This file is indexed.

/usr/share/w3af/extlib/nltk/featstruct.py is in w3af-console 1.0-rc3svn3489-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
# Natural Language Toolkit: Feature Structures
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>,
#         Rob Speer,
#         Steven Bird <sb@csse.unimelb.edu.au>
# URL: <http://nltk.sourceforge.net>
# For license information, see LICENSE.TXT
#
# $Id$

"""
Basic data classes for representing feature structures, and for
performing basic operations on those feature structures.  A X{feature
structure} is a mapping from feature identifiers to feature values,
where each feature value is either a basic value (such as a string or
an integer), or a nested feature structure.  There are two types of
feature structure, implemented by two subclasses of L{FeatStruct}:

    - I{feature dictionaries}, implemented by L{FeatDict}, act like
      Python dictionaries.  Feature identifiers may be strings or
      instances of the L{Feature} class.
    - I{feature lists}, implemented by L{FeatList}, act like Python
      lists.  Feature identifiers are integers.
      
Feature structures are typically used to represent partial information
about objects.  A feature identifier that is not mapped to a value
stands for a feature whose value is unknown (I{not} a feature without
a value).  Two feature structures that represent (potentially
overlapping) information about the same object can be combined by
X{unification}.  When two inconsistent feature structures are unified,
the unification fails and returns C{None}.

Features can be specified using X{feature paths}, or tuples of feature
identifiers that specify path through the nested feature structures to
a value.  Feature structures may contain reentrant feature values.  A
X{reentrant feature value} is a single feature value that can be
accessed via multiple feature paths.  Unification preserves the
reentrance relations imposed by both of the unified feature
structures.  In the feature structure resulting from unification, any
modifications to a reentrant feature value will be visible using any
of its feature paths.

Feature structure variables are encoded using the L{nltk.sem.Variable}
class.  The variables' values are tracked using a X{bindings}
dictionary, which maps variables to their values.  When two feature
structures are unified, a fresh bindings dictionary is created to
track their values; and before unification completes, all bound
variables are replaced by their values.  Thus, the bindings
dictionaries are usually strictly internal to the unification process.
However, it is possible to track the bindings of variables if you
choose to, by supplying your own initial bindings dictionary to the
L{unify()} function.

When unbound variables are unified with one another, they become
X{aliased}.  This is encoded by binding one variable to the other.

Lightweight Feature Structures
==============================
Many of the functions defined by L{nltk.featstruct} can be applied
directly to simple Python dictionaries and lists, rather than to
full-fledged L{FeatDict} and L{FeatList} objects.  In other words,
Python C{dicts} and C{lists} can be used as "light-weight" feature
structures.

    >>> from nltk.featstruct import unify
    >>> unify(dict(x=1, y=dict()), dict(a='a', y=dict(b='b')))
    {'y': {'b': 'b'}, 'x': 1, 'a': 'a'}

However, you should keep in mind the following caveats:

  - Python dictionaries & lists ignore reentrance when checking for
    equality between values.  But two FeatStructs with different
    reentrances are considered nonequal, even if all their base
    values are equal.
  
  - FeatStructs can be easily frozen, allowing them to be used as
    keys in hash tables.  Python dictionaries and lists can not.
  
  - FeatStructs display reentrance in their string representations;
    Python dictionaries and lists do not.
  
  - FeatStructs may *not* be mixed with Python dictionaries and lists
    (e.g., when performing unification).
  
  - FeatStructs provide a number of useful methods, such as L{walk()
    <FeatStruct.walk>} and L{cyclic() <FeatStruct.cyclic>}, which are
    not available for Python dicts & lists.

In general, if your feature structures will contain any reentrances,
or if you plan to use them as dictionary keys, it is strongly
recommended that you use full-fledged L{FeatStruct} objects.
"""

import re, copy

from nltk.sem.logic import Variable, Expression, SubstituteBindingsI
from nltk.sem.logic import LogicParser, ParseException
import nltk.internals

######################################################################
# Feature Structure
######################################################################

class FeatStruct(SubstituteBindingsI):
    """
    A mapping from feature identifiers to feature values, where each
    feature value is either a basic value (such as a string or an
    integer), or a nested feature structure.  There are two types of
    feature structure:

      - I{feature dictionaries}, implemented by L{FeatDict}, act like
        Python dictionaries.  Feature identifiers may be strings or
        instances of the L{Feature} class.
      - I{feature lists}, implemented by L{FeatList}, act like Python
        lists.  Feature identifiers are integers.

    Feature structures may be indexed using either simple feature
    identifiers or 'feature paths.'  A X{feature path} is a sequence
    of feature identifiers that stand for a corresponding sequence of
    indexing operations.  In particular, C{fstruct[(f1,f2,...,fn)]} is
    equivalent to C{fstruct[f1][f2]...[fn]}.

    Feature structures may contain reentrant feature structures.  A
    X{reentrant feature structure} is a single feature structure
    object that can be accessed via multiple feature paths.  Feature
    structures may also be cyclic.  A feature structure is X{cyclic}
    if there is any feature path from the feature structure to itself.

    Two feature structures are considered equal if they assign the
    same values to all features, and have the same reentrances.

    By default, feature structures are mutable.  They may be made
    immutable with the L{freeze()} function.  Once they have been
    frozen, they may be hashed, and thus used as dictionary keys.
    """
    
    _frozen = False
    """@ivar: A flag indicating whether this feature structure is
       frozen or not.  Once this flag is set, it should never be
       un-set; and no further modification should be made to this
       feature structue."""

    ##////////////////////////////////////////////////////////////
    #{ Constructor
    ##////////////////////////////////////////////////////////////
    
    def __new__(cls, features=None, **morefeatures):
        """
        Construct and return a new feature structure.  If this
        constructor is called directly, then the returned feature
        structure will be an instance of either the L{FeatDict} class
        or the L{FeatList} class.

        @param features: The initial feature values for this feature
            structure:
              - FeatStruct(string) -> FeatStructParser().parse(string)
              - FeatStruct(mapping) -> FeatDict(mapping)
              - FeatStruct(sequence) -> FeatList(sequence)
              - FeatStruct() -> FeatDict()
        @param morefeatures: If C{features} is a mapping or C{None},
            then C{morefeatures} provides additional features for the
            C{FeatDict} constructor.
        """
        # If the FeatStruct constructor is called directly, then decide
        # whether to create a FeatDict or a FeatList, based on the
        # contents of the `features` argument.
        if cls is FeatStruct:
            if features is None:
                return FeatDict.__new__(FeatDict, **morefeatures)
            elif _is_mapping(features):
                return FeatDict.__new__(FeatDict, features, **morefeatures)
            elif morefeatures:
                raise TypeError('Keyword arguments may only be specified '
                                'if features is None or is a mapping.')
            if isinstance(features, basestring):
                if FeatStructParser._START_FDICT_RE.match(features):
                    return FeatDict.__new__(FeatDict, features, **morefeatures)
                else:
                    return FeatList.__new__(FeatList, features, **morefeatures)
            elif _is_sequence(features):
                return FeatList.__new__(FeatList, features)
            else:
                raise TypeError('Expected string or mapping or sequence')

        # Otherwise, construct the object as normal.
        else:
            return super(FeatStruct, cls).__new__(cls, features,
                                                  **morefeatures)

    ##////////////////////////////////////////////////////////////
    #{ Uniform Accessor Methods
    ##////////////////////////////////////////////////////////////
    # These helper functions allow the methods defined by FeatStruct
    # to treat all feature structures as mappings, even if they're
    # really lists.  (Lists are treated as mappings from ints to vals)

    def _keys(self):
        """Return an iterable of the feature identifiers used by this
        FeatStruct."""
        raise NotImplementedError() # Implemented by subclasses.
    
    def _values(self):
        """Return an iterable of the feature values directly defined
        by this FeatStruct."""
        raise NotImplementedError() # Implemented by subclasses.
    
    def _items(self):
        """Return an iterable of (fid,fval) pairs, where fid is a
        feature identifier and fval is the corresponding feature
        value, for all features defined by this FeatStruct."""
        raise NotImplementedError() # Implemented by subclasses.
    
    ##////////////////////////////////////////////////////////////
    #{ Equality & Hashing
    ##////////////////////////////////////////////////////////////

    def equal_values(self, other, check_reentrance=False):
        """
        @return: True if C{self} and C{other} assign the same value to
        to every feature.  In particular, return true if
        C{self[M{p}]==other[M{p}]} for every feature path M{p} such
        that C{self[M{p}]} or C{other[M{p}]} is a base value (i.e.,
        not a nested feature structure).

        @param check_reentrance: If true, then also return false if
            there is any difference between the reentrances of C{self}
            and C{other}.
            
        @note: the L{== operator <__eq__>} is equivalent to
            C{equal_values()} with C{check_reentrance=True}.
        """
        return self._equal(other, check_reentrance, set(), set(), set())

    def __eq__(self, other):
        """
        Return true if C{self} and C{other} are both feature
        structures, assign the same values to all features, and
        contain the same reentrances.  I.e., return 
        C{self.equal_values(other, check_reentrance=True)}.
        
        @see: L{equal_values()}
        """
        return self._equal(other, True, set(), set(), set())
    
    def __ne__(self, other):
        """
        Return true unless C{self} and C{other} are both feature
        structures, assign the same values to all features, and
        contain the same reentrances.  I.e., return 
        C{not self.equal_values(other, check_reentrance=True)}.
        """
        return not self.__eq__(other)
    
    def __hash__(self):
        """
        If this feature structure is frozen, return its hash value;
        otherwise, raise C{TypeError}.
        """
        if not self._frozen:
            raise TypeError('FeatStructs must be frozen before they '
                            'can be hashed.')
        try: return self.__hash
        except AttributeError:
            self.__hash = self._hash(set())
            return self.__hash

    def _equal(self, other, check_reentrance, visited_self,
               visited_other, visited_pairs):
        """
        @return: True iff self and other have equal values.
        @param visited_self: A set containing the ids of all C{self}
            feature structures we've already visited.
        @param visited_other: A set containing the ids of all C{other}
            feature structures we've already visited.
        @param visited_pairs: A set containing C{(selfid, otherid)} pairs
            for all pairs of feature structures we've already visited.
        """
        # If we're the same object, then we're equal.
        if self is other: return True

        # If we have different classes, we're definitely not equal.
        if self.__class__ != other.__class__: return False

        # If we define different features, we're definitely not equal.
        # (Perform len test first because it's faster -- we should
        # do profiling to see if this actually helps)
        if len(self) != len(other): return False
        if set(self._keys()) != set(other._keys()): return False

        # If we're checking reentrance, then any time we revisit a
        # structure, make sure that it was paired with the same
        # feature structure that it is now.  Note: if check_reentrance,
        # then visited_pairs will never contain two pairs whose first
        # values are equal, or two pairs whose second values are equal.
        if check_reentrance:
            if id(self) in visited_self or id(other) in visited_other:
                return (id(self), id(other)) in visited_pairs

        # If we're not checking reentrance, then we still need to deal
        # with cycles.  If we encounter the same (self, other) pair a
        # second time, then we won't learn anything more by examining
        # their children a second time, so just return true.
        else:
            if (id(self), id(other)) in visited_pairs:
                return True

        # Keep track of which nodes we've visited.
        visited_self.add(id(self))
        visited_other.add(id(other))
        visited_pairs.add( (id(self), id(other)) )
        
        # Now we have to check all values.  If any of them don't match,
        # then return false.
        for (fname, self_fval) in self._items():
            other_fval = other[fname]
            if isinstance(self_fval, FeatStruct):
                if not self_fval._equal(other_fval, check_reentrance,
                                        visited_self, visited_other,
                                        visited_pairs):
                    return False
            else:
                if self_fval != other_fval: return False
                
        # Everything matched up; return true.
        return True
    
    def _hash(self, visited):
        """
        @return: A hash value for this feature structure.
        @require: C{self} must be frozen.
        @param visited: A set containing the ids of all feature
            structures we've already visited while hashing.
        """        
        if id(self) in visited: return 1
        visited.add(id(self))

        hashval = 5831
        for (fname, fval) in sorted(self._items()):
            hashval *= 37
            hashval += hash(fname)
            hashval *= 37
            if isinstance(fval, FeatStruct):
                hashval += fval._hash(visited)
            else:
                hashval += hash(fval)
            # Convert to a 32 bit int.
            hashval = int(hashval & 0x7fffffff)
        return hashval
        
    ##////////////////////////////////////////////////////////////
    #{ Freezing
    ##////////////////////////////////////////////////////////////
    
    #: Error message used by mutating methods when called on a frozen
    #: feature structure.
    _FROZEN_ERROR = "Frozen FeatStructs may not be modified."

    def freeze(self):
        """
        Make this feature structure, and any feature structures it
        contains, immutable.  Note: this method does not attempt to
        'freeze' any feature values that are not C{FeatStruct}s; it
        is recommended that you use only immutable feature values.
        """
        if self._frozen: return
        self._freeze(set())

    def frozen(self):
        """
        @return: True if this feature structure is immutable.  Feature
        structures can be made immutable with the L{freeze()} method.
        Immutable feature structures may not be made mutable again,
        but new mutale copies can be produced with the L{copy()} method.
        """
        return self._frozen

    def _freeze(self, visited):
        """
        Make this feature structure, and any feature structure it
        contains, immutable.
        @param visited: A set containing the ids of all feature
            structures we've already visited while freezing.
        """
        if id(self) in visited: return
        visited.add(id(self))
        self._frozen = True
        for (fname, fval) in sorted(self._items()):
            if isinstance(fval, FeatStruct):
                fval._freeze(visited)
        
    ##////////////////////////////////////////////////////////////
    #{ Copying
    ##////////////////////////////////////////////////////////////
    
    def copy(self, deep=True):
        """
        Return a new copy of C{self}.  The new copy will not be
        frozen.

        @param deep: If true, create a deep copy; if false, create
            a shallow copy.
        """
        if deep:
            return copy.deepcopy(self)
        else:
            return self.__class__(self)

    # Subclasses should define __deepcopy__ to ensure that the new
    # copy will not be frozen.
    def __deepcopy__(self, memo):
        raise NotImplementedError() # Implemented by subclasses.
    
    ##////////////////////////////////////////////////////////////
    #{ Structural Information
    ##////////////////////////////////////////////////////////////

    def cyclic(self):
        """
        @return: True if this feature structure contains itself.
        """
        return self._find_reentrances({})[id(self)]

    def reentrances(self):
        """
        @return: A list of all feature structures that can be reached
            from C{self} by multiple feature paths.
        @rtype: C{list} of L{FeatStruct}
        """
        reentrance_dict = self._find_reentrances({})
        return [struct for (struct, reentrant) in reentrance_dict.items()
                if reentrant]

    def walk(self):
        """
        Return an iterator that generates this feature structure, and
        each feature structure it contains.  Each feature structure will
        be generated exactly once.
        """
        return self._walk(set())

    def _walk(self, visited):
        """
        Return an iterator that generates this feature structure, and
        each feature structure it contains.
        @param visited: A set containing the ids of all feature
            structures we've already visited while freezing.
        """
        raise NotImplementedError() # Implemented by subclasses.
    
    def _walk(self, visited):
        if id(self) in visited: return
        visited.add(id(self))
        yield self
        for fval in self._values():
            if isinstance(fval, FeatStruct):
                for elt in fval._walk(visited):
                    yield elt

    # Walk through the feature tree.  The first time we see a feature
    # value, map it to False (not reentrant).  If we see a feature
    # value more than once, then map it to True (reentrant).
    def _find_reentrances(self, reentrances):
        """
        Return a dictionary that maps from the C{id} of each feature
        structure contained in C{self} (including C{self}) to a
        boolean value, indicating whether it is reentrant or not.
        """
        if reentrances.has_key(id(self)):
            # We've seen it more than once.
            reentrances[id(self)] = True
        else:
            # This is the first time we've seen it.
            reentrances[id(self)] = False
        
            # Recurse to contained feature structures.
            for fval in self._values():
                if isinstance(fval, FeatStruct):
                    fval._find_reentrances(reentrances)

        return reentrances

    ##////////////////////////////////////////////////////////////
    #{ Variables & Bindings
    ##////////////////////////////////////////////////////////////

    def substitute_bindings(self, bindings):
        """@see: L{nltk.featstruct.substitute_bindings()}"""
        return substitute_bindings(self, bindings)
    
    def retract_bindings(self, bindings):
        """@see: L{nltk.featstruct.retract_bindings()}"""
        return retract_bindings(self, bindings)
    
    def variables(self):
        """@see: L{nltk.featstruct.find_variables()}"""
        return find_variables(self)
    
    def rename_variables(self, vars=None, used_vars=(), new_vars=None):
        """@see: L{nltk.featstruct.rename_variables()}"""
        return rename_variables(self, vars, used_vars, new_vars)

    def remove_variables(self):
        """
        @rtype: L{FeatStruct}
        @return: The feature structure that is obtained by deleting
        all features whose values are L{Variable}s.
        """
        return remove_variables(self)

    ##////////////////////////////////////////////////////////////
    #{ Unification
    ##////////////////////////////////////////////////////////////
    
    def unify(self, other, bindings=None, trace=False,
              fail=None, rename_vars=True):
        return unify(self, other, bindings, trace, fail, rename_vars)

    def subsumes(self, other):
        """
        @return: True if C{self} subsumes C{other}.  I.e., return true
        if unifying C{self} with C{other} would result in a feature
        structure equal to C{other}.
        """
        return subsumes(self, other)

    ##////////////////////////////////////////////////////////////
    #{ String Representations
    ##////////////////////////////////////////////////////////////

    def __repr__(self):
        """
        Display a single-line representation of this feature structure,
        suitable for embedding in other representations.
        """
        return self._repr(self._find_reentrances({}), {})

    def _repr(self, reentrances, reentrance_ids):
        """
        @return: A string representation of this feature structure.
        @param reentrances: A dictionary that maps from the C{id} of
            each feature value in self, indicating whether that value
            is reentrant or not.
        @param reentrance_ids: A dictionary mapping from the C{id}s
            of feature values to unique identifiers.  This is modified
            by C{repr}: the first time a reentrant feature value is
            displayed, an identifier is added to reentrance_ids for
            it.
        """
        raise NotImplementedError()
        
# Mutation: disable if frozen.
_FROZEN_ERROR = "Frozen FeatStructs may not be modified."
_FROZEN_NOTICE = "\n%sIf self is frozen, raise ValueError."
def _check_frozen(method, indent=''):
    """
    Given a method function, return a new method function that first
    checks if C{self._frozen} is true; and if so, raises C{ValueError}
    with an appropriate message.  Otherwise, call the method and return
    its result.
    """
    def wrapped(self, *args, **kwargs):
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        else: return method(self, *args, **kwargs)
    wrapped.__name__ = method.__name__
    wrapped.__doc__ = (method.__doc__ or '') + (_FROZEN_NOTICE % indent)
    return wrapped


######################################################################
# Feature Dictionary
######################################################################

class FeatDict(FeatStruct, dict):
    """
    A feature structure that acts like a Python dictionary.  I.e., a
    mapping from feature identifiers to feature values, where feature
    identifiers can be strings or L{Feature}s; and feature values can
    be either basic values (such as a string or an integer), or nested
    feature structures.  Feature identifiers for C{FeatDict}s are
    sometimes called X{feature names}.
    
    Two feature dicts are considered equal if they assign the same
    values to all features, and have the same reentrances.
    
    @see: L{FeatStruct} for information about feature paths, reentrance,
    cyclic feature structures, mutability, freezing, and hashing.
    """
    def __init__(self, features=None, **morefeatures):
        """
        Create a new feature dictionary, with the specified features.

        @param features: The initial value for this feature
        dictionary.  If C{features} is a C{FeatStruct}, then its
        features are copied (shallow copy).  If C{features} is a
        C{dict}, then a feature is created for each item, mapping its
        key to its value.  If C{features} is a string, then it is
        parsed using L{FeatStructParser}.  If C{features} is a list of
        tuples C{name,val}, then a feature is created for each tuple.
        
        @param morefeatures: Additional features for the new feature
        dictionary.  If a feature is listed under both C{features} and
        C{morefeatures}, then the value from C{morefeatures} will be
        used.
        """
        if isinstance(features, basestring):
            FeatStructParser().parse(features, self)
            self.update(**morefeatures)
        else:
            # update() checks the types of features.
            self.update(features, **morefeatures)

    #////////////////////////////////////////////////////////////
    #{ Dict methods
    #////////////////////////////////////////////////////////////
    _INDEX_ERROR = "Expected feature name or path.  Got %r."
    
    def __getitem__(self, name_or_path):
        """If the feature with the given name or path exists, return
        its value; otherwise, raise C{KeyError}."""
        if isinstance(name_or_path, (basestring, Feature)):
            return dict.__getitem__(self, name_or_path)
        elif isinstance(name_or_path, tuple):
            try:
                val = self
                for fid in name_or_path:
                    if not isinstance(val, FeatStruct):
                        raise KeyError # path contains base value
                    val = val[fid]
                return val
            except (KeyError, IndexError):
                raise KeyError(name_or_path)
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)

    def get(self, name_or_path, default=None):
        """If the feature with the given name or path exists, return its
        value; otherwise, return C{default}."""
        try: return self[name_or_path]
        except KeyError: return default
        
    def __contains__(self, name_or_path):
        """Return true if a feature with the given name or path exists."""
        try: self[name_or_path]; return True
        except KeyError: return False
        
    def has_key(self, name_or_path):
        """Return true if a feature with the given name or path exists."""
        return name_or_path in self
    
    def __delitem__(self, name_or_path):
        """If the feature with the given name or path exists, delete
        its value; otherwise, raise C{KeyError}."""
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        if isinstance(name_or_path, (basestring, Feature)):
            return dict.__delitem__(self, name_or_path)
        elif isinstance(name_or_path, tuple):
            if len(name_or_path) == 0:
                raise ValueError("The path () can not be set")
            else:
                parent = self[name_or_path[:-1]]
                if not isinstance(parent, FeatStruct):
                    raise KeyError(name_or_path) # path contains base value
                del parent[name_or_path[-1]]
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)

    def __setitem__(self, name_or_path, value):
        """Set the value for the feature with the given name or path
        to C{value}.  If C{name_or_path} is an invalid path, raise
        C{KeyError}."""
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        if isinstance(name_or_path, (basestring, Feature)):
            return dict.__setitem__(self, name_or_path, value)
        elif isinstance(name_or_path, tuple):
            if len(name_or_path) == 0:
                raise ValueError("The path () can not be set")
            else:
                parent = self[name_or_path[:-1]]
                if not isinstance(parent, FeatStruct):
                    raise KeyError(name_or_path) # path contains base value
                parent[name_or_path[-1]] = value
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)

    clear = _check_frozen(dict.clear)
    pop = _check_frozen(dict.pop)
    popitem = _check_frozen(dict.popitem)
    setdefault = _check_frozen(dict.setdefault)

    def update(self, features=None, **morefeatures):
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        if features is None:
            items = ()
        elif hasattr(features, 'has_key'):
            items = features.items()
        elif hasattr(features, '__iter__'):
            items = features
        else:
            raise ValueError('Expected mapping or list of tuples')
      
        for key, val in items:
            if not isinstance(key, (basestring, Feature)):
                raise TypeError('Feature names must be strings')
            self[key] = val
        for key, val in morefeatures.items():
            if not isinstance(key, (basestring, Feature)):
                raise TypeError('Feature names must be strings')
            self[key] = val
    
    ##////////////////////////////////////////////////////////////
    #{ Copying
    ##////////////////////////////////////////////////////////////

    def __deepcopy__(self, memo):
        memo[id(self)] = selfcopy = self.__class__()
        for (key, val) in self._items():
            selfcopy[copy.deepcopy(key,memo)] = copy.deepcopy(val,memo)
        return selfcopy

    ##////////////////////////////////////////////////////////////
    #{ Uniform Accessor Methods
    ##////////////////////////////////////////////////////////////

    def _keys(self): return self.keys()
    def _values(self): return self.values()
    def _items(self): return self.items()
    
    ##////////////////////////////////////////////////////////////
    #{ String Representations
    ##////////////////////////////////////////////////////////////

    def __str__(self):
        """
        Display a multi-line representation of this feature dictionary
        as an FVM (feature value matrix).
        """
        return '\n'.join(self._str(self._find_reentrances({}), {}))

    def _repr(self, reentrances, reentrance_ids):
        segments = []
        prefix = ''
        suffix = ''

        # If this is the first time we've seen a reentrant structure,
        # then assign it a unique identifier.
        if reentrances[id(self)]:
            assert not reentrance_ids.has_key(id(self))
            reentrance_ids[id(self)] = `len(reentrance_ids)+1`

        # sorting note: keys are unique strings, so we'll never fall
        # through to comparing values.
        for (fname, fval) in sorted(self.items()):
            display = getattr(fname, 'display', None)
            if reentrance_ids.has_key(id(fval)):
                segments.append('%s->(%s)' %
                                (fname, reentrance_ids[id(fval)]))
            elif (display == 'prefix' and not prefix and
                  isinstance(fval, (Variable, basestring))):
                    prefix = '%s' % fval
            elif display == 'slash' and not suffix:
                if isinstance(fval, Variable):
                    suffix = '/%s' % fval.name
                else:
                    suffix = '/%r' % fval
            elif isinstance(fval, Variable):
                segments.append('%s=%s' % (fname, fval.name))
            elif fval is True:
                segments.append('+%s' % fname)
            elif fval is False:
                segments.append('-%s' % fname)
            elif isinstance(fval, Expression):
                segments.append('%s=<%s>' % (fname, fval))
            elif not isinstance(fval, FeatStruct):
                segments.append('%s=%r' % (fname, fval))
            else:
                fval_repr = fval._repr(reentrances, reentrance_ids)
                segments.append('%s=%s' % (fname, fval_repr))
        # If it's reentrant, then add on an identifier tag.
        if reentrances[id(self)]:
            prefix = '(%s)%s' % (reentrance_ids[id(self)], prefix)
        return '%s[%s]%s' % (prefix, ', '.join(segments), suffix)

    def _str(self, reentrances, reentrance_ids):
        """
        @return: A list of lines composing a string representation of
            this feature dictionary.  
        @param reentrances: A dictionary that maps from the C{id} of
            each feature value in self, indicating whether that value
            is reentrant or not.
        @param reentrance_ids: A dictionary mapping from the C{id}s
            of feature values to unique identifiers.  This is modified
            by C{repr}: the first time a reentrant feature value is
            displayed, an identifier is added to reentrance_ids for
            it.
        """
        # If this is the first time we've seen a reentrant structure,
        # then tack on an id string.
        if reentrances[id(self)]:
            assert not reentrance_ids.has_key(id(self))
            reentrance_ids[id(self)] = `len(reentrance_ids)+1`

        # Special case: empty feature dict.
        if len(self) == 0:
            if reentrances[id(self)]:
                return ['(%s) []' % reentrance_ids[id(self)]]
            else:
                return ['[]']
        
        # What's the longest feature name?  Use this to align names.
        maxfnamelen = max(len(str(k)) for k in self.keys())

        lines = []
        # sorting note: keys are unique strings, so we'll never fall
        # through to comparing values.
        for (fname, fval) in sorted(self.items()):
            fname = str(fname).ljust(maxfnamelen)
            if isinstance(fval, Variable):
                lines.append('%s = %s' % (fname,fval.name))
                
            elif isinstance(fval, Expression):
                lines.append('%s = <%s>' % (fname, fval))

            elif isinstance(fval, FeatList):
                fval_repr = fval._repr(reentrances, reentrance_ids)
                lines.append('%s = %r' % (fname, fval_repr))
                
            elif not isinstance(fval, FeatDict):
                # It's not a nested feature structure -- just print it.
                lines.append('%s = %r' % (fname, fval))

            elif reentrance_ids.has_key(id(fval)):
                # It's a feature structure we've seen before -- print
                # the reentrance id.
                lines.append('%s -> (%s)' % (fname, reentrance_ids[id(fval)]))

            else:
                # It's a new feature structure.  Separate it from
                # other values by a blank line.
                if lines and lines[-1] != '': lines.append('')

                # Recursively print the feature's value (fval).
                fval_lines = fval._str(reentrances, reentrance_ids)
                
                # Indent each line to make room for fname.
                fval_lines = [(' '*(maxfnamelen+3))+l for l in fval_lines]

                # Pick which line we'll display fname on, & splice it in.
                nameline = (len(fval_lines)-1)/2
                fval_lines[nameline] = (
                        fname+' ='+fval_lines[nameline][maxfnamelen+2:])

                # Add the feature structure to the output.
                lines += fval_lines
                            
                # Separate FeatStructs by a blank line.
                lines.append('')

        # Get rid of any excess blank lines.
        if lines[-1] == '': lines.pop()
        
        # Add brackets around everything.
        maxlen = max(len(line) for line in lines)
        lines = ['[ %s%s ]' % (line, ' '*(maxlen-len(line))) for line in lines]

        # If it's reentrant, then add on an identifier tag.
        if reentrances[id(self)]:
            idstr = '(%s) ' % reentrance_ids[id(self)]
            lines = [(' '*len(idstr))+l for l in lines]
            idline = (len(lines)-1)/2
            lines[idline] = idstr + lines[idline][len(idstr):]

        return lines


######################################################################
# Feature List
######################################################################

class FeatList(FeatStruct, list):
    """
    A list of feature values, where each feature value is either a
    basic value (such as a string or an integer), or a nested feature
    structure.

    Feature lists may contain reentrant feature values.  A X{reentrant
    feature value} is a single feature value that can be accessed via
    multiple feature paths.  Feature lists may also be cyclic.
    
    Two feature lists are considered equal if they assign the same
    values to all features, and have the same reentrances.
    
    @see: L{FeatStruct} for information about feature paths, reentrance,
    cyclic feature structures, mutability, freezing, and hashing.
    """
    def __init__(self, features=()):
        """
        Create a new feature list, with the specified features.

        @param features: The initial list of features for this feature
            list.  If C{features} is a string, then it is paresd using
            L{FeatStructParser}.  Otherwise, it should be a sequence
            of basic values and nested feature structures.
        """
        if isinstance(features, basestring):
            FeatStructParser().parse(features, self)
        else:
            list.__init__(self, features)
    
    #////////////////////////////////////////////////////////////
    #{ List methods
    #////////////////////////////////////////////////////////////
    _INDEX_ERROR = "Expected int or feature path.  Got %r."

    def __getitem__(self, name_or_path):
        if isinstance(name_or_path, (int, long)):
            return list.__getitem__(self, name_or_path)
        elif isinstance(name_or_path, tuple):
            try:
                val = self
                for fid in name_or_path:
                    if not isinstance(val, FeatStruct):
                        raise KeyError # path contains base value
                    val = val[fid]
                return val
            except (KeyError, IndexError):
                raise KeyError(name_or_path)
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)

    def __delitem__(self, name_or_path):
        """If the feature with the given name or path exists, delete
        its value; otherwise, raise C{KeyError}."""
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        if isinstance(name_or_path, (int, long)):
            return list.__delitem__(self, name_or_path)
        elif isinstance(name_or_path, tuple):
            if len(name_or_path) == 0:
                raise ValueError("The path () can not be set")
            else:
                parent = self[name_or_path[:-1]]
                if not isinstance(parent, FeatStruct):
                    raise KeyError(name_or_path) # path contains base value
                del parent[name_or_path[-1]]
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)

    def __setitem__(self, name_or_path, value):
        """Set the value for the feature with the given name or path
        to C{value}.  If C{name_or_path} is an invalid path, raise
        C{KeyError}."""
        if self._frozen: raise ValueError(_FROZEN_ERROR)
        if isinstance(name_or_path, (int, long)):
            return list.__setitem__(self, name_or_path, value)
        elif isinstance(name_or_path, tuple):
            if len(name_or_path) == 0:
                raise ValueError("The path () can not be set")
            else:
                parent = self[name_or_path[:-1]]
                if not isinstance(parent, FeatStruct):
                    raise KeyError(name_or_path) # path contains base value
                parent[name_or_path[-1]] = value
        else:
            raise TypeError(self._INDEX_ERROR % name_or_path)
    
    __delslice__ = _check_frozen(list.__delslice__, '               ')
    __setslice__ = _check_frozen(list.__setslice__, '               ')
    __iadd__ = _check_frozen(list.__iadd__)
    __imul__ = _check_frozen(list.__imul__)
    append = _check_frozen(list.append)
    extend = _check_frozen(list.extend)
    insert = _check_frozen(list.insert)
    pop = _check_frozen(list.pop)
    remove = _check_frozen(list.remove)
    reverse = _check_frozen(list.reverse)
    sort = _check_frozen(list.sort)

    ##////////////////////////////////////////////////////////////
    #{ Copying
    ##////////////////////////////////////////////////////////////

    def __deepcopy__(self, memo):
        memo[id(self)] = selfcopy = self.__class__()
        selfcopy.extend([copy.deepcopy(fval,memo) for fval in self])
        return selfcopy

    ##////////////////////////////////////////////////////////////
    #{ Uniform Accessor Methods
    ##////////////////////////////////////////////////////////////

    def _keys(self): return range(len(self))
    def _values(self): return self
    def _items(self): return enumerate(self)

    ##////////////////////////////////////////////////////////////
    #{ String Representations
    ##////////////////////////////////////////////////////////////

    # Special handling for: reentrances, variables, expressions.
    def _repr(self, reentrances, reentrance_ids):
        # If this is the first time we've seen a reentrant structure,
        # then assign it a unique identifier.
        if reentrances[id(self)]:
            assert not reentrance_ids.has_key(id(self))
            reentrance_ids[id(self)] = `len(reentrance_ids)+1`
            prefix = '(%s)' % reentrance_ids[id(self)]
        else:
            prefix = ''
            
        segments = []
        for fval in self:
            if id(fval) in reentrance_ids:
                segments.append('->(%s)' % reentrance_ids[id(fval)])
            elif isinstance(fval, Variable):
                segments.append(fval.name)
            elif isinstance(fval, Expression):
                segments.append('%s' % fval)
            elif isinstance(fval, FeatStruct):
                segments.append(fval._repr(reentrances, reentrance_ids))
            else:
                segments.append('%r' % fval)

        return '%s[%s]' % (prefix, ', '.join(segments))

######################################################################
# Variables & Bindings
######################################################################

def substitute_bindings(fstruct, bindings, fs_class='default'):
    """
    @return: The feature structure that is obtained by replacing each
    variable bound by C{bindings} with its binding.  If a variable is
    aliased to a bound variable, then it will be replaced by that
    variable's value.  If a variable is aliased to an unbound
    variable, then it will be replaced by that variable.
    
    @type bindings: C{dict} with L{Variable} keys
    @param bindings: A dictionary mapping from variables to values.
    """
    if fs_class == 'default': fs_class = _default_fs_class(fstruct)
    fstruct = copy.deepcopy(fstruct)
    _substitute_bindings(fstruct, bindings, fs_class, set())
    return fstruct

def _substitute_bindings(fstruct, bindings, fs_class, visited):
    # Visit each node only once:
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
    
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for (fname, fval) in items:
        while (isinstance(fval, Variable) and fval in bindings):
            fval = fstruct[fname] = bindings[fval]
        if isinstance(fval, fs_class):
            _substitute_bindings(fval, bindings, fs_class, visited)
        elif isinstance(fval, SubstituteBindingsI):
            fstruct[fname] = fval.substitute_bindings(bindings)

def retract_bindings(fstruct, bindings, fs_class='default'):
    """
    @return: The feature structure that is obtained by replacing each
    feature structure value that is bound by C{bindings} with the
    variable that binds it.  A feature structure value must be
    identical to a bound value (i.e., have equal id) to be replaced.

    C{bindings} is modified to point to this new feature structure,
    rather than the original feature structure.  Feature structure
    values in C{bindings} may be modified if they are contained in
    C{fstruct}.
    """
    if fs_class == 'default': fs_class = _default_fs_class(fstruct)
    (fstruct, new_bindings) = copy.deepcopy((fstruct, bindings))
    bindings.update(new_bindings)
    inv_bindings = dict((id(val),var) for (var,val) in bindings.items())
    _retract_bindings(fstruct, inv_bindings, fs_class, set())
    return fstruct

def _retract_bindings(fstruct, inv_bindings, fs_class, visited):
    # Visit each node only once:
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
    
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for (fname, fval) in items:
        if isinstance(fval, fs_class):
            if id(fval) in inv_bindings:
                fstruct[fname] = inv_bindings[id(fval)]
            _retract_bindings(fval, inv_bindings, fs_class, visited)
    
                
def find_variables(fstruct, fs_class='default'):
    """
    @return: The set of variables used by this feature structure.
    @rtype: C{set} of L{Variable}
    """
    if fs_class == 'default': fs_class = _default_fs_class(fstruct)
    return _variables(fstruct, set(), fs_class, set())

def _variables(fstruct, vars, fs_class, visited):
    # Visit each node only once:
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for (fname, fval) in items:
        if isinstance(fval, Variable):
            vars.add(fval)
        elif isinstance(fval, fs_class):
            _variables(fval, vars, fs_class, visited)
        elif isinstance(fval, SubstituteBindingsI):
            vars.update(fval.variables())
    return vars

def rename_variables(fstruct, vars=None, used_vars=(), new_vars=None,
                     fs_class='default'):
    """
    @return: The feature structure that is obtained by replacing
    any of this feature structure's variables that are in C{vars}
    with new variables.  The names for these new variables will be
    names that are not used by any variable in C{vars}, or in
    C{used_vars}, or in this feature structure.

    @type vars: C{set}
    @param vars: The set of variables that should be renamed.
    If not specified, C{find_variables(fstruct)} is used; i.e., all
    variables will be given new names.
    
    @type used_vars: C{set}
    @param used_vars: A set of variables whose names should not be
    used by the new variables.
    
    @type new_vars: C{dict} from L{Variable} to L{Variable}
    @param new_vars: A dictionary that is used to hold the mapping
    from old variables to new variables.  For each variable M{v}
    in this feature structure:

      - If C{new_vars} maps M{v} to M{v'}, then M{v} will be
        replaced by M{v'}.
      - If C{new_vars} does not contain M{v}, but C{vars}
        does contain M{v}, then a new entry will be added to
        C{new_vars}, mapping M{v} to the new variable that is used
        to replace it.

    To consistantly rename the variables in a set of feature
    structures, simply apply rename_variables to each one, using
    the same dictionary:

        >>> new_vars = {}  # Maps old vars to alpha-renamed vars
        >>> new_fstruct1 = fstruct1.rename_variables(new_vars=new_vars)
        >>> new_fstruct2 = fstruct2.rename_variables(new_vars=new_vars)
        >>> new_fstruct3 = fstruct3.rename_variables(new_vars=new_vars)

    If new_vars is not specified, then an empty dictionary is used.
    """
    if fs_class == 'default': fs_class = _default_fs_class(fstruct)
    
    # Default values:
    if new_vars is None: new_vars = {}
    if vars is None: vars = find_variables(fstruct, fs_class)
    else: vars = set(vars)

    # Add our own variables to used_vars.
    used_vars = find_variables(fstruct, fs_class).union(used_vars)

    # Copy ourselves, and rename variables in the copy.
    return _rename_variables(copy.deepcopy(fstruct), vars, used_vars,
                             new_vars, fs_class, set())

def _rename_variables(fstruct, vars, used_vars, new_vars, fs_class, visited):
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for (fname, fval) in items:
        if isinstance(fval, Variable):
            # If it's in new_vars, then rebind it.
            if fval in new_vars:
                fstruct[fname] = new_vars[fval]
            # If it's in vars, pick a new name for it.
            elif fval in vars:
                new_vars[fval] = _rename_variable(fval, used_vars)
                fstruct[fname] = new_vars[fval]
                used_vars.add(new_vars[fval])
        elif isinstance(fval, fs_class):
            _rename_variables(fval, vars, used_vars, new_vars,
                              fs_class, visited)
        elif isinstance(fval, SubstituteBindingsI):
            # Pick new names for any variables in `vars`
            for var in fval.variables():
                if var in vars and var not in new_vars:
                    new_vars[var] = _rename_variable(var, used_vars)
                    used_vars.add(new_vars[var])
            # Replace all variables in `new_vars`.
            fstruct[fname] = fval.substitute_bindings(new_vars)
    return fstruct

def _rename_variable(var, used_vars):
    name, n = re.sub('\d+$', '', var.name), 2
    if not name: name = '?'
    while Variable('%s%s' % (name, n)) in used_vars: n += 1
    return Variable('%s%s' % (name, n))

def remove_variables(fstruct, fs_class='default'):
    """
    @rtype: L{FeatStruct}
    @return: The feature structure that is obtained by deleting
    all features whose values are L{Variable}s.
    """
    if fs_class == 'default': fs_class = _default_fs_class(fstruct)
    return _remove_variables(copy.deepcopy(fstruct), fs_class, set())

def _remove_variables(fstruct, fs_class, visited):
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for (fname, fval) in items:
        if isinstance(fval, Variable):
            del fstruct[fname]
        elif isinstance(fval, fs_class):
            _remove_variables(fval, fs_class, visited)
    return fstruct


######################################################################
# Unification
######################################################################

class _UnificationFailure(object):
    def __repr__(self): return 'nltk.featstruct.UnificationFailure'
UnificationFailure = _UnificationFailure()
"""A unique value used to indicate unification failure.  It can be
   returned by L{Feature.unify_base_values()} or by custom C{fail()}
   functions to indicate that unificaiton should fail."""

# The basic unification algorithm:
#   1. Make copies of self and other (preserving reentrance)
#   2. Destructively unify self and other
#   3. Apply forward pointers, to preserve reentrance.
#   4. Replace bound variables with their values.
def unify(fstruct1, fstruct2, bindings=None, trace=False,
          fail=None, rename_vars=True, fs_class='default'):
    """
    Unify C{fstruct1} with C{fstruct2}, and return the resulting feature
    structure.  This unified feature structure is the minimal
    feature structure that:
      - contains all feature value assignments from both C{fstruct1}
        and C{fstruct2}.
      - preserves all reentrance properties of C{fstruct1} and
        C{fstruct2}.

    If no such feature structure exists (because C{fstruct1} and
    C{fstruct2} specify incompatible values for some feature), then
    unification fails, and C{unify} returns C{None}.

    @type bindings: C{dict} with L{Variable} keys
    @param bindings: A set of variable bindings to be used and
        updated during unification.

        Bound variables are replaced by their values.  Aliased
        variables are replaced by their representative variable
        (if unbound) or the value of their representative variable
        (if bound).  I.e., if variable C{I{v}} is in C{bindings},
        then C{I{v}} is replaced by C{bindings[I{v}]}.  This will
        be repeated until the variable is replaced by an unbound
        variable or a non-variable value.

        Unbound variables are bound when they are unified with
        values; and aliased when they are unified with variables.
        I.e., if variable C{I{v}} is not in C{bindings}, and is
        unified with a variable or value C{I{x}}, then
        C{bindings[I{v}]} is set to C{I{x}}.
    
        If C{bindings} is unspecified, then all variables are
        assumed to be unbound.  I.e., C{bindings} defaults to an
        empty C{dict}.

    @type trace: C{bool}
    @param trace: If true, generate trace output.

    @type rename_vars: C{bool}
    @param rename_vars: If true, then rename any variables in
        C{fstruct2} that are also used in C{fstruct1}.  This prevents
        aliasing in cases where C{fstruct1} and C{fstruct2} use the
        same variable name.  E.g.:

            >>> FeatStruct('[a=?x]').unify(FeatStruct('[b=?x]'))
            [a=?x, b=?x2]

        If you intend for a variables in C{fstruct1} and C{fstruct2} with
        the same name to be treated as a single variable, use
        C{rename_vars=False}.
    """
    # Decide which class(es) will be treated as feature structures,
    # for the purposes of unification.
    if fs_class == 'default':
        fs_class = _default_fs_class(fstruct1)
        if _default_fs_class(fstruct2) != fs_class:
            raise ValueError("Mixing FeatStruct objects with Python "
                             "dicts and lists is not supported.")
    assert isinstance(fstruct1, fs_class)
    assert isinstance(fstruct2, fs_class)
    
    # If bindings are unspecified, use an empty set of bindings.
    user_bindings = (bindings is not None)
    if bindings is None: bindings = {}

    # Make copies of fstruct1 and fstruct2 (since the unification
    # algorithm is destructive). Do it all at once, to preserve
    # reentrance links between fstruct1 and fstruct2.  Copy bindings
    # as well, in case there are any bound vars that contain parts
    # of fstruct1 or fstruct2.
    (fstruct1copy, fstruct2copy, bindings_copy) = (
        copy.deepcopy((fstruct1, fstruct2, bindings)))

    # Copy the bindings back to the original bindings dict.
    bindings.update(bindings_copy)

    if rename_vars:
        vars1 = find_variables(fstruct1copy, fs_class)
        vars2 = find_variables(fstruct2copy, fs_class)
        _rename_variables(fstruct2copy, vars1, vars2, {}, fs_class, set())

    # Do the actual unification.  If it fails, return None.
    forward = {}
    if trace: _trace_unify_start((), fstruct1copy, fstruct2copy)
    try: result = _destructively_unify(fstruct1copy, fstruct2copy, bindings, 
                                       forward, trace, fail, fs_class, ())
    except _UnificationFailureError: return None

    # _destructively_unify might return UnificationFailure, e.g. if we
    # tried to unify a mapping with a sequence.
    if result is UnificationFailure:
        if fail is None: return None
        else: return fail(fstruct1copy, fstruct2copy, ())

    # Replace any feature structure that has a forward pointer
    # with the target of its forward pointer.
    result = _apply_forwards(result, forward, fs_class, set())
    if user_bindings: _apply_forwards_to_bindings(forward, bindings)

    # Replace bound vars with values.
    _resolve_aliases(bindings)
    _substitute_bindings(result, bindings, fs_class, set())
    
    # Return the result.
    if trace: _trace_unify_succeed((), result)
    if trace: _trace_bindings((), bindings)
    return result

class _UnificationFailureError(Exception):
    """An exception that is used by C{_destructively_unify} to abort
    unification when a failure is encountered."""

def _destructively_unify(fstruct1, fstruct2, bindings, forward,
                         trace, fail, fs_class, path):
    """
    Attempt to unify C{fstruct1} and C{fstruct2} by modifying them
    in-place.  If the unification succeeds, then C{fstruct1} will
    contain the unified value, the value of C{fstruct2} is undefined,
    and forward[id(fstruct2)] is set to fstruct1.  If the unification
    fails, then a _UnificationFailureError is raised, and the
    values of C{fstruct1} and C{fstruct2} are undefined.

    @param bindings: A dictionary mapping variables to values.
    @param forward: A dictionary mapping feature structures ids
        to replacement structures.  When two feature structures
        are merged, a mapping from one to the other will be added
        to the forward dictionary; and changes will be made only
        to the target of the forward dictionary.
        C{_destructively_unify} will always 'follow' any links
        in the forward dictionary for fstruct1 and fstruct2 before
        actually unifying them.
    @param trace: If true, generate trace output
    @param path: The feature path that led us to this unification
        step.  Used for trace output.
    """
    # If fstruct1 is already identical to fstruct2, we're done.
    # Note: this, together with the forward pointers, ensures
    # that unification will terminate even for cyclic structures.
    if fstruct1 is fstruct2:
        if trace: _trace_unify_identity(path, fstruct1)
        return fstruct1

    # Set fstruct2's forward pointer to point to fstruct1; this makes
    # fstruct1 the canonical copy for fstruct2.  Note that we need to
    # do this before we recurse into any child structures, in case
    # they're cyclic.
    forward[id(fstruct2)] = fstruct1

    # Unifying two mappings:
    if _is_mapping(fstruct1) and _is_mapping(fstruct2):
        for fname in fstruct1:
            if getattr(fname, 'default', None) is not None:
                fstruct2.setdefault(fname, fname.default)
        for fname in fstruct2:
            if getattr(fname, 'default', None) is not None:
                fstruct1.setdefault(fname, fname.default)
    
        # Unify any values that are defined in both fstruct1 and
        # fstruct2.  Copy any values that are defined in fstruct2 but
        # not in fstruct1 to fstruct1.  Note: sorting fstruct2's
        # features isn't actually necessary; but we do it to give
        # deterministic behavior, e.g. for tracing.
        for fname, fval2 in sorted(fstruct2.items()):
            if fname in fstruct1:
                fstruct1[fname] = _unify_feature_values(
                    fname, fstruct1[fname], fval2, bindings,
                    forward, trace, fail, fs_class, path+(fname,))
            else:
                fstruct1[fname] = fval2

        return fstruct1 # Contains the unified value.

    # Unifying two sequences:
    elif _is_sequence(fstruct1) and _is_sequence(fstruct2):
        # If the lengths don't match, fail.
        if len(fstruct1) != len(fstruct2):
            return UnificationFailure

        # Unify corresponding values in fstruct1 and fstruct2.
        for findex in range(len(fstruct1)):
            fstruct1[findex] = _unify_feature_values(
                findex, fstruct1[findex], fstruct2[findex], bindings,
                forward, trace, fail, fs_class, path+(findex,))

        return fstruct1 # Contains the unified value.

    # Unifying sequence & mapping: fail.  The failure function
    # doesn't get a chance to recover in this case.
    elif ((_is_sequence(fstruct1) or _is_mapping(fstruct1)) and
          (_is_sequence(fstruct2) or _is_mapping(fstruct2))):
        return UnificationFailure

    # Unifying anything else: not allowed!
    raise TypeError('Expected mappings or sequences')

def _unify_feature_values(fname, fval1, fval2, bindings, forward,
                          trace, fail, fs_class, fpath):
    """
    Attempt to unify C{fval1} and and C{fval2}, and return the
    resulting unified value.  The method of unification will depend on
    the types of C{fval1} and C{fval2}:
    
      1. If they're both feature structures, then destructively
         unify them (see L{_destructively_unify()}.
      2. If they're both unbound variables, then alias one variable
         to the other (by setting bindings[v2]=v1).
      3. If one is an unbound variable, and the other is a value,
         then bind the unbound variable to the value.
      4. If one is a feature structure, and the other is a base value,
         then fail.
      5. If they're both base values, then unify them.  By default,
         this will succeed if they are equal, and fail otherwise.
    """
    if trace: _trace_unify_start(fpath, fval1, fval2)

    # Look up the "canonical" copy of fval1 and fval2
    while id(fval1) in forward: fval1 = forward[id(fval1)]
    while id(fval2) in forward: fval2 = forward[id(fval2)]

    # If fval1 or fval2 is a bound variable, then
    # replace it by the variable's bound value.  This
    # includes aliased variables, which are encoded as
    # variables bound to other variables.
    fvar1 = fvar2 = None
    while isinstance(fval1, Variable) and fval1 in bindings:
        fvar1 = fval1
        fval1 = bindings[fval1]
    while isinstance(fval2, Variable) and fval2 in bindings:
        fvar2 = fval2
        fval2 = bindings[fval2]

    # Case 1: Two feature structures (recursive case)
    if isinstance(fval1, fs_class) and isinstance(fval2, fs_class):
        result = _destructively_unify(fval1, fval2, bindings, forward,
                                      trace, fail, fs_class, fpath)

    # Case 2: Two unbound variables (create alias)
    elif (isinstance(fval1, Variable) and
          isinstance(fval2, Variable)):
        if fval1 != fval2: bindings[fval2] = fval1
        result = fval1
    
    # Case 3: An unbound variable and a value (bind)
    elif isinstance(fval1, Variable):
        bindings[fval1] = fval2
        result = fval1
    elif isinstance(fval2, Variable):
        bindings[fval2] = fval1
        result = fval2

    # Case 4: A feature structure & a base value (fail)
    elif isinstance(fval1, fs_class) or isinstance(fval2, fs_class):
        result = UnificationFailure
        
    # Case 5: Two base values
    else:
        # Case 5a: Feature defines a custom unification method for base values
        if isinstance(fname, Feature):
            result = fname.unify_base_values(fval1, fval2, bindings)
        # Case 5b: Feature value defines custom unification method
        elif isinstance(fval1, CustomFeatureValue):
            result = fval1.unify(fval2)
            # Sanity check: unify value should be symmetric
            if (isinstance(fval2, CustomFeatureValue) and
                result != fval2.unify(fval1)):
                raise AssertionError(
                    'CustomFeatureValue objects %r and %r disagree '
                    'about unification value: %r vs. %r' %
                    (fval1, fval2, result, fval2.unify(fval1)))
        elif isinstance(fval2, CustomFeatureValue):
            result = fval2.unify(fval1)
        # Case 5c: Simple values -- check if they're equal.
        else:
            if fval1 == fval2:
                result = fval1
            else:
                result = UnificationFailure
                
        # If either value was a bound variable, then update the
        # bindings.  (This is really only necessary if fname is a
        # Feature or if either value is a CustomFeatureValue.)
        if result is not UnificationFailure:
            if fvar1 is not None:
                bindings[fvar1] = result
                result = fvar1
            if fvar2 is not None:
                bindings[fvar2] = result
                result = fvar2

    # If we unification failed, call the failure function; it
    # might decide to continue anyway.
    if result is UnificationFailure:
        if fail is not None: result = fail(fval1, fval2, fpath)
        if trace: _trace_unify_fail(fpath[:-1], result)
        if result is UnificationFailure:
            raise _UnificationFailureError

    # Normalize the result.
    if isinstance(result, fs_class):
        result = _apply_forwards(result, forward, fs_class, set())
    
    if trace: _trace_unify_succeed(fpath, result)
    if trace and isinstance(result, fs_class):
        _trace_bindings(fpath, bindings)

    return result

def _apply_forwards_to_bindings(forward, bindings):
    """
    Replace any feature structure that has a forward pointer with
    the target of its forward pointer (to preserve reentrancy).
    """
    for (var, value) in bindings.items():
        while id(value) in forward:
            value = forward[id(value)]
        bindings[var] = value

def _apply_forwards(fstruct, forward, fs_class, visited):
    """
    Replace any feature structure that has a forward pointer with
    the target of its forward pointer (to preserve reentrancy).
    """
    # Follow our own forwards pointers (if any)
    while id(fstruct) in forward: fstruct = forward[id(fstruct)]
        
    # Visit each node only once:
    if id(fstruct) in visited: return
    visited.add(id(fstruct))
        
    if _is_mapping(fstruct): items = fstruct.items()
    elif _is_sequence(fstruct): items = enumerate(fstruct)
    else: raise ValueError('Expected mapping or sequence')
    for fname, fval in items:
        if isinstance(fval, fs_class):
            # Replace w/ forwarded value.
            while id(fval) in forward:
                fval = forward[id(fval)]
            fstruct[fname] = fval
            # Recurse to child.
            _apply_forwards(fval, forward, fs_class, visited)

    return fstruct

def _resolve_aliases(bindings):
    """
    Replace any bound aliased vars with their binding; and replace
    any unbound aliased vars with their representative var.
    """
    for (var, value) in bindings.items():
        while isinstance(value, Variable) and value in bindings:
            value = bindings[var] = bindings[value]
                
def _trace_unify_start(path, fval1, fval2):
    if path == ():
        print '\nUnification trace:'
    else:
        fullname = '.'.join(str(n) for n in path)
        print '  '+'|   '*(len(path)-1)+'|'
        print '  '+'|   '*(len(path)-1)+'| Unify feature: %s' % fullname
    print '  '+'|   '*len(path)+' / '+_trace_valrepr(fval1)
    print '  '+'|   '*len(path)+'|\\ '+_trace_valrepr(fval2)
def _trace_unify_identity(path, fval1):
    print '  '+'|   '*len(path)+'|'
    print '  '+'|   '*len(path)+'| (identical objects)'
    print '  '+'|   '*len(path)+'|'
    print '  '+'|   '*len(path)+'+-->'+`fval1`
def _trace_unify_fail(path, result):
    if result is UnificationFailure: resume = ''
    else: resume = ' (nonfatal)'
    print '  '+'|   '*len(path)+'|   |'
    print '  '+'X   '*len(path)+'X   X <-- FAIL'+resume
def _trace_unify_succeed(path, fval1):
    # Print the result.
    print '  '+'|   '*len(path)+'|'
    print '  '+'|   '*len(path)+'+-->'+`fval1`
def _trace_bindings(path, bindings):
    # Print the bindings (if any).
    if len(bindings) > 0:
        binditems = sorted(bindings.items(), key=lambda v:v[0].name)
        bindstr = '{%s}' % ', '.join(
            '%s: %s' % (var, _trace_valrepr(val))
            for (var, val) in binditems)
        print '  '+'|   '*len(path)+'    Bindings: '+bindstr
def _trace_valrepr(val):
    if isinstance(val, Variable):
        return '%s' % val
    else:
        return '%r' % val

def subsumes(fstruct1, fstruct2):
    """
    @return: True if C{fstruct1} subsumes C{fstruct2}.  I.e., return
    true if unifying C{fstruct1} with C{fstruct2} would result in a
    feature structure equal to C{fstruct2.}
    """
    return fstruct2 == unify(fstruct1, fstruct2)

def conflicts(fstruct1, fstruct2, trace=0):
    """
    @return: A list of the feature paths of all features which are
    assigned incompatible values by C{fstruct1} and C{fstruct2}.
    @rtype: C{list} of C{tuple}
    """
    conflict_list = []
    def add_conflict(fval1, fval2, path):
        conflict_list.append(path)
        return fval1
    unify(fstruct1, fstruct2, fail=add_conflict, trace=trace)
    return conflict_list

######################################################################
# Helper Functions
######################################################################

def _is_mapping(v):
    return hasattr(v, 'has_key') and hasattr(v, 'items')

def _is_sequence(v):
    return (hasattr(v, '__iter__') and hasattr(v, '__len__') and
            not isinstance(v, basestring))

def _default_fs_class(obj):
    if isinstance(obj, FeatStruct): return FeatStruct
    if isinstance(obj, (dict, list)): return (dict, list)
    else:
        raise ValueError('To unify objects of type %s, you must specify '
                         'fs_class explicitly.' % obj.__class__.__name__)
######################################################################
# FeatureValueSet & FeatureValueTuple
######################################################################

class SubstituteBindingsSequence(SubstituteBindingsI):
    """
    A mixin class for sequence clases that distributes variables() and
    substitute_bindings() over the object's elements.
    """
    def variables(self):
        return ([elt for elt in self if isinstance(elt, Variable)] +
                sum([list(elt.variables()) for elt in self
                     if isinstance(elt, SubstituteBindingsI)], []))
    
    def substitute_bindings(self, bindings):
        return self.__class__([self.subst(v, bindings) for v in self])
    
    def subst(self, v, bindings):
        if isinstance(v, SubstituteBindingsI):
            return v.substitute_bindings(bindings)
        else:
            return bindings.get(v, v)

class FeatureValueTuple(SubstituteBindingsSequence, tuple):
    """
    A base feature value that is a tuple of other base feature values.
    FeatureValueTuple implements L{SubstituteBindingsI}, so it any
    variable substitutions will be propagated to the elements
    contained by the set.  C{FeatureValueTuple}s are immutable.
    """
    def __repr__(self): # [xx] really use %s here?
        if len(self) == 0: return '()'
        return '(%s)' % ', '.join('%s' % (b,) for b in self)

class FeatureValueSet(SubstituteBindingsSequence, frozenset):
    """
    A base feature value that is a set of other base feature values.
    FeatureValueSet implements L{SubstituteBindingsI}, so it any
    variable substitutions will be propagated to the elements
    contained by the set.  C{FeatureValueSet}s are immutable.
    """
    def __repr__(self): # [xx] really use %s here?
        if len(self) == 0: return '{/}' # distinguish from dict.
        # n.b., we sort the string reprs of our elements, to ensure
        # that our own repr is deterministic.
        return '{%s}' % ', '.join(sorted('%s' % (b,) for b in self))
    __str__ = __repr__

class FeatureValueUnion(SubstituteBindingsSequence, frozenset):
    """
    A base feature value that represents the union of two or more
    L{FeatureValueSet}s or L{Variable}s.
    """
    def __new__(cls, values):
        # If values contains FeatureValueUnions, then collapse them.
        values = _flatten(values, FeatureValueUnion)
        
        # If the resulting list contains no variables, then 
        # use a simple FeatureValueSet instead.
        if sum(isinstance(v, Variable) for v in values) == 0:
            values = _flatten(values, FeatureValueSet)
            return FeatureValueSet(values)
        
        # If we contain a single variable, return that variable.
        if len(values) == 1:
            return list(values)[0]
        
        # Otherwise, build the FeatureValueUnion.
        return frozenset.__new__(cls, values)

    def __repr__(self):
        # n.b., we sort the string reprs of our elements, to ensure
        # that our own repr is deterministic.  also, note that len(self)
        # is guaranteed to be 2 or more.
        return '{%s}' % '+'.join(sorted('%s' % (b,) for b in self))

class FeatureValueConcat(SubstituteBindingsSequence, tuple):
    """
    A base feature value that represents the concatenation of two or
    more L{FeatureValueTuple}s or L{Variable}s.
    """
    def __new__(cls, values):
        # If values contains FeatureValueConcats, then collapse them.
        values = _flatten(values, FeatureValueConcat)
        
        # If the resulting list contains no variables, then 
        # use a simple FeatureValueTuple instead.
        if sum(isinstance(v, Variable) for v in values) == 0:
            values = _flatten(values, FeatureValueTuple)
            return FeatureValueTuple(values)
        
        # If we contain a single variable, return that variable.
        if len(values) == 1:
            return list(values)[0]
        
        # Otherwise, build the FeatureValueConcat.
        return tuple.__new__(cls, values)

    def __repr__(self):
        # n.b.: len(self) is guaranteed to be 2 or more.
        return '(%s)' % '+'.join('%s' % (b,) for b in self)

def _flatten(lst, cls):
    """
    Helper function -- return a copy of list, with all elements of
    type C{cls} spliced in rather than appended in.
    """
    result = []
    for elt in lst:
        if isinstance(elt, cls): result.extend(elt)
        else: result.append(elt)
    return result

######################################################################
# Specialized Features
######################################################################

class Feature(object):
    """
    A feature identifier that's specialized to put additional
    constraints, default values, etc.
    """
    def __init__(self, name, default=None, display=None):
        assert display in (None, 'prefix', 'slash')
        
        self._name = name # [xx] rename to .identifier?
        """The name of this feature."""
        
        self._default = default # [xx] not implemented yet.
        """Default value for this feature.  Use None for unbound."""

        self._display = display
        """Custom display location: can be prefix, or slash."""

        if self._display == 'prefix':
            self._sortkey = (-1, self._name)
        elif self._display == 'slash':
            self._sortkey = (1, self._name)
        else:
            self._sortkey = (0, self._name)

    name = property(lambda self: self._name)
    default = property(lambda self: self._default)
    display = property(lambda self: self._display)

    def __repr__(self):
        return '*%s*' % self.name

    def __cmp__(self, other):
        if not isinstance(other, Feature): return -1
        if self._name == other._name: return 0
        return cmp(self._sortkey, other._sortkey)

    def __hash__(self):
        return hash(self._name)

    #////////////////////////////////////////////////////////////
    # These can be overridden by subclasses:
    #////////////////////////////////////////////////////////////
    
    def parse_value(self, s, position, reentrances, parser):
        return parser.parse_value(s, position, reentrances)

    def unify_base_values(self, fval1, fval2, bindings):
        """
        If possible, return a single value..  If not, return
        the value L{UnificationFailure}.
        """
        if fval1 == fval2: return fval1
        else: return UnificationFailure


class SlashFeature(Feature):
    def parse_value(self, s, position, reentrances, parser):
        return parser.partial_parse(s, position, reentrances)

class RangeFeature(Feature):
    RANGE_RE = re.compile('(-?\d+):(-?\d+)')
    def parse_value(self, s, position, reentrances, parser):
        m = self.RANGE_RE.match(s, position)
        if not m: raise ValueError('range', position)
        return (int(m.group(1)), int(m.group(2))), m.end()

    def unify_base_values(self, fval1, fval2, bindings):
        if fval1 is None: return fval2
        if fval2 is None: return fval1
        rng = max(fval1[0], fval2[0]), min(fval1[1], fval2[1])
        if rng[1] < rng[0]: return UnificationFailure
        return rng
    
SLASH = SlashFeature('slash', default=False, display='slash')
TYPE = Feature('type', display='prefix')
    
######################################################################
# Specialized Feature Values
######################################################################

class CustomFeatureValue(object):
    """
    An abstract base class for base values that define a custom
    unification method.  A C{CustomFeatureValue}'s custom unification
    method will be used during feature structure unification if:

      - The C{CustomFeatureValue} is unified with another base value.
      - The C{CustomFeatureValue} is not the value of a customized
        L{Feature} (which defines its own unification method).

    If two C{CustomFeatureValue} objects are unified with one another
    during feature structure unification, then the unified base values
    they return I{must} be equal; otherwise, an C{AssertionError} will
    be raised.

    Subclasses must define L{unify()} and L{__cmp__()}.  Subclasses
    may also wish to define L{__hash__()}.
    """
    def unify(self, other):
        """
        If this base value unifies with C{other}, then return the
        unified value.  Otherwise, return L{UnificationFailure}.
        """
        raise NotImplementedError('abstract base class')
    def __cmp__(self, other):
        raise NotImplementedError('abstract base class')
    def __hash__(self):
        raise TypeError('%s objects or unhashable' % self.__class__.__name__)

######################################################################
# Feature Structure Parser
######################################################################

class FeatStructParser(object):
    def __init__(self, features=(SLASH, TYPE), fdict_class=FeatStruct,
                 flist_class=FeatList, logic_parser=None):
        self._features = dict((f.name,f) for f in features)
        self._fdict_class = fdict_class
        self._flist_class = flist_class
        self._prefix_feature = None
        self._slash_feature = None
        for feature in features:
            if feature.display == 'slash':
                if self._slash_feature:
                    raise ValueError('Multiple features w/ display=slash')
                self._slash_feature = feature
            if feature.display == 'prefix':
                if self._prefix_feature:
                    raise ValueError('Multiple features w/ display=prefix')
                self._prefix_feature = feature
        self._features_with_defaults = [feature for feature in features
                                        if feature.default is not None]
        if logic_parser is None:
            logic_parser = LogicParser()
        self._logic_parser = logic_parser

    def parse(self, s, fstruct=None):
        """
        Convert a string representation of a feature structure (as
        displayed by repr) into a C{FeatStruct}.  This parse
        imposes the following restrictions on the string
        representation:
          - Feature names cannot contain any of the following:
            whitespace, parenthases, quote marks, equals signs,
            dashes, commas, and square brackets.  Feature names may
            not begin with plus signs or minus signs.
          - Only the following basic feature value are supported:
            strings, integers, variables, C{None}, and unquoted
            alphanumeric strings.
          - For reentrant values, the first mention must specify
            a reentrance identifier and a value; and any subsequent
            mentions must use arrows (C{'->'}) to reference the
            reentrance identifier.
        """
        s = s.strip()
        value, position = self.partial_parse(s, 0, {}, fstruct)
        if position != len(s):
            self._error(s, 'end of string', position)
        return value

    _START_FSTRUCT_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+)?(\[)')
    _END_FSTRUCT_RE = re.compile(r'\s*]\s*')
    _SLASH_RE = re.compile(r'/')
    _FEATURE_NAME_RE = re.compile(r'\s*([+-]?)([^\s\(\)<>"\'\-=\[\],]+)\s*')
    _REENTRANCE_RE = re.compile(r'\s*->\s*')
    _TARGET_RE = re.compile(r'\s*\((\d+)\)\s*')
    _ASSIGN_RE = re.compile(r'\s*=\s*')
    _COMMA_RE = re.compile(r'\s*,\s*')
    _BARE_PREFIX_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+\s*)()')
    # This one is used to distinguish fdicts from flists:
    _START_FDICT_RE = re.compile(r'(%s)|(%s\s*(%s\s*(=|->)|[+-]%s|\]))' % (
        _BARE_PREFIX_RE.pattern, _START_FSTRUCT_RE.pattern,
        _FEATURE_NAME_RE.pattern, _FEATURE_NAME_RE.pattern))

    def partial_parse(self, s, position=0, reentrances=None, fstruct=None):
        """
        Helper function that parses a feature structure.
        @param s: The string to parse.
        @param position: The position in the string to start parsing.
        @param reentrances: A dictionary from reentrance ids to values.
            Defaults to an empty dictionary.
        @return: A tuple (val, pos) of the feature structure created
            by parsing and the position where the parsed feature
            structure ends.
        """
        if reentrances is None: reentrances = {}
        try:
            return self._partial_parse(s, position, reentrances, fstruct)
        except ValueError, e:
            if len(e.args) != 2: raise
            self._error(s, *e.args)

    def _partial_parse(self, s, position, reentrances, fstruct=None):
        # Create the new feature structure
        if fstruct is None:
            if self._START_FDICT_RE.match(s, position):
                fstruct = self._fdict_class()
            else:
                fstruct = self._flist_class()

        # Read up to the open bracket.  
        match = self._START_FSTRUCT_RE.match(s, position)
        if not match:
            match = self._BARE_PREFIX_RE.match(s, position)
            if not match:
                raise ValueError('open bracket or identifier', position)
        position = match.end()

        # If there as an identifier, record it.
        if match.group(1):
            identifier = match.group(1)
            if identifier in reentrances:
                raise ValueError('new identifier', match.start(1))
            reentrances[identifier] = fstruct

        if isinstance(fstruct, FeatDict):
            fstruct.clear()
            return self._partial_parse_featdict(s, position, match,
                                                reentrances, fstruct)
        else:
            del fstruct[:]
            return self._partial_parse_featlist(s, position, match,
                                                reentrances, fstruct)
                
    def _partial_parse_featlist(self, s, position, match,
                                reentrances, fstruct):
        # Prefix features are not allowed:
        if match.group(2): raise ValueError('open bracket')
        # Bare prefixes are not allowed:
        if not match.group(3): raise ValueError('open bracket')

        # Build a list of the features defined by the structure.
        while position < len(s):
            # Check for the close bracket.
            match = self._END_FSTRUCT_RE.match(s, position)
            if match is not None:
                return fstruct, match.end()

            # Reentances have the form "-> (target)"
            match = self._REENTRANCE_RE.match(s, position)
            if match:
                position = match.end()
                match = _TARGET_RE.match(s, position)
                if not match: raise ValueError('identifier', position)
                target = match.group(1)
                if target not in reentrances:
                    raise ValueError('bound identifier', position)
                position = match.end()
                fstruct.append(reentrances[target])

            # Anything else is a value.
            else:
                value, position = (
                    self._parse_value(0, s, position, reentrances))
                fstruct.append(value)
                
            # If there's a close bracket, handle it at the top of the loop.
            if self._END_FSTRUCT_RE.match(s, position):
                continue

            # Otherwise, there should be a comma
            match = self._COMMA_RE.match(s, position)
            if match is None: raise ValueError('comma', position)
            position = match.end()

        # We never saw a close bracket.
        raise ValueError('close bracket', position)
    
    def _partial_parse_featdict(self, s, position, match,
                                reentrances, fstruct):
        # If there was a prefix feature, record it.
        if match.group(2):
            if self._prefix_feature is None:
                raise ValueError('open bracket or identifier', match.start(2))
            prefixval = match.group(2).strip()
            if prefixval.startswith('?'):
                prefixval = Variable(prefixval)
            fstruct[self._prefix_feature] = prefixval

        # If group 3 is empty, then we just have a bare prefix, so
        # we're done.
        if not match.group(3):
            return self._finalize(s, match.end(), reentrances, fstruct)

        # Build a list of the features defined by the structure.
        # Each feature has one of the three following forms:
        #     name = value
        #     name -> (target)
        #     +name
        #     -name
        while position < len(s):
            # Use these variables to hold info about each feature:
            name = value = None

            # Check for the close bracket.
            match = self._END_FSTRUCT_RE.match(s, position)
            if match is not None:
                return self._finalize(s, match.end(), reentrances, fstruct)
            
            # Get the feature name's name
            match = self._FEATURE_NAME_RE.match(s, position)
            if match is None: raise ValueError('feature name', position)
            name = match.group(2)
            position = match.end()

            # Check if it's a special feature.
            if name[0] == '*' and name[-1] == '*':
                name = self._features.get(name[1:-1])
                if name is None:
                    raise ValueError('known special feature', match.start(2))

            # Check if this feature has a value already.
            if name in fstruct:
                raise ValueError('new name', match.start(2))

            # Boolean value ("+name" or "-name")
            if match.group(1) == '+': value = True
            if match.group(1) == '-': value = False

            # Reentrance link ("-> (target)")
            if value is None:
                match = self._REENTRANCE_RE.match(s, position)
                if match is not None:
                    position = match.end()
                    match = self._TARGET_RE.match(s, position)
                    if not match:
                        raise ValueError('identifier', position)
                    target = match.group(1)
                    if target not in reentrances:
                        raise ValueError('bound identifier', position)
                    position = match.end()
                    value = reentrances[target]

            # Assignment ("= value").
            if value is None:
                match = self._ASSIGN_RE.match(s, position)
                if match:
                    position = match.end()
                    value, position = (
                        self._parse_value(name, s, position, reentrances))
                # None of the above: error.
                else:
                    raise ValueError('equals sign', position)

            # Store the value.
            fstruct[name] = value
            
            # If there's a close bracket, handle it at the top of the loop.
            if self._END_FSTRUCT_RE.match(s, position):
                continue

            # Otherwise, there should be a comma
            match = self._COMMA_RE.match(s, position)
            if match is None: raise ValueError('comma', position)
            position = match.end()

        # We never saw a close bracket.
        raise ValueError('close bracket', position)

    def _finalize(self, s, pos, reentrances, fstruct):
        """
        Called when we see the close brace -- checks for a slash feature,
        and adds in default values.
        """
        # Add the slash feature (if any)
        match = self._SLASH_RE.match(s, pos)
        if match:
            name = self._slash_feature
            v, pos = self._parse_value(name, s, match.end(), reentrances)
            fstruct[name] = v
        ## Add any default features.  -- handle in unficiation instead?
        #for feature in self._features_with_defaults:
        #    fstruct.setdefault(feature, feature.default)
        # Return the value.
        return fstruct, pos
    
    def _parse_value(self, name, s, position, reentrances):
        if isinstance(name, Feature):
            return name.parse_value(s, position, reentrances, self)
        else:
            return self.parse_value(s, position, reentrances)

    def parse_value(self, s, position, reentrances):
        for (handler, regexp) in self.VALUE_HANDLERS:
            match = regexp.match(s, position)
            if match:
                handler_func = getattr(self, handler)
                return handler_func(s, position, reentrances, match)
        raise ValueError('value', position)

    def _error(self, s, expected, position):
        lines = s.split('\n')
        while position > len(lines[0]):
            position -= len(lines.pop(0))+1 # +1 for the newline.
        estr = ('Error parsing feature structure\n    ' +
                lines[0] + '\n    ' + ' '*position + '^ ' +
                'Expected %s' % expected)
        raise ValueError, estr

    #////////////////////////////////////////////////////////////
    #{ Value Parsers
    #////////////////////////////////////////////////////////////

    #: A table indicating how feature values should be parsed.  Each
    #: entry in the table is a pair (handler, regexp).  The first entry
    #: with a matching regexp will have its handler called.  Handlers
    #: should have the following signature::
    #:
    #:    def handler(s, position, reentrances, match): ...
    #:
    #: and should return a tuple (value, position), where position is
    #: the string position where the value ended.  (n.b.: order is
    #: important here!)
    VALUE_HANDLERS = [
        ('parse_fstruct_value', _START_FSTRUCT_RE),
        ('parse_var_value', re.compile(r'\?[a-zA-Z_][a-zA-Z0-9_]*')),
        ('parse_str_value', re.compile("[uU]?[rR]?(['\"])")),
        ('parse_int_value', re.compile(r'-?\d+')),
        ('parse_sym_value', re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*')),
        ('parse_app_value', re.compile(r'<(app)\((\?[a-z][a-z]*)\s*,'
                                       r'\s*(\?[a-z][a-z]*)\)>')),
#       ('parse_logic_value', re.compile(r'<([^>]*)>')),
        #lazily match any character after '<' until we hit a '>' not preceded by '-'
        ('parse_logic_value', re.compile(r'<(.*?)(?<!-)>')), 
        ('parse_set_value', re.compile(r'{')),
        ('parse_tuple_value', re.compile(r'\(')),
        ]

    def parse_fstruct_value(self, s, position, reentrances, match):
        return self.partial_parse(s, position, reentrances)

    def parse_str_value(self, s, position, reentrances, match):
        return nltk.internals.parse_str(s, position)

    def parse_int_value(self, s, position, reentrances, match):
        return int(match.group()), match.end()

    # Note: the '?' is included in the variable name.
    def parse_var_value(self, s, position, reentrances, match):
        return Variable(match.group()), match.end()

    _SYM_CONSTS = {'None':None, 'True':True, 'False':False}
    def parse_sym_value(self, s, position, reentrances, match):
        val, end = match.group(), match.end()
        return self._SYM_CONSTS.get(val, val), end

    def parse_app_value(self, s, position, reentrances, match):
        """Mainly included for backwards compat."""
        return self._logic_parser.parse('%s(%s)' % match.group(2,3)), match.end()

    def parse_logic_value(self, s, position, reentrances, match):
        try:
            try:
                expr = self._logic_parser.parse(match.group(1))
            except ParseException:
                raise ValueError()
            return expr, match.end()
        except ValueError:
            raise ValueError('logic expression', match.start(1))

    def parse_tuple_value(self, s, position, reentrances, match):
        return self._parse_seq_value(s, position, reentrances, match, ')', 
                                     FeatureValueTuple, FeatureValueConcat)

    def parse_set_value(self, s, position, reentrances, match):
        return self._parse_seq_value(s, position, reentrances, match, '}',
                                     FeatureValueSet, FeatureValueUnion)
    
    def _parse_seq_value(self, s, position, reentrances, match,
                         close_paren, seq_class, plus_class):
        """
        Helper function used by parse_tuple_value and parse_set_value.
        """
        cp = re.escape(close_paren)
        position = match.end()
        # Special syntax fo empty tuples:
        m = re.compile(r'\s*/?\s*%s' % cp).match(s, position)
        if m: return seq_class(), m.end()
        # Read values:
        values = []
        seen_plus = False
        while True:
            # Close paren: return value.
            m = re.compile(r'\s*%s' % cp).match(s, position)
            if m:
                if seen_plus: return plus_class(values), m.end()
                else: return seq_class(values), m.end()
            
            # Read the next value.
            val, position = self.parse_value(s, position, reentrances)
            values.append(val)

            # Comma or looking at close paren
            m = re.compile(r'\s*(,|\+|(?=%s))\s*' % cp).match(s, position)
            if m.group(1) == '+': seen_plus = True
            if not m: raise ValueError("',' or '+' or '%s'" % cp, position)
            position = m.end()

######################################################################
#{ Demo
######################################################################

def display_unification(fs1, fs2, indent='  '):
    # Print the two input feature structures, side by side.
    fs1_lines = str(fs1).split('\n')
    fs2_lines = str(fs2).split('\n')
    if len(fs1_lines) > len(fs2_lines):
        blankline = '['+' '*(len(fs2_lines[0])-2)+']'
        fs2_lines += [blankline]*len(fs1_lines)
    else:
        blankline = '['+' '*(len(fs1_lines[0])-2)+']'
        fs1_lines += [blankline]*len(fs2_lines)
    for (fs1_line, fs2_line) in zip(fs1_lines, fs2_lines):
        print indent + fs1_line + '   ' + fs2_line
    print indent+'-'*len(fs1_lines[0])+'   '+'-'*len(fs2_lines[0])

    linelen = len(fs1_lines[0])*2+3
    print indent+'|               |'.center(linelen)
    print indent+'+-----UNIFY-----+'.center(linelen)
    print indent+'|'.center(linelen)
    print indent+'V'.center(linelen)

    bindings = {}

    result = fs1.unify(fs2, bindings)
    if result is None:
        print indent+'(FAILED)'.center(linelen)
    else:
        print '\n'.join(indent+l.center(linelen)
                         for l in str(result).split('\n'))
        if bindings and len(bindings.bound_variables()) > 0:
            print repr(bindings).center(linelen)
    return result

def interactivedemo(trace=False):
    import random, sys

    HELP = '''
    1-%d: Select the corresponding feature structure
    q: Quit
    t: Turn tracing on or off
    l: List all feature structures
    ?: Help
    '''
    
    print '''
    This demo will repeatedly present you with a list of feature
    structures, and ask you to choose two for unification.  Whenever a
    new feature structure is generated, it is added to the list of
    choices that you can pick from.  However, since this can be a
    large number of feature structures, the demo will only print out a
    random subset for you to choose between at a given time.  If you
    want to see the complete lists, type "l".  For a list of valid
    commands, type "?".
    '''
    print 'Press "Enter" to continue...'
    sys.stdin.readline()
    
    fstruct_strings = [
        '[agr=[number=sing, gender=masc]]',
        '[agr=[gender=masc, person=3rd]]',
        '[agr=[gender=fem, person=3rd]]',
        '[subj=[agr=(1)[]], agr->(1)]',
        '[obj=?x]', '[subj=?x]',
        '[/=None]', '[/=NP]',
        '[cat=NP]', '[cat=VP]', '[cat=PP]',
        '[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]',
        '[gender=masc, agr=?C]',
        '[gender=?S, agr=[gender=?S,person=3rd]]'
        ]
    
    all_fstructs = [(i, FeatStruct.parse(fstruct_strings[i]))
                    for i in range(len(fstruct_strings))]

    def list_fstructs(fstructs):
        for i, fstruct in fstructs:
            print
            lines = str(fstruct).split('\n')
            print '%3d: %s' % (i+1, lines[0])
            for line in lines[1:]: print '     '+line
        print

    
    while 1:
        # Pick 5 feature structures at random from the master list.
        MAX_CHOICES = 5
        if len(all_fstructs) > MAX_CHOICES:
            fstructs = random.sample(all_fstructs, MAX_CHOICES)
            fstructs.sort()
        else:
            fstructs = all_fstructs
        
        print '_'*75
        
        print 'Choose two feature structures to unify:'
        list_fstructs(fstructs)
        
        selected = [None,None]
        for (nth,i) in (('First',0), ('Second',1)):
            while selected[i] is None:
                print ('%s feature structure (1-%d,q,t,l,?): '
                       % (nth, len(all_fstructs))),
                try:
                    input = sys.stdin.readline().strip()
                    if input in ('q', 'Q', 'x', 'X'): return
                    if input in ('t', 'T'):
                        trace = not trace
                        print '   Trace = %s' % trace
                        continue
                    if input in ('h', 'H', '?'):
                        print HELP % len(fstructs); continue
                    if input in ('l', 'L'):
                        list_fstructs(all_fstructs); continue
                    num = int(input)-1
                    selected[i] = all_fstructs[num][1]
                    print
                except:
                    print 'Bad sentence number'
                    continue

        if trace:
            result = selected[0].unify(selected[1], trace=1)
        else:
            result = display_unification(selected[0], selected[1])
        if result is not None:
            for i, fstruct in all_fstructs:
                if `result` == `fstruct`: break
            else:
                all_fstructs.append((len(all_fstructs), result))

        print '\nType "Enter" to continue unifying; or "q" to quit.'
        input = sys.stdin.readline().strip()
        if input in ('q', 'Q', 'x', 'X'): return

def demo(trace=False):
    """
    Just for testing
    """
    #import random
    
    # parser breaks with values like '3rd'
    fstruct_strings = [
        '[agr=[number=sing, gender=masc]]',
        '[agr=[gender=masc, person=3]]',
        '[agr=[gender=fem, person=3]]',
        '[subj=[agr=(1)[]], agr->(1)]',
        '[obj=?x]', '[subj=?x]',
        '[/=None]', '[/=NP]',
        '[cat=NP]', '[cat=VP]', '[cat=PP]',
        '[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]',
        '[gender=masc, agr=?C]',
        '[gender=?S, agr=[gender=?S,person=3]]'
        ]
    all_fstructs = [FeatStruct(fss) for fss in fstruct_strings]    
    #MAX_CHOICES = 5
    #if len(all_fstructs) > MAX_CHOICES:
        #fstructs = random.sample(all_fstructs, MAX_CHOICES)
        #fstructs.sort()
    #else:
        #fstructs = all_fstructs
                
    for fs1 in all_fstructs:
        for fs2 in all_fstructs:
            print "\n*******************\nfs1 is:\n%s\n\nfs2 is:\n%s\n\nresult is:\n%s" % (fs1, fs2, unify(fs1, fs2))
 

if __name__ == '__main__':
    demo()