pushw buf // Push users response on stack
pushw yes // Push "yes" on stack
call strcmp // Compare the strings
add SP,4 // Restore stack
cmp R1,0 // Check if R1 was 0
jeq say_yes // If so, user answered "yes", goto say_yes
pushw buf // Push users response on stack
pushw no // Push "no" on stack
call strcmp // Compare the strings
add SP,4 // Restore stack
cmp R1,0 // Check if R1 was 0
jeq say_no // If so, user answered "no", goto say_no
pushw yesno // Push the "yes or no" error message
call print // Print error message
add SP,2 // Restore stack
jmp get_response // Go back and ask again
say_yes:
movw R1,tree(FP) // Put current tree pointer in R1
movw R2,yes_b(R1) // Put "yes" branch pointer in R2
pushw R2 // Push the yes branch on the stack
call find_animal // Recursively ask the next question
add SP,2 // Restore the stack
movw R2,tree(FP) // Get tree pointer again
movw yes_b(R2),R1 // Update the "yes" branch
jmp done // Finish up and prepare to return to caller
say_no:
movw R1,tree(FP) // Put current tree pointer in R1
movw R2,no_b(R1) // Put "no" branch pointer in R2
pushw R2 // Push the no branch on the stack
call find_animal // Recursively ask the next question
add SP,2 // Restore the stack
movw R2,tree(FP) // Get tree pointer again
movw no_b(R2),R1 // Update the "no" branch
jmp done // Finish up and prepare to return to caller
done:
movw R1,tree(FP) // Put new root node in R1
ret // Return to caller
.end
////////////////////
// get_final(p) Ask final question (at node p), and update tree if necessary.
//
.proc get_final
tree: .symbol -2 // Local variable for tree pointer
animal_node: .symbol -4 // Local variable for new animal node pointer
discrim_node: .symbol -6 // Local variable for new question node pointer
sub SP,6 // Allocate space for local variables
get_response:
movw R1, 4(FP) // Get pointer to current node
movw tree(FP),R1 // Save it in the 'tree' variable
movw R1, 4(FP) // Put pointer to tree in R1
add R1,text // Advance R1 to animal name text
pushw R1 // Push pointer to animal name on stack
pushw isita // Push the "is it a..." string pointer
call printf // Print the final question
add SP,4 // Restore stack
pushw buf // Push buffer for response
call gets // Get the response
add SP,2 // Restore the stack
pushw buf // Push response on stack
pushw yes // Push "yes" on stack
call strcmp // Compare strings
add SP,4 // Restore stack
cmp R1,0 // See if a 0 was returned
jeq win // If so, we guessed the animal
pushw buf // Push response on stack
pushw no // Push "no" on stack
call strcmp // Compare strings
add SP,4 // Restore stack
cmp R1,0 // See if a 0 was returned
jeq loose // If so, we did not guess the animal
pushw yesno // Push the "yes or no" error message
call print // Print it
add SP,2 // Restore stack
jmp get_response // Go back and ask again
win:
pushw winmsg // Push the (computer) win message
call printf // Print it
add SP,2 // Restore stack
jmp done // All done, go finish up and return
loose:
pushw loosemsg // Push the (computer) loose message
call printf // Print it
add SP,2 // Restore stack
pushw nsize // Push number of bytes in a node
call malloc // Allocate memory for new animal node
add SP,2 // Restore stack
movw animal_node(FP),R1 // Put address of new node in animal_node
movw yes_b(R1),0 // Intialize yes branches
movw no_b(R1),0 // Intialize no branches
add R1,text // Move R1 to point to text area
pushw R1 // Push text buffer
call gets // Get animal name
add SP,2 // Restore stack
movw R1,tree(FP) // Put pointer to exiting node in R1
add R1,text // Advance to the text field
pushw R1 // Push pointer to old animal name
movw R1,animal_node(FP) // Put pointer to new node in R1
add R1,text // Advance to the text field
pushw R1 // Push new animal name on stack
pushw dscrim // Push "what is difference" question
call printf // Print the question
add SP,6 // Restore pointer
pushw nsize // Allocate memory for discrimination node
call malloc // Allocate memory for new discrimination node
add SP,2 // Restore stack
movw discrim_node(FP),R1 // Put address of new node in discrim_node
add R1,text // Advance pointer to text field of discrimination node
pushw R1 // Push pointer to text buffer to input question
call gets // Input the question
add SP,2 // Restore pointer
movw R1, (known) // Put number of known animals in R1
add R1,1 // Increment R1
movw (known),R1 // Store number of known animals back in "known"
L1: movw R1,animal_node(FP) // Put pointer to new animal node in R1
add R1,text // Advance R1 to the text field
pushw R1 // Push new animal name on stack
pushw which // Push the "..correct answer for..." message.
call printf // Print the message
add SP,4 // Restore stack
pushw buf // Push text buffer on stack
call gets // Input a "yes" or "no"
add SP,2 // Restore stack
pushw buf // Push user response
pushw yes // Push string "yes"
call strcmp // Compare strings
add SP,4 // Restore stack
cmp R1,0 // Is the result 0?
jeq L2 // If so, goto L2. New animal is on "yes" branch
pushw buf // Push user response
pushw no // Push string "no"
call strcmp // Compare strings
add SP,4 // Restore stack
cmp R1,0 // Is the result 0?
jeq L3 // If so, goto L3. New animal is on "no" branch
pushw yesno // Push the "yes or no" error message
call printf // Print it
add SP,2 // Restore stack
jmp L1 // Go back and ask again
//
// Insert new animal on yes branch of new question
//
L2: movw R1,discrim_node(FP) // Put new question node in R1
movw R2,tree(FP) // Put old animal node in R2
movw R3,animal_node(FP) // Put new animal node in R3
movw yes_b(R1),R3 // Set yes branch to new node
movw no_b(R1),R2 // Set no branch to old node
movw tree(FP),R1 // Save R1 to tree pointer
jmp done // Finish up and return
//
// Insert new animal on no branch of new question
//
L3: movw R1,discrim_node(FP) // Put new question node in R1
movw R2,tree(FP) // Put old animal node in R2
movw R3,animal_node(FP) // Put new animal node in R3
movw yes_b(R1),R2 // Set yes branch to old node
movw no_b(R1),R3 // Set no branch to new node
movw tree(FP),R1 // Save R1 to tree pointer
jmp done // Finish up and return
done:
movw R1,tree(FP) // Put tree pointer into return register R1
ret // Return to caller
.end
////////////////////
// malloc(n) -> p Allocate n bytes and return address in R1. Allocated memory
// can not be freed.
//
.proc malloc
movw R2, 4(FP) // Get number of bytes
movw R1,R13 // Pointer to block of memory
add R13,R2 // Update heap pointer
ret
.end
////////////////////
// print(s) Print the string s
//
.proc print
movw R1, 4(FP) // Get parameter (string address)
loop: movb R2, (R1) // Put character R1 is pointing to in R2
jeq done // If it was a 0, this is the end of the string
movb (ttydata),R2 // Move char to the tty data register
movb (ttystatus),#1 // Signal tty controller to print character
add R1, #1 // Move pointer to next char
jmp loop // Go back and print more
done: ret
.end
////////////////////
// printf(s,...) Print the format string
//
.proc printf
ptr: .symbol -2 // Local var for string pointer
arg: .symbol -4 // Local var for argument pointer
sub SP,4 // Allocate 4 bytes for local variables
movw R3,FP // Assign R3 and add an offset so that it points
add R3,6 // to the argument after the control string
movw R1, 4(FP) // Put the control string pointer in R1
loop: movb R2, (R1) // Get the next char from control string
jeq done // If it was a 0, this is the end of the string
cmp R2, '%' // See if it is the '%' character
jne cout // If not goto cout, and simply print it
add R1,1 // Advance the string pointer
movb R2,(R1) // Get the next char
add R1,1 // Advance the string pointer again
//switch (R2)
L1: cmp R2,'s' // See if this is a "%s" conversion
jne L2 // If not, goto L2
// case 's' :
movw ptr(FP),R1 // Save the string pointer value
movw arg(FP),R3 // Save the argument pointer value
movw R2,(R3) // Get address of string (from arguments) to print
pushw R2 // Push it on the stack
call print // Print the string
add SP,2 // Restore stack pointer
movw R1,ptr(FP) // Restore string pointer value
movw R3,arg(FP) // Restore argument pointer value
add R3,2 // Advance argument pointer to next argument
jmp loop // Go back and print more
L2: cmp R2,'d' // See if this is a "%d" conversion
jne loop // If not, ignore unknown conversion
// case 'd' :
movw ptr(FP),R1 // Save the string pointer value
movw arg(FP),R3 // Save the argument pointer value
movw R2,(R3) // Get number (from arguments) to print
pushw R2 // Push it on the stack
call nprint // Go print the decimal number
add SP,2 // Restore stack pointer
movw R1,ptr(FP) // Restore string pointer value
movw R3,arg(FP) // Restore argument pointer value
add R3,2 // Advance argument pointer to next argument
jmp loop // Go back and print more
cout:
movb (ttydata),R2 // Put character in tty data register
movb (ttystatus),#1 // Signal tty controller to print character
add R1, #1 // Advance to next char in control string
jmp loop // Go back and print more
done: ret // All done, return to caller
.end
////////////////////
// nprint(d) Print the number d in decimal
//
.proc nprint
movw R1, 4(FP) // Move argument value to R1
jeq zprint // If it was zero, goto zprint
pushw R1 // Push value to print on stack
call nprint_aux // Call aux function to print number
add SP,2 // Restore stack pointer
ret // All done, return to caller
zprint: movb (ttydata), '0' // Put the ascii value of '0' in tty data register
movb (ttystatus), #1 // Signal tty controller to print character
ret // All done, return to caller
.end
////////////////////
// nprint_aux(d) Print the number d in decimal (but prints nothing if d is zero)
//
.proc nprint_aux
digit: .symbol -2 // Digit to print
sub SP, 2 // Allocate space for local variables
movw R1, 4(FP) // Get argument
jeq done // If zero, return
// To print the number n we compute
// R2 = n / 10, and
// R3 = n % 10
// We can then recursively call nprint_aux to print all
// but the lowest digit, then print the lowest digit ourselves
//
movw R2, R1 // R2 = R1
div R2, 10 // R2 = R2 / 10
movw R3, R1 // R3 = R1
mod R3, 10 // R3 = R3 % 10
movw digit(FP),R3 // save lowest digit value
pushw R2 // Push the higher digits
call nprint_aux // Recursively call ourselves to print them
add SP,2 // Restore stack pointer
movw R3,digit(FP) // Restore digit value
add R3, '0' // Add ascii for '0' to get ascii for digit
movb (ttydata),R3 // Put char in tty data register
movb (ttystatus),#1 // Signal tty controller to print character
done:
ret // All done, resturn to caller
.end
////////////////////
// strcmp(a,b) Compare strings a and b
//
.proc strcmp
movw R2,4(FP) // Get pointer to first string
movw R3,6(FP) // Get pointer to second string
loop: movb R1,(R2) // Get next char from R2
jeq eos // If end of string, goto eos
movb R4,(R3) // Get next char from R3
jeq eos // If end of string, goto eos
sub R1,R4 // Compute difference in R1
jne done // If difference was not 0, we are done
add R2,1 // Advance to next char in R2
add R3,1 // Advance to next char in R3
jmp loop // Go compare more
eos:
movb R4,(R3) // Get next char from R3 again (in case R1 was eos)
sub R1,R4 // Compute difference in R1
done:
ret // Return to caller, result is in R1
.end
////////////////////
// gets(b) Reads chars from tty into b.
//
.proc gets
movw R1, 4(FP) // Get pointer to buffer
movw R4,R1 // Save starting pointer in R4
//
// Poll for a characcter
//
cwait: movb R2,(ttystatus) // Get ready status
and R2, #2 // Test if a char is ready
jeq cwait // If not, go back and wait some more
movb R3,(ttydata) // Get char from tty data register
movb (ttystatus),#2 // Signal char received
cmp R3,'\r' // Compare against return char
jeq done // Exit if return received
cmp R3,'\b' // Compare against backspace char
jeq del_char // Delete char if backspace
cmp R3,0x7f // Compare against delete char
jeq del_char // Delete char if delete character
movb (ttydata),R3 // Put char to echo in tty data register
movb (ttystatus),#1 // Signal tty controller to print character
movb (R1),R3 // Save in buffer
add R1,1 // increment pointer
jmp cwait // Go back and get another char
del_char:
cmp R1,R4 // Compare current pointer against start of line
jle bell // If already at start of line, ring bell
movb R3, 0x7f // Make sure delete char is in R3
sub R1,1 // Decrement pointer
movb (ttydata),R3 // Echo backspace
movb (ttystatus),#1 // Signal tty controller to print character
jmp cwait // Go back and get another char
bell:
movb R3, 7 // Put bell char in R3
movb (ttydata),R3 // Echo bell
movb (ttystatus),#1 // Signal tty controller to print character
jmp cwait // Go back and get another char
done:
movb (ttydata),'\n' // Output newline
movb (ttystatus),#1 // Signal tty controller to print character
movb (R1),0 // Put eos in the string we just read
ret // Return to caller
.end
buf: .bss 128 // Buffer for input
known: .bss 2 // Number of animals known
root: .bss 2 // root of animals tree
top_node:
.short 0 // Pointer to "yes" node
.short 0 // Pointer to "no" node
.byte "aardvark",0 // Animal name or question text
welcome: .byte "\nWelcome to Animals.\n", 0
think: .byte "\nThink of an animal and I will try to guess what it is.\n", 0
numk: .byte "I currently know %d animals.\n\n", 0
isita: .byte "Is the animal you are thinking of a %s? ",0
yes: .byte "yes",0
no: .byte "no",0
yesno: .byte "Please type 'yes' or 'no'.\n",0
winmsg: .byte "I guessed your animal!!!\n\n",0
loosemsg: .byte "I could not guess your animal. What was your animal? ",0
dscrim: .byte "Enter a question that would distinguish a %s from a %s.\n> ",0
which: .byte "The correct answer for a %s is? ",0
nl: .byte "\n",0
qprompt: .byte "? ",0
mend:
end
</pre>
<hr>
</body>
</html>
|