/usr/share/w3af/extlib/nltk/featstruct.py is in w3af-console 1.0-rc3svn3489-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 | # Natural Language Toolkit: Feature Structures
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>,
# Rob Speer,
# Steven Bird <sb@csse.unimelb.edu.au>
# URL: <http://nltk.sourceforge.net>
# For license information, see LICENSE.TXT
#
# $Id$
"""
Basic data classes for representing feature structures, and for
performing basic operations on those feature structures. A X{feature
structure} is a mapping from feature identifiers to feature values,
where each feature value is either a basic value (such as a string or
an integer), or a nested feature structure. There are two types of
feature structure, implemented by two subclasses of L{FeatStruct}:
- I{feature dictionaries}, implemented by L{FeatDict}, act like
Python dictionaries. Feature identifiers may be strings or
instances of the L{Feature} class.
- I{feature lists}, implemented by L{FeatList}, act like Python
lists. Feature identifiers are integers.
Feature structures are typically used to represent partial information
about objects. A feature identifier that is not mapped to a value
stands for a feature whose value is unknown (I{not} a feature without
a value). Two feature structures that represent (potentially
overlapping) information about the same object can be combined by
X{unification}. When two inconsistent feature structures are unified,
the unification fails and returns C{None}.
Features can be specified using X{feature paths}, or tuples of feature
identifiers that specify path through the nested feature structures to
a value. Feature structures may contain reentrant feature values. A
X{reentrant feature value} is a single feature value that can be
accessed via multiple feature paths. Unification preserves the
reentrance relations imposed by both of the unified feature
structures. In the feature structure resulting from unification, any
modifications to a reentrant feature value will be visible using any
of its feature paths.
Feature structure variables are encoded using the L{nltk.sem.Variable}
class. The variables' values are tracked using a X{bindings}
dictionary, which maps variables to their values. When two feature
structures are unified, a fresh bindings dictionary is created to
track their values; and before unification completes, all bound
variables are replaced by their values. Thus, the bindings
dictionaries are usually strictly internal to the unification process.
However, it is possible to track the bindings of variables if you
choose to, by supplying your own initial bindings dictionary to the
L{unify()} function.
When unbound variables are unified with one another, they become
X{aliased}. This is encoded by binding one variable to the other.
Lightweight Feature Structures
==============================
Many of the functions defined by L{nltk.featstruct} can be applied
directly to simple Python dictionaries and lists, rather than to
full-fledged L{FeatDict} and L{FeatList} objects. In other words,
Python C{dicts} and C{lists} can be used as "light-weight" feature
structures.
>>> from nltk.featstruct import unify
>>> unify(dict(x=1, y=dict()), dict(a='a', y=dict(b='b')))
{'y': {'b': 'b'}, 'x': 1, 'a': 'a'}
However, you should keep in mind the following caveats:
- Python dictionaries & lists ignore reentrance when checking for
equality between values. But two FeatStructs with different
reentrances are considered nonequal, even if all their base
values are equal.
- FeatStructs can be easily frozen, allowing them to be used as
keys in hash tables. Python dictionaries and lists can not.
- FeatStructs display reentrance in their string representations;
Python dictionaries and lists do not.
- FeatStructs may *not* be mixed with Python dictionaries and lists
(e.g., when performing unification).
- FeatStructs provide a number of useful methods, such as L{walk()
<FeatStruct.walk>} and L{cyclic() <FeatStruct.cyclic>}, which are
not available for Python dicts & lists.
In general, if your feature structures will contain any reentrances,
or if you plan to use them as dictionary keys, it is strongly
recommended that you use full-fledged L{FeatStruct} objects.
"""
import re, copy
from nltk.sem.logic import Variable, Expression, SubstituteBindingsI
from nltk.sem.logic import LogicParser, ParseException
import nltk.internals
######################################################################
# Feature Structure
######################################################################
class FeatStruct(SubstituteBindingsI):
"""
A mapping from feature identifiers to feature values, where each
feature value is either a basic value (such as a string or an
integer), or a nested feature structure. There are two types of
feature structure:
- I{feature dictionaries}, implemented by L{FeatDict}, act like
Python dictionaries. Feature identifiers may be strings or
instances of the L{Feature} class.
- I{feature lists}, implemented by L{FeatList}, act like Python
lists. Feature identifiers are integers.
Feature structures may be indexed using either simple feature
identifiers or 'feature paths.' A X{feature path} is a sequence
of feature identifiers that stand for a corresponding sequence of
indexing operations. In particular, C{fstruct[(f1,f2,...,fn)]} is
equivalent to C{fstruct[f1][f2]...[fn]}.
Feature structures may contain reentrant feature structures. A
X{reentrant feature structure} is a single feature structure
object that can be accessed via multiple feature paths. Feature
structures may also be cyclic. A feature structure is X{cyclic}
if there is any feature path from the feature structure to itself.
Two feature structures are considered equal if they assign the
same values to all features, and have the same reentrances.
By default, feature structures are mutable. They may be made
immutable with the L{freeze()} function. Once they have been
frozen, they may be hashed, and thus used as dictionary keys.
"""
_frozen = False
"""@ivar: A flag indicating whether this feature structure is
frozen or not. Once this flag is set, it should never be
un-set; and no further modification should be made to this
feature structue."""
##////////////////////////////////////////////////////////////
#{ Constructor
##////////////////////////////////////////////////////////////
def __new__(cls, features=None, **morefeatures):
"""
Construct and return a new feature structure. If this
constructor is called directly, then the returned feature
structure will be an instance of either the L{FeatDict} class
or the L{FeatList} class.
@param features: The initial feature values for this feature
structure:
- FeatStruct(string) -> FeatStructParser().parse(string)
- FeatStruct(mapping) -> FeatDict(mapping)
- FeatStruct(sequence) -> FeatList(sequence)
- FeatStruct() -> FeatDict()
@param morefeatures: If C{features} is a mapping or C{None},
then C{morefeatures} provides additional features for the
C{FeatDict} constructor.
"""
# If the FeatStruct constructor is called directly, then decide
# whether to create a FeatDict or a FeatList, based on the
# contents of the `features` argument.
if cls is FeatStruct:
if features is None:
return FeatDict.__new__(FeatDict, **morefeatures)
elif _is_mapping(features):
return FeatDict.__new__(FeatDict, features, **morefeatures)
elif morefeatures:
raise TypeError('Keyword arguments may only be specified '
'if features is None or is a mapping.')
if isinstance(features, basestring):
if FeatStructParser._START_FDICT_RE.match(features):
return FeatDict.__new__(FeatDict, features, **morefeatures)
else:
return FeatList.__new__(FeatList, features, **morefeatures)
elif _is_sequence(features):
return FeatList.__new__(FeatList, features)
else:
raise TypeError('Expected string or mapping or sequence')
# Otherwise, construct the object as normal.
else:
return super(FeatStruct, cls).__new__(cls, features,
**morefeatures)
##////////////////////////////////////////////////////////////
#{ Uniform Accessor Methods
##////////////////////////////////////////////////////////////
# These helper functions allow the methods defined by FeatStruct
# to treat all feature structures as mappings, even if they're
# really lists. (Lists are treated as mappings from ints to vals)
def _keys(self):
"""Return an iterable of the feature identifiers used by this
FeatStruct."""
raise NotImplementedError() # Implemented by subclasses.
def _values(self):
"""Return an iterable of the feature values directly defined
by this FeatStruct."""
raise NotImplementedError() # Implemented by subclasses.
def _items(self):
"""Return an iterable of (fid,fval) pairs, where fid is a
feature identifier and fval is the corresponding feature
value, for all features defined by this FeatStruct."""
raise NotImplementedError() # Implemented by subclasses.
##////////////////////////////////////////////////////////////
#{ Equality & Hashing
##////////////////////////////////////////////////////////////
def equal_values(self, other, check_reentrance=False):
"""
@return: True if C{self} and C{other} assign the same value to
to every feature. In particular, return true if
C{self[M{p}]==other[M{p}]} for every feature path M{p} such
that C{self[M{p}]} or C{other[M{p}]} is a base value (i.e.,
not a nested feature structure).
@param check_reentrance: If true, then also return false if
there is any difference between the reentrances of C{self}
and C{other}.
@note: the L{== operator <__eq__>} is equivalent to
C{equal_values()} with C{check_reentrance=True}.
"""
return self._equal(other, check_reentrance, set(), set(), set())
def __eq__(self, other):
"""
Return true if C{self} and C{other} are both feature
structures, assign the same values to all features, and
contain the same reentrances. I.e., return
C{self.equal_values(other, check_reentrance=True)}.
@see: L{equal_values()}
"""
return self._equal(other, True, set(), set(), set())
def __ne__(self, other):
"""
Return true unless C{self} and C{other} are both feature
structures, assign the same values to all features, and
contain the same reentrances. I.e., return
C{not self.equal_values(other, check_reentrance=True)}.
"""
return not self.__eq__(other)
def __hash__(self):
"""
If this feature structure is frozen, return its hash value;
otherwise, raise C{TypeError}.
"""
if not self._frozen:
raise TypeError('FeatStructs must be frozen before they '
'can be hashed.')
try: return self.__hash
except AttributeError:
self.__hash = self._hash(set())
return self.__hash
def _equal(self, other, check_reentrance, visited_self,
visited_other, visited_pairs):
"""
@return: True iff self and other have equal values.
@param visited_self: A set containing the ids of all C{self}
feature structures we've already visited.
@param visited_other: A set containing the ids of all C{other}
feature structures we've already visited.
@param visited_pairs: A set containing C{(selfid, otherid)} pairs
for all pairs of feature structures we've already visited.
"""
# If we're the same object, then we're equal.
if self is other: return True
# If we have different classes, we're definitely not equal.
if self.__class__ != other.__class__: return False
# If we define different features, we're definitely not equal.
# (Perform len test first because it's faster -- we should
# do profiling to see if this actually helps)
if len(self) != len(other): return False
if set(self._keys()) != set(other._keys()): return False
# If we're checking reentrance, then any time we revisit a
# structure, make sure that it was paired with the same
# feature structure that it is now. Note: if check_reentrance,
# then visited_pairs will never contain two pairs whose first
# values are equal, or two pairs whose second values are equal.
if check_reentrance:
if id(self) in visited_self or id(other) in visited_other:
return (id(self), id(other)) in visited_pairs
# If we're not checking reentrance, then we still need to deal
# with cycles. If we encounter the same (self, other) pair a
# second time, then we won't learn anything more by examining
# their children a second time, so just return true.
else:
if (id(self), id(other)) in visited_pairs:
return True
# Keep track of which nodes we've visited.
visited_self.add(id(self))
visited_other.add(id(other))
visited_pairs.add( (id(self), id(other)) )
# Now we have to check all values. If any of them don't match,
# then return false.
for (fname, self_fval) in self._items():
other_fval = other[fname]
if isinstance(self_fval, FeatStruct):
if not self_fval._equal(other_fval, check_reentrance,
visited_self, visited_other,
visited_pairs):
return False
else:
if self_fval != other_fval: return False
# Everything matched up; return true.
return True
def _hash(self, visited):
"""
@return: A hash value for this feature structure.
@require: C{self} must be frozen.
@param visited: A set containing the ids of all feature
structures we've already visited while hashing.
"""
if id(self) in visited: return 1
visited.add(id(self))
hashval = 5831
for (fname, fval) in sorted(self._items()):
hashval *= 37
hashval += hash(fname)
hashval *= 37
if isinstance(fval, FeatStruct):
hashval += fval._hash(visited)
else:
hashval += hash(fval)
# Convert to a 32 bit int.
hashval = int(hashval & 0x7fffffff)
return hashval
##////////////////////////////////////////////////////////////
#{ Freezing
##////////////////////////////////////////////////////////////
#: Error message used by mutating methods when called on a frozen
#: feature structure.
_FROZEN_ERROR = "Frozen FeatStructs may not be modified."
def freeze(self):
"""
Make this feature structure, and any feature structures it
contains, immutable. Note: this method does not attempt to
'freeze' any feature values that are not C{FeatStruct}s; it
is recommended that you use only immutable feature values.
"""
if self._frozen: return
self._freeze(set())
def frozen(self):
"""
@return: True if this feature structure is immutable. Feature
structures can be made immutable with the L{freeze()} method.
Immutable feature structures may not be made mutable again,
but new mutale copies can be produced with the L{copy()} method.
"""
return self._frozen
def _freeze(self, visited):
"""
Make this feature structure, and any feature structure it
contains, immutable.
@param visited: A set containing the ids of all feature
structures we've already visited while freezing.
"""
if id(self) in visited: return
visited.add(id(self))
self._frozen = True
for (fname, fval) in sorted(self._items()):
if isinstance(fval, FeatStruct):
fval._freeze(visited)
##////////////////////////////////////////////////////////////
#{ Copying
##////////////////////////////////////////////////////////////
def copy(self, deep=True):
"""
Return a new copy of C{self}. The new copy will not be
frozen.
@param deep: If true, create a deep copy; if false, create
a shallow copy.
"""
if deep:
return copy.deepcopy(self)
else:
return self.__class__(self)
# Subclasses should define __deepcopy__ to ensure that the new
# copy will not be frozen.
def __deepcopy__(self, memo):
raise NotImplementedError() # Implemented by subclasses.
##////////////////////////////////////////////////////////////
#{ Structural Information
##////////////////////////////////////////////////////////////
def cyclic(self):
"""
@return: True if this feature structure contains itself.
"""
return self._find_reentrances({})[id(self)]
def reentrances(self):
"""
@return: A list of all feature structures that can be reached
from C{self} by multiple feature paths.
@rtype: C{list} of L{FeatStruct}
"""
reentrance_dict = self._find_reentrances({})
return [struct for (struct, reentrant) in reentrance_dict.items()
if reentrant]
def walk(self):
"""
Return an iterator that generates this feature structure, and
each feature structure it contains. Each feature structure will
be generated exactly once.
"""
return self._walk(set())
def _walk(self, visited):
"""
Return an iterator that generates this feature structure, and
each feature structure it contains.
@param visited: A set containing the ids of all feature
structures we've already visited while freezing.
"""
raise NotImplementedError() # Implemented by subclasses.
def _walk(self, visited):
if id(self) in visited: return
visited.add(id(self))
yield self
for fval in self._values():
if isinstance(fval, FeatStruct):
for elt in fval._walk(visited):
yield elt
# Walk through the feature tree. The first time we see a feature
# value, map it to False (not reentrant). If we see a feature
# value more than once, then map it to True (reentrant).
def _find_reentrances(self, reentrances):
"""
Return a dictionary that maps from the C{id} of each feature
structure contained in C{self} (including C{self}) to a
boolean value, indicating whether it is reentrant or not.
"""
if reentrances.has_key(id(self)):
# We've seen it more than once.
reentrances[id(self)] = True
else:
# This is the first time we've seen it.
reentrances[id(self)] = False
# Recurse to contained feature structures.
for fval in self._values():
if isinstance(fval, FeatStruct):
fval._find_reentrances(reentrances)
return reentrances
##////////////////////////////////////////////////////////////
#{ Variables & Bindings
##////////////////////////////////////////////////////////////
def substitute_bindings(self, bindings):
"""@see: L{nltk.featstruct.substitute_bindings()}"""
return substitute_bindings(self, bindings)
def retract_bindings(self, bindings):
"""@see: L{nltk.featstruct.retract_bindings()}"""
return retract_bindings(self, bindings)
def variables(self):
"""@see: L{nltk.featstruct.find_variables()}"""
return find_variables(self)
def rename_variables(self, vars=None, used_vars=(), new_vars=None):
"""@see: L{nltk.featstruct.rename_variables()}"""
return rename_variables(self, vars, used_vars, new_vars)
def remove_variables(self):
"""
@rtype: L{FeatStruct}
@return: The feature structure that is obtained by deleting
all features whose values are L{Variable}s.
"""
return remove_variables(self)
##////////////////////////////////////////////////////////////
#{ Unification
##////////////////////////////////////////////////////////////
def unify(self, other, bindings=None, trace=False,
fail=None, rename_vars=True):
return unify(self, other, bindings, trace, fail, rename_vars)
def subsumes(self, other):
"""
@return: True if C{self} subsumes C{other}. I.e., return true
if unifying C{self} with C{other} would result in a feature
structure equal to C{other}.
"""
return subsumes(self, other)
##////////////////////////////////////////////////////////////
#{ String Representations
##////////////////////////////////////////////////////////////
def __repr__(self):
"""
Display a single-line representation of this feature structure,
suitable for embedding in other representations.
"""
return self._repr(self._find_reentrances({}), {})
def _repr(self, reentrances, reentrance_ids):
"""
@return: A string representation of this feature structure.
@param reentrances: A dictionary that maps from the C{id} of
each feature value in self, indicating whether that value
is reentrant or not.
@param reentrance_ids: A dictionary mapping from the C{id}s
of feature values to unique identifiers. This is modified
by C{repr}: the first time a reentrant feature value is
displayed, an identifier is added to reentrance_ids for
it.
"""
raise NotImplementedError()
# Mutation: disable if frozen.
_FROZEN_ERROR = "Frozen FeatStructs may not be modified."
_FROZEN_NOTICE = "\n%sIf self is frozen, raise ValueError."
def _check_frozen(method, indent=''):
"""
Given a method function, return a new method function that first
checks if C{self._frozen} is true; and if so, raises C{ValueError}
with an appropriate message. Otherwise, call the method and return
its result.
"""
def wrapped(self, *args, **kwargs):
if self._frozen: raise ValueError(_FROZEN_ERROR)
else: return method(self, *args, **kwargs)
wrapped.__name__ = method.__name__
wrapped.__doc__ = (method.__doc__ or '') + (_FROZEN_NOTICE % indent)
return wrapped
######################################################################
# Feature Dictionary
######################################################################
class FeatDict(FeatStruct, dict):
"""
A feature structure that acts like a Python dictionary. I.e., a
mapping from feature identifiers to feature values, where feature
identifiers can be strings or L{Feature}s; and feature values can
be either basic values (such as a string or an integer), or nested
feature structures. Feature identifiers for C{FeatDict}s are
sometimes called X{feature names}.
Two feature dicts are considered equal if they assign the same
values to all features, and have the same reentrances.
@see: L{FeatStruct} for information about feature paths, reentrance,
cyclic feature structures, mutability, freezing, and hashing.
"""
def __init__(self, features=None, **morefeatures):
"""
Create a new feature dictionary, with the specified features.
@param features: The initial value for this feature
dictionary. If C{features} is a C{FeatStruct}, then its
features are copied (shallow copy). If C{features} is a
C{dict}, then a feature is created for each item, mapping its
key to its value. If C{features} is a string, then it is
parsed using L{FeatStructParser}. If C{features} is a list of
tuples C{name,val}, then a feature is created for each tuple.
@param morefeatures: Additional features for the new feature
dictionary. If a feature is listed under both C{features} and
C{morefeatures}, then the value from C{morefeatures} will be
used.
"""
if isinstance(features, basestring):
FeatStructParser().parse(features, self)
self.update(**morefeatures)
else:
# update() checks the types of features.
self.update(features, **morefeatures)
#////////////////////////////////////////////////////////////
#{ Dict methods
#////////////////////////////////////////////////////////////
_INDEX_ERROR = "Expected feature name or path. Got %r."
def __getitem__(self, name_or_path):
"""If the feature with the given name or path exists, return
its value; otherwise, raise C{KeyError}."""
if isinstance(name_or_path, (basestring, Feature)):
return dict.__getitem__(self, name_or_path)
elif isinstance(name_or_path, tuple):
try:
val = self
for fid in name_or_path:
if not isinstance(val, FeatStruct):
raise KeyError # path contains base value
val = val[fid]
return val
except (KeyError, IndexError):
raise KeyError(name_or_path)
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
def get(self, name_or_path, default=None):
"""If the feature with the given name or path exists, return its
value; otherwise, return C{default}."""
try: return self[name_or_path]
except KeyError: return default
def __contains__(self, name_or_path):
"""Return true if a feature with the given name or path exists."""
try: self[name_or_path]; return True
except KeyError: return False
def has_key(self, name_or_path):
"""Return true if a feature with the given name or path exists."""
return name_or_path in self
def __delitem__(self, name_or_path):
"""If the feature with the given name or path exists, delete
its value; otherwise, raise C{KeyError}."""
if self._frozen: raise ValueError(_FROZEN_ERROR)
if isinstance(name_or_path, (basestring, Feature)):
return dict.__delitem__(self, name_or_path)
elif isinstance(name_or_path, tuple):
if len(name_or_path) == 0:
raise ValueError("The path () can not be set")
else:
parent = self[name_or_path[:-1]]
if not isinstance(parent, FeatStruct):
raise KeyError(name_or_path) # path contains base value
del parent[name_or_path[-1]]
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
def __setitem__(self, name_or_path, value):
"""Set the value for the feature with the given name or path
to C{value}. If C{name_or_path} is an invalid path, raise
C{KeyError}."""
if self._frozen: raise ValueError(_FROZEN_ERROR)
if isinstance(name_or_path, (basestring, Feature)):
return dict.__setitem__(self, name_or_path, value)
elif isinstance(name_or_path, tuple):
if len(name_or_path) == 0:
raise ValueError("The path () can not be set")
else:
parent = self[name_or_path[:-1]]
if not isinstance(parent, FeatStruct):
raise KeyError(name_or_path) # path contains base value
parent[name_or_path[-1]] = value
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
clear = _check_frozen(dict.clear)
pop = _check_frozen(dict.pop)
popitem = _check_frozen(dict.popitem)
setdefault = _check_frozen(dict.setdefault)
def update(self, features=None, **morefeatures):
if self._frozen: raise ValueError(_FROZEN_ERROR)
if features is None:
items = ()
elif hasattr(features, 'has_key'):
items = features.items()
elif hasattr(features, '__iter__'):
items = features
else:
raise ValueError('Expected mapping or list of tuples')
for key, val in items:
if not isinstance(key, (basestring, Feature)):
raise TypeError('Feature names must be strings')
self[key] = val
for key, val in morefeatures.items():
if not isinstance(key, (basestring, Feature)):
raise TypeError('Feature names must be strings')
self[key] = val
##////////////////////////////////////////////////////////////
#{ Copying
##////////////////////////////////////////////////////////////
def __deepcopy__(self, memo):
memo[id(self)] = selfcopy = self.__class__()
for (key, val) in self._items():
selfcopy[copy.deepcopy(key,memo)] = copy.deepcopy(val,memo)
return selfcopy
##////////////////////////////////////////////////////////////
#{ Uniform Accessor Methods
##////////////////////////////////////////////////////////////
def _keys(self): return self.keys()
def _values(self): return self.values()
def _items(self): return self.items()
##////////////////////////////////////////////////////////////
#{ String Representations
##////////////////////////////////////////////////////////////
def __str__(self):
"""
Display a multi-line representation of this feature dictionary
as an FVM (feature value matrix).
"""
return '\n'.join(self._str(self._find_reentrances({}), {}))
def _repr(self, reentrances, reentrance_ids):
segments = []
prefix = ''
suffix = ''
# If this is the first time we've seen a reentrant structure,
# then assign it a unique identifier.
if reentrances[id(self)]:
assert not reentrance_ids.has_key(id(self))
reentrance_ids[id(self)] = `len(reentrance_ids)+1`
# sorting note: keys are unique strings, so we'll never fall
# through to comparing values.
for (fname, fval) in sorted(self.items()):
display = getattr(fname, 'display', None)
if reentrance_ids.has_key(id(fval)):
segments.append('%s->(%s)' %
(fname, reentrance_ids[id(fval)]))
elif (display == 'prefix' and not prefix and
isinstance(fval, (Variable, basestring))):
prefix = '%s' % fval
elif display == 'slash' and not suffix:
if isinstance(fval, Variable):
suffix = '/%s' % fval.name
else:
suffix = '/%r' % fval
elif isinstance(fval, Variable):
segments.append('%s=%s' % (fname, fval.name))
elif fval is True:
segments.append('+%s' % fname)
elif fval is False:
segments.append('-%s' % fname)
elif isinstance(fval, Expression):
segments.append('%s=<%s>' % (fname, fval))
elif not isinstance(fval, FeatStruct):
segments.append('%s=%r' % (fname, fval))
else:
fval_repr = fval._repr(reentrances, reentrance_ids)
segments.append('%s=%s' % (fname, fval_repr))
# If it's reentrant, then add on an identifier tag.
if reentrances[id(self)]:
prefix = '(%s)%s' % (reentrance_ids[id(self)], prefix)
return '%s[%s]%s' % (prefix, ', '.join(segments), suffix)
def _str(self, reentrances, reentrance_ids):
"""
@return: A list of lines composing a string representation of
this feature dictionary.
@param reentrances: A dictionary that maps from the C{id} of
each feature value in self, indicating whether that value
is reentrant or not.
@param reentrance_ids: A dictionary mapping from the C{id}s
of feature values to unique identifiers. This is modified
by C{repr}: the first time a reentrant feature value is
displayed, an identifier is added to reentrance_ids for
it.
"""
# If this is the first time we've seen a reentrant structure,
# then tack on an id string.
if reentrances[id(self)]:
assert not reentrance_ids.has_key(id(self))
reentrance_ids[id(self)] = `len(reentrance_ids)+1`
# Special case: empty feature dict.
if len(self) == 0:
if reentrances[id(self)]:
return ['(%s) []' % reentrance_ids[id(self)]]
else:
return ['[]']
# What's the longest feature name? Use this to align names.
maxfnamelen = max(len(str(k)) for k in self.keys())
lines = []
# sorting note: keys are unique strings, so we'll never fall
# through to comparing values.
for (fname, fval) in sorted(self.items()):
fname = str(fname).ljust(maxfnamelen)
if isinstance(fval, Variable):
lines.append('%s = %s' % (fname,fval.name))
elif isinstance(fval, Expression):
lines.append('%s = <%s>' % (fname, fval))
elif isinstance(fval, FeatList):
fval_repr = fval._repr(reentrances, reentrance_ids)
lines.append('%s = %r' % (fname, fval_repr))
elif not isinstance(fval, FeatDict):
# It's not a nested feature structure -- just print it.
lines.append('%s = %r' % (fname, fval))
elif reentrance_ids.has_key(id(fval)):
# It's a feature structure we've seen before -- print
# the reentrance id.
lines.append('%s -> (%s)' % (fname, reentrance_ids[id(fval)]))
else:
# It's a new feature structure. Separate it from
# other values by a blank line.
if lines and lines[-1] != '': lines.append('')
# Recursively print the feature's value (fval).
fval_lines = fval._str(reentrances, reentrance_ids)
# Indent each line to make room for fname.
fval_lines = [(' '*(maxfnamelen+3))+l for l in fval_lines]
# Pick which line we'll display fname on, & splice it in.
nameline = (len(fval_lines)-1)/2
fval_lines[nameline] = (
fname+' ='+fval_lines[nameline][maxfnamelen+2:])
# Add the feature structure to the output.
lines += fval_lines
# Separate FeatStructs by a blank line.
lines.append('')
# Get rid of any excess blank lines.
if lines[-1] == '': lines.pop()
# Add brackets around everything.
maxlen = max(len(line) for line in lines)
lines = ['[ %s%s ]' % (line, ' '*(maxlen-len(line))) for line in lines]
# If it's reentrant, then add on an identifier tag.
if reentrances[id(self)]:
idstr = '(%s) ' % reentrance_ids[id(self)]
lines = [(' '*len(idstr))+l for l in lines]
idline = (len(lines)-1)/2
lines[idline] = idstr + lines[idline][len(idstr):]
return lines
######################################################################
# Feature List
######################################################################
class FeatList(FeatStruct, list):
"""
A list of feature values, where each feature value is either a
basic value (such as a string or an integer), or a nested feature
structure.
Feature lists may contain reentrant feature values. A X{reentrant
feature value} is a single feature value that can be accessed via
multiple feature paths. Feature lists may also be cyclic.
Two feature lists are considered equal if they assign the same
values to all features, and have the same reentrances.
@see: L{FeatStruct} for information about feature paths, reentrance,
cyclic feature structures, mutability, freezing, and hashing.
"""
def __init__(self, features=()):
"""
Create a new feature list, with the specified features.
@param features: The initial list of features for this feature
list. If C{features} is a string, then it is paresd using
L{FeatStructParser}. Otherwise, it should be a sequence
of basic values and nested feature structures.
"""
if isinstance(features, basestring):
FeatStructParser().parse(features, self)
else:
list.__init__(self, features)
#////////////////////////////////////////////////////////////
#{ List methods
#////////////////////////////////////////////////////////////
_INDEX_ERROR = "Expected int or feature path. Got %r."
def __getitem__(self, name_or_path):
if isinstance(name_or_path, (int, long)):
return list.__getitem__(self, name_or_path)
elif isinstance(name_or_path, tuple):
try:
val = self
for fid in name_or_path:
if not isinstance(val, FeatStruct):
raise KeyError # path contains base value
val = val[fid]
return val
except (KeyError, IndexError):
raise KeyError(name_or_path)
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
def __delitem__(self, name_or_path):
"""If the feature with the given name or path exists, delete
its value; otherwise, raise C{KeyError}."""
if self._frozen: raise ValueError(_FROZEN_ERROR)
if isinstance(name_or_path, (int, long)):
return list.__delitem__(self, name_or_path)
elif isinstance(name_or_path, tuple):
if len(name_or_path) == 0:
raise ValueError("The path () can not be set")
else:
parent = self[name_or_path[:-1]]
if not isinstance(parent, FeatStruct):
raise KeyError(name_or_path) # path contains base value
del parent[name_or_path[-1]]
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
def __setitem__(self, name_or_path, value):
"""Set the value for the feature with the given name or path
to C{value}. If C{name_or_path} is an invalid path, raise
C{KeyError}."""
if self._frozen: raise ValueError(_FROZEN_ERROR)
if isinstance(name_or_path, (int, long)):
return list.__setitem__(self, name_or_path, value)
elif isinstance(name_or_path, tuple):
if len(name_or_path) == 0:
raise ValueError("The path () can not be set")
else:
parent = self[name_or_path[:-1]]
if not isinstance(parent, FeatStruct):
raise KeyError(name_or_path) # path contains base value
parent[name_or_path[-1]] = value
else:
raise TypeError(self._INDEX_ERROR % name_or_path)
__delslice__ = _check_frozen(list.__delslice__, ' ')
__setslice__ = _check_frozen(list.__setslice__, ' ')
__iadd__ = _check_frozen(list.__iadd__)
__imul__ = _check_frozen(list.__imul__)
append = _check_frozen(list.append)
extend = _check_frozen(list.extend)
insert = _check_frozen(list.insert)
pop = _check_frozen(list.pop)
remove = _check_frozen(list.remove)
reverse = _check_frozen(list.reverse)
sort = _check_frozen(list.sort)
##////////////////////////////////////////////////////////////
#{ Copying
##////////////////////////////////////////////////////////////
def __deepcopy__(self, memo):
memo[id(self)] = selfcopy = self.__class__()
selfcopy.extend([copy.deepcopy(fval,memo) for fval in self])
return selfcopy
##////////////////////////////////////////////////////////////
#{ Uniform Accessor Methods
##////////////////////////////////////////////////////////////
def _keys(self): return range(len(self))
def _values(self): return self
def _items(self): return enumerate(self)
##////////////////////////////////////////////////////////////
#{ String Representations
##////////////////////////////////////////////////////////////
# Special handling for: reentrances, variables, expressions.
def _repr(self, reentrances, reentrance_ids):
# If this is the first time we've seen a reentrant structure,
# then assign it a unique identifier.
if reentrances[id(self)]:
assert not reentrance_ids.has_key(id(self))
reentrance_ids[id(self)] = `len(reentrance_ids)+1`
prefix = '(%s)' % reentrance_ids[id(self)]
else:
prefix = ''
segments = []
for fval in self:
if id(fval) in reentrance_ids:
segments.append('->(%s)' % reentrance_ids[id(fval)])
elif isinstance(fval, Variable):
segments.append(fval.name)
elif isinstance(fval, Expression):
segments.append('%s' % fval)
elif isinstance(fval, FeatStruct):
segments.append(fval._repr(reentrances, reentrance_ids))
else:
segments.append('%r' % fval)
return '%s[%s]' % (prefix, ', '.join(segments))
######################################################################
# Variables & Bindings
######################################################################
def substitute_bindings(fstruct, bindings, fs_class='default'):
"""
@return: The feature structure that is obtained by replacing each
variable bound by C{bindings} with its binding. If a variable is
aliased to a bound variable, then it will be replaced by that
variable's value. If a variable is aliased to an unbound
variable, then it will be replaced by that variable.
@type bindings: C{dict} with L{Variable} keys
@param bindings: A dictionary mapping from variables to values.
"""
if fs_class == 'default': fs_class = _default_fs_class(fstruct)
fstruct = copy.deepcopy(fstruct)
_substitute_bindings(fstruct, bindings, fs_class, set())
return fstruct
def _substitute_bindings(fstruct, bindings, fs_class, visited):
# Visit each node only once:
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for (fname, fval) in items:
while (isinstance(fval, Variable) and fval in bindings):
fval = fstruct[fname] = bindings[fval]
if isinstance(fval, fs_class):
_substitute_bindings(fval, bindings, fs_class, visited)
elif isinstance(fval, SubstituteBindingsI):
fstruct[fname] = fval.substitute_bindings(bindings)
def retract_bindings(fstruct, bindings, fs_class='default'):
"""
@return: The feature structure that is obtained by replacing each
feature structure value that is bound by C{bindings} with the
variable that binds it. A feature structure value must be
identical to a bound value (i.e., have equal id) to be replaced.
C{bindings} is modified to point to this new feature structure,
rather than the original feature structure. Feature structure
values in C{bindings} may be modified if they are contained in
C{fstruct}.
"""
if fs_class == 'default': fs_class = _default_fs_class(fstruct)
(fstruct, new_bindings) = copy.deepcopy((fstruct, bindings))
bindings.update(new_bindings)
inv_bindings = dict((id(val),var) for (var,val) in bindings.items())
_retract_bindings(fstruct, inv_bindings, fs_class, set())
return fstruct
def _retract_bindings(fstruct, inv_bindings, fs_class, visited):
# Visit each node only once:
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for (fname, fval) in items:
if isinstance(fval, fs_class):
if id(fval) in inv_bindings:
fstruct[fname] = inv_bindings[id(fval)]
_retract_bindings(fval, inv_bindings, fs_class, visited)
def find_variables(fstruct, fs_class='default'):
"""
@return: The set of variables used by this feature structure.
@rtype: C{set} of L{Variable}
"""
if fs_class == 'default': fs_class = _default_fs_class(fstruct)
return _variables(fstruct, set(), fs_class, set())
def _variables(fstruct, vars, fs_class, visited):
# Visit each node only once:
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for (fname, fval) in items:
if isinstance(fval, Variable):
vars.add(fval)
elif isinstance(fval, fs_class):
_variables(fval, vars, fs_class, visited)
elif isinstance(fval, SubstituteBindingsI):
vars.update(fval.variables())
return vars
def rename_variables(fstruct, vars=None, used_vars=(), new_vars=None,
fs_class='default'):
"""
@return: The feature structure that is obtained by replacing
any of this feature structure's variables that are in C{vars}
with new variables. The names for these new variables will be
names that are not used by any variable in C{vars}, or in
C{used_vars}, or in this feature structure.
@type vars: C{set}
@param vars: The set of variables that should be renamed.
If not specified, C{find_variables(fstruct)} is used; i.e., all
variables will be given new names.
@type used_vars: C{set}
@param used_vars: A set of variables whose names should not be
used by the new variables.
@type new_vars: C{dict} from L{Variable} to L{Variable}
@param new_vars: A dictionary that is used to hold the mapping
from old variables to new variables. For each variable M{v}
in this feature structure:
- If C{new_vars} maps M{v} to M{v'}, then M{v} will be
replaced by M{v'}.
- If C{new_vars} does not contain M{v}, but C{vars}
does contain M{v}, then a new entry will be added to
C{new_vars}, mapping M{v} to the new variable that is used
to replace it.
To consistantly rename the variables in a set of feature
structures, simply apply rename_variables to each one, using
the same dictionary:
>>> new_vars = {} # Maps old vars to alpha-renamed vars
>>> new_fstruct1 = fstruct1.rename_variables(new_vars=new_vars)
>>> new_fstruct2 = fstruct2.rename_variables(new_vars=new_vars)
>>> new_fstruct3 = fstruct3.rename_variables(new_vars=new_vars)
If new_vars is not specified, then an empty dictionary is used.
"""
if fs_class == 'default': fs_class = _default_fs_class(fstruct)
# Default values:
if new_vars is None: new_vars = {}
if vars is None: vars = find_variables(fstruct, fs_class)
else: vars = set(vars)
# Add our own variables to used_vars.
used_vars = find_variables(fstruct, fs_class).union(used_vars)
# Copy ourselves, and rename variables in the copy.
return _rename_variables(copy.deepcopy(fstruct), vars, used_vars,
new_vars, fs_class, set())
def _rename_variables(fstruct, vars, used_vars, new_vars, fs_class, visited):
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for (fname, fval) in items:
if isinstance(fval, Variable):
# If it's in new_vars, then rebind it.
if fval in new_vars:
fstruct[fname] = new_vars[fval]
# If it's in vars, pick a new name for it.
elif fval in vars:
new_vars[fval] = _rename_variable(fval, used_vars)
fstruct[fname] = new_vars[fval]
used_vars.add(new_vars[fval])
elif isinstance(fval, fs_class):
_rename_variables(fval, vars, used_vars, new_vars,
fs_class, visited)
elif isinstance(fval, SubstituteBindingsI):
# Pick new names for any variables in `vars`
for var in fval.variables():
if var in vars and var not in new_vars:
new_vars[var] = _rename_variable(var, used_vars)
used_vars.add(new_vars[var])
# Replace all variables in `new_vars`.
fstruct[fname] = fval.substitute_bindings(new_vars)
return fstruct
def _rename_variable(var, used_vars):
name, n = re.sub('\d+$', '', var.name), 2
if not name: name = '?'
while Variable('%s%s' % (name, n)) in used_vars: n += 1
return Variable('%s%s' % (name, n))
def remove_variables(fstruct, fs_class='default'):
"""
@rtype: L{FeatStruct}
@return: The feature structure that is obtained by deleting
all features whose values are L{Variable}s.
"""
if fs_class == 'default': fs_class = _default_fs_class(fstruct)
return _remove_variables(copy.deepcopy(fstruct), fs_class, set())
def _remove_variables(fstruct, fs_class, visited):
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for (fname, fval) in items:
if isinstance(fval, Variable):
del fstruct[fname]
elif isinstance(fval, fs_class):
_remove_variables(fval, fs_class, visited)
return fstruct
######################################################################
# Unification
######################################################################
class _UnificationFailure(object):
def __repr__(self): return 'nltk.featstruct.UnificationFailure'
UnificationFailure = _UnificationFailure()
"""A unique value used to indicate unification failure. It can be
returned by L{Feature.unify_base_values()} or by custom C{fail()}
functions to indicate that unificaiton should fail."""
# The basic unification algorithm:
# 1. Make copies of self and other (preserving reentrance)
# 2. Destructively unify self and other
# 3. Apply forward pointers, to preserve reentrance.
# 4. Replace bound variables with their values.
def unify(fstruct1, fstruct2, bindings=None, trace=False,
fail=None, rename_vars=True, fs_class='default'):
"""
Unify C{fstruct1} with C{fstruct2}, and return the resulting feature
structure. This unified feature structure is the minimal
feature structure that:
- contains all feature value assignments from both C{fstruct1}
and C{fstruct2}.
- preserves all reentrance properties of C{fstruct1} and
C{fstruct2}.
If no such feature structure exists (because C{fstruct1} and
C{fstruct2} specify incompatible values for some feature), then
unification fails, and C{unify} returns C{None}.
@type bindings: C{dict} with L{Variable} keys
@param bindings: A set of variable bindings to be used and
updated during unification.
Bound variables are replaced by their values. Aliased
variables are replaced by their representative variable
(if unbound) or the value of their representative variable
(if bound). I.e., if variable C{I{v}} is in C{bindings},
then C{I{v}} is replaced by C{bindings[I{v}]}. This will
be repeated until the variable is replaced by an unbound
variable or a non-variable value.
Unbound variables are bound when they are unified with
values; and aliased when they are unified with variables.
I.e., if variable C{I{v}} is not in C{bindings}, and is
unified with a variable or value C{I{x}}, then
C{bindings[I{v}]} is set to C{I{x}}.
If C{bindings} is unspecified, then all variables are
assumed to be unbound. I.e., C{bindings} defaults to an
empty C{dict}.
@type trace: C{bool}
@param trace: If true, generate trace output.
@type rename_vars: C{bool}
@param rename_vars: If true, then rename any variables in
C{fstruct2} that are also used in C{fstruct1}. This prevents
aliasing in cases where C{fstruct1} and C{fstruct2} use the
same variable name. E.g.:
>>> FeatStruct('[a=?x]').unify(FeatStruct('[b=?x]'))
[a=?x, b=?x2]
If you intend for a variables in C{fstruct1} and C{fstruct2} with
the same name to be treated as a single variable, use
C{rename_vars=False}.
"""
# Decide which class(es) will be treated as feature structures,
# for the purposes of unification.
if fs_class == 'default':
fs_class = _default_fs_class(fstruct1)
if _default_fs_class(fstruct2) != fs_class:
raise ValueError("Mixing FeatStruct objects with Python "
"dicts and lists is not supported.")
assert isinstance(fstruct1, fs_class)
assert isinstance(fstruct2, fs_class)
# If bindings are unspecified, use an empty set of bindings.
user_bindings = (bindings is not None)
if bindings is None: bindings = {}
# Make copies of fstruct1 and fstruct2 (since the unification
# algorithm is destructive). Do it all at once, to preserve
# reentrance links between fstruct1 and fstruct2. Copy bindings
# as well, in case there are any bound vars that contain parts
# of fstruct1 or fstruct2.
(fstruct1copy, fstruct2copy, bindings_copy) = (
copy.deepcopy((fstruct1, fstruct2, bindings)))
# Copy the bindings back to the original bindings dict.
bindings.update(bindings_copy)
if rename_vars:
vars1 = find_variables(fstruct1copy, fs_class)
vars2 = find_variables(fstruct2copy, fs_class)
_rename_variables(fstruct2copy, vars1, vars2, {}, fs_class, set())
# Do the actual unification. If it fails, return None.
forward = {}
if trace: _trace_unify_start((), fstruct1copy, fstruct2copy)
try: result = _destructively_unify(fstruct1copy, fstruct2copy, bindings,
forward, trace, fail, fs_class, ())
except _UnificationFailureError: return None
# _destructively_unify might return UnificationFailure, e.g. if we
# tried to unify a mapping with a sequence.
if result is UnificationFailure:
if fail is None: return None
else: return fail(fstruct1copy, fstruct2copy, ())
# Replace any feature structure that has a forward pointer
# with the target of its forward pointer.
result = _apply_forwards(result, forward, fs_class, set())
if user_bindings: _apply_forwards_to_bindings(forward, bindings)
# Replace bound vars with values.
_resolve_aliases(bindings)
_substitute_bindings(result, bindings, fs_class, set())
# Return the result.
if trace: _trace_unify_succeed((), result)
if trace: _trace_bindings((), bindings)
return result
class _UnificationFailureError(Exception):
"""An exception that is used by C{_destructively_unify} to abort
unification when a failure is encountered."""
def _destructively_unify(fstruct1, fstruct2, bindings, forward,
trace, fail, fs_class, path):
"""
Attempt to unify C{fstruct1} and C{fstruct2} by modifying them
in-place. If the unification succeeds, then C{fstruct1} will
contain the unified value, the value of C{fstruct2} is undefined,
and forward[id(fstruct2)] is set to fstruct1. If the unification
fails, then a _UnificationFailureError is raised, and the
values of C{fstruct1} and C{fstruct2} are undefined.
@param bindings: A dictionary mapping variables to values.
@param forward: A dictionary mapping feature structures ids
to replacement structures. When two feature structures
are merged, a mapping from one to the other will be added
to the forward dictionary; and changes will be made only
to the target of the forward dictionary.
C{_destructively_unify} will always 'follow' any links
in the forward dictionary for fstruct1 and fstruct2 before
actually unifying them.
@param trace: If true, generate trace output
@param path: The feature path that led us to this unification
step. Used for trace output.
"""
# If fstruct1 is already identical to fstruct2, we're done.
# Note: this, together with the forward pointers, ensures
# that unification will terminate even for cyclic structures.
if fstruct1 is fstruct2:
if trace: _trace_unify_identity(path, fstruct1)
return fstruct1
# Set fstruct2's forward pointer to point to fstruct1; this makes
# fstruct1 the canonical copy for fstruct2. Note that we need to
# do this before we recurse into any child structures, in case
# they're cyclic.
forward[id(fstruct2)] = fstruct1
# Unifying two mappings:
if _is_mapping(fstruct1) and _is_mapping(fstruct2):
for fname in fstruct1:
if getattr(fname, 'default', None) is not None:
fstruct2.setdefault(fname, fname.default)
for fname in fstruct2:
if getattr(fname, 'default', None) is not None:
fstruct1.setdefault(fname, fname.default)
# Unify any values that are defined in both fstruct1 and
# fstruct2. Copy any values that are defined in fstruct2 but
# not in fstruct1 to fstruct1. Note: sorting fstruct2's
# features isn't actually necessary; but we do it to give
# deterministic behavior, e.g. for tracing.
for fname, fval2 in sorted(fstruct2.items()):
if fname in fstruct1:
fstruct1[fname] = _unify_feature_values(
fname, fstruct1[fname], fval2, bindings,
forward, trace, fail, fs_class, path+(fname,))
else:
fstruct1[fname] = fval2
return fstruct1 # Contains the unified value.
# Unifying two sequences:
elif _is_sequence(fstruct1) and _is_sequence(fstruct2):
# If the lengths don't match, fail.
if len(fstruct1) != len(fstruct2):
return UnificationFailure
# Unify corresponding values in fstruct1 and fstruct2.
for findex in range(len(fstruct1)):
fstruct1[findex] = _unify_feature_values(
findex, fstruct1[findex], fstruct2[findex], bindings,
forward, trace, fail, fs_class, path+(findex,))
return fstruct1 # Contains the unified value.
# Unifying sequence & mapping: fail. The failure function
# doesn't get a chance to recover in this case.
elif ((_is_sequence(fstruct1) or _is_mapping(fstruct1)) and
(_is_sequence(fstruct2) or _is_mapping(fstruct2))):
return UnificationFailure
# Unifying anything else: not allowed!
raise TypeError('Expected mappings or sequences')
def _unify_feature_values(fname, fval1, fval2, bindings, forward,
trace, fail, fs_class, fpath):
"""
Attempt to unify C{fval1} and and C{fval2}, and return the
resulting unified value. The method of unification will depend on
the types of C{fval1} and C{fval2}:
1. If they're both feature structures, then destructively
unify them (see L{_destructively_unify()}.
2. If they're both unbound variables, then alias one variable
to the other (by setting bindings[v2]=v1).
3. If one is an unbound variable, and the other is a value,
then bind the unbound variable to the value.
4. If one is a feature structure, and the other is a base value,
then fail.
5. If they're both base values, then unify them. By default,
this will succeed if they are equal, and fail otherwise.
"""
if trace: _trace_unify_start(fpath, fval1, fval2)
# Look up the "canonical" copy of fval1 and fval2
while id(fval1) in forward: fval1 = forward[id(fval1)]
while id(fval2) in forward: fval2 = forward[id(fval2)]
# If fval1 or fval2 is a bound variable, then
# replace it by the variable's bound value. This
# includes aliased variables, which are encoded as
# variables bound to other variables.
fvar1 = fvar2 = None
while isinstance(fval1, Variable) and fval1 in bindings:
fvar1 = fval1
fval1 = bindings[fval1]
while isinstance(fval2, Variable) and fval2 in bindings:
fvar2 = fval2
fval2 = bindings[fval2]
# Case 1: Two feature structures (recursive case)
if isinstance(fval1, fs_class) and isinstance(fval2, fs_class):
result = _destructively_unify(fval1, fval2, bindings, forward,
trace, fail, fs_class, fpath)
# Case 2: Two unbound variables (create alias)
elif (isinstance(fval1, Variable) and
isinstance(fval2, Variable)):
if fval1 != fval2: bindings[fval2] = fval1
result = fval1
# Case 3: An unbound variable and a value (bind)
elif isinstance(fval1, Variable):
bindings[fval1] = fval2
result = fval1
elif isinstance(fval2, Variable):
bindings[fval2] = fval1
result = fval2
# Case 4: A feature structure & a base value (fail)
elif isinstance(fval1, fs_class) or isinstance(fval2, fs_class):
result = UnificationFailure
# Case 5: Two base values
else:
# Case 5a: Feature defines a custom unification method for base values
if isinstance(fname, Feature):
result = fname.unify_base_values(fval1, fval2, bindings)
# Case 5b: Feature value defines custom unification method
elif isinstance(fval1, CustomFeatureValue):
result = fval1.unify(fval2)
# Sanity check: unify value should be symmetric
if (isinstance(fval2, CustomFeatureValue) and
result != fval2.unify(fval1)):
raise AssertionError(
'CustomFeatureValue objects %r and %r disagree '
'about unification value: %r vs. %r' %
(fval1, fval2, result, fval2.unify(fval1)))
elif isinstance(fval2, CustomFeatureValue):
result = fval2.unify(fval1)
# Case 5c: Simple values -- check if they're equal.
else:
if fval1 == fval2:
result = fval1
else:
result = UnificationFailure
# If either value was a bound variable, then update the
# bindings. (This is really only necessary if fname is a
# Feature or if either value is a CustomFeatureValue.)
if result is not UnificationFailure:
if fvar1 is not None:
bindings[fvar1] = result
result = fvar1
if fvar2 is not None:
bindings[fvar2] = result
result = fvar2
# If we unification failed, call the failure function; it
# might decide to continue anyway.
if result is UnificationFailure:
if fail is not None: result = fail(fval1, fval2, fpath)
if trace: _trace_unify_fail(fpath[:-1], result)
if result is UnificationFailure:
raise _UnificationFailureError
# Normalize the result.
if isinstance(result, fs_class):
result = _apply_forwards(result, forward, fs_class, set())
if trace: _trace_unify_succeed(fpath, result)
if trace and isinstance(result, fs_class):
_trace_bindings(fpath, bindings)
return result
def _apply_forwards_to_bindings(forward, bindings):
"""
Replace any feature structure that has a forward pointer with
the target of its forward pointer (to preserve reentrancy).
"""
for (var, value) in bindings.items():
while id(value) in forward:
value = forward[id(value)]
bindings[var] = value
def _apply_forwards(fstruct, forward, fs_class, visited):
"""
Replace any feature structure that has a forward pointer with
the target of its forward pointer (to preserve reentrancy).
"""
# Follow our own forwards pointers (if any)
while id(fstruct) in forward: fstruct = forward[id(fstruct)]
# Visit each node only once:
if id(fstruct) in visited: return
visited.add(id(fstruct))
if _is_mapping(fstruct): items = fstruct.items()
elif _is_sequence(fstruct): items = enumerate(fstruct)
else: raise ValueError('Expected mapping or sequence')
for fname, fval in items:
if isinstance(fval, fs_class):
# Replace w/ forwarded value.
while id(fval) in forward:
fval = forward[id(fval)]
fstruct[fname] = fval
# Recurse to child.
_apply_forwards(fval, forward, fs_class, visited)
return fstruct
def _resolve_aliases(bindings):
"""
Replace any bound aliased vars with their binding; and replace
any unbound aliased vars with their representative var.
"""
for (var, value) in bindings.items():
while isinstance(value, Variable) and value in bindings:
value = bindings[var] = bindings[value]
def _trace_unify_start(path, fval1, fval2):
if path == ():
print '\nUnification trace:'
else:
fullname = '.'.join(str(n) for n in path)
print ' '+'| '*(len(path)-1)+'|'
print ' '+'| '*(len(path)-1)+'| Unify feature: %s' % fullname
print ' '+'| '*len(path)+' / '+_trace_valrepr(fval1)
print ' '+'| '*len(path)+'|\\ '+_trace_valrepr(fval2)
def _trace_unify_identity(path, fval1):
print ' '+'| '*len(path)+'|'
print ' '+'| '*len(path)+'| (identical objects)'
print ' '+'| '*len(path)+'|'
print ' '+'| '*len(path)+'+-->'+`fval1`
def _trace_unify_fail(path, result):
if result is UnificationFailure: resume = ''
else: resume = ' (nonfatal)'
print ' '+'| '*len(path)+'| |'
print ' '+'X '*len(path)+'X X <-- FAIL'+resume
def _trace_unify_succeed(path, fval1):
# Print the result.
print ' '+'| '*len(path)+'|'
print ' '+'| '*len(path)+'+-->'+`fval1`
def _trace_bindings(path, bindings):
# Print the bindings (if any).
if len(bindings) > 0:
binditems = sorted(bindings.items(), key=lambda v:v[0].name)
bindstr = '{%s}' % ', '.join(
'%s: %s' % (var, _trace_valrepr(val))
for (var, val) in binditems)
print ' '+'| '*len(path)+' Bindings: '+bindstr
def _trace_valrepr(val):
if isinstance(val, Variable):
return '%s' % val
else:
return '%r' % val
def subsumes(fstruct1, fstruct2):
"""
@return: True if C{fstruct1} subsumes C{fstruct2}. I.e., return
true if unifying C{fstruct1} with C{fstruct2} would result in a
feature structure equal to C{fstruct2.}
"""
return fstruct2 == unify(fstruct1, fstruct2)
def conflicts(fstruct1, fstruct2, trace=0):
"""
@return: A list of the feature paths of all features which are
assigned incompatible values by C{fstruct1} and C{fstruct2}.
@rtype: C{list} of C{tuple}
"""
conflict_list = []
def add_conflict(fval1, fval2, path):
conflict_list.append(path)
return fval1
unify(fstruct1, fstruct2, fail=add_conflict, trace=trace)
return conflict_list
######################################################################
# Helper Functions
######################################################################
def _is_mapping(v):
return hasattr(v, 'has_key') and hasattr(v, 'items')
def _is_sequence(v):
return (hasattr(v, '__iter__') and hasattr(v, '__len__') and
not isinstance(v, basestring))
def _default_fs_class(obj):
if isinstance(obj, FeatStruct): return FeatStruct
if isinstance(obj, (dict, list)): return (dict, list)
else:
raise ValueError('To unify objects of type %s, you must specify '
'fs_class explicitly.' % obj.__class__.__name__)
######################################################################
# FeatureValueSet & FeatureValueTuple
######################################################################
class SubstituteBindingsSequence(SubstituteBindingsI):
"""
A mixin class for sequence clases that distributes variables() and
substitute_bindings() over the object's elements.
"""
def variables(self):
return ([elt for elt in self if isinstance(elt, Variable)] +
sum([list(elt.variables()) for elt in self
if isinstance(elt, SubstituteBindingsI)], []))
def substitute_bindings(self, bindings):
return self.__class__([self.subst(v, bindings) for v in self])
def subst(self, v, bindings):
if isinstance(v, SubstituteBindingsI):
return v.substitute_bindings(bindings)
else:
return bindings.get(v, v)
class FeatureValueTuple(SubstituteBindingsSequence, tuple):
"""
A base feature value that is a tuple of other base feature values.
FeatureValueTuple implements L{SubstituteBindingsI}, so it any
variable substitutions will be propagated to the elements
contained by the set. C{FeatureValueTuple}s are immutable.
"""
def __repr__(self): # [xx] really use %s here?
if len(self) == 0: return '()'
return '(%s)' % ', '.join('%s' % (b,) for b in self)
class FeatureValueSet(SubstituteBindingsSequence, frozenset):
"""
A base feature value that is a set of other base feature values.
FeatureValueSet implements L{SubstituteBindingsI}, so it any
variable substitutions will be propagated to the elements
contained by the set. C{FeatureValueSet}s are immutable.
"""
def __repr__(self): # [xx] really use %s here?
if len(self) == 0: return '{/}' # distinguish from dict.
# n.b., we sort the string reprs of our elements, to ensure
# that our own repr is deterministic.
return '{%s}' % ', '.join(sorted('%s' % (b,) for b in self))
__str__ = __repr__
class FeatureValueUnion(SubstituteBindingsSequence, frozenset):
"""
A base feature value that represents the union of two or more
L{FeatureValueSet}s or L{Variable}s.
"""
def __new__(cls, values):
# If values contains FeatureValueUnions, then collapse them.
values = _flatten(values, FeatureValueUnion)
# If the resulting list contains no variables, then
# use a simple FeatureValueSet instead.
if sum(isinstance(v, Variable) for v in values) == 0:
values = _flatten(values, FeatureValueSet)
return FeatureValueSet(values)
# If we contain a single variable, return that variable.
if len(values) == 1:
return list(values)[0]
# Otherwise, build the FeatureValueUnion.
return frozenset.__new__(cls, values)
def __repr__(self):
# n.b., we sort the string reprs of our elements, to ensure
# that our own repr is deterministic. also, note that len(self)
# is guaranteed to be 2 or more.
return '{%s}' % '+'.join(sorted('%s' % (b,) for b in self))
class FeatureValueConcat(SubstituteBindingsSequence, tuple):
"""
A base feature value that represents the concatenation of two or
more L{FeatureValueTuple}s or L{Variable}s.
"""
def __new__(cls, values):
# If values contains FeatureValueConcats, then collapse them.
values = _flatten(values, FeatureValueConcat)
# If the resulting list contains no variables, then
# use a simple FeatureValueTuple instead.
if sum(isinstance(v, Variable) for v in values) == 0:
values = _flatten(values, FeatureValueTuple)
return FeatureValueTuple(values)
# If we contain a single variable, return that variable.
if len(values) == 1:
return list(values)[0]
# Otherwise, build the FeatureValueConcat.
return tuple.__new__(cls, values)
def __repr__(self):
# n.b.: len(self) is guaranteed to be 2 or more.
return '(%s)' % '+'.join('%s' % (b,) for b in self)
def _flatten(lst, cls):
"""
Helper function -- return a copy of list, with all elements of
type C{cls} spliced in rather than appended in.
"""
result = []
for elt in lst:
if isinstance(elt, cls): result.extend(elt)
else: result.append(elt)
return result
######################################################################
# Specialized Features
######################################################################
class Feature(object):
"""
A feature identifier that's specialized to put additional
constraints, default values, etc.
"""
def __init__(self, name, default=None, display=None):
assert display in (None, 'prefix', 'slash')
self._name = name # [xx] rename to .identifier?
"""The name of this feature."""
self._default = default # [xx] not implemented yet.
"""Default value for this feature. Use None for unbound."""
self._display = display
"""Custom display location: can be prefix, or slash."""
if self._display == 'prefix':
self._sortkey = (-1, self._name)
elif self._display == 'slash':
self._sortkey = (1, self._name)
else:
self._sortkey = (0, self._name)
name = property(lambda self: self._name)
default = property(lambda self: self._default)
display = property(lambda self: self._display)
def __repr__(self):
return '*%s*' % self.name
def __cmp__(self, other):
if not isinstance(other, Feature): return -1
if self._name == other._name: return 0
return cmp(self._sortkey, other._sortkey)
def __hash__(self):
return hash(self._name)
#////////////////////////////////////////////////////////////
# These can be overridden by subclasses:
#////////////////////////////////////////////////////////////
def parse_value(self, s, position, reentrances, parser):
return parser.parse_value(s, position, reentrances)
def unify_base_values(self, fval1, fval2, bindings):
"""
If possible, return a single value.. If not, return
the value L{UnificationFailure}.
"""
if fval1 == fval2: return fval1
else: return UnificationFailure
class SlashFeature(Feature):
def parse_value(self, s, position, reentrances, parser):
return parser.partial_parse(s, position, reentrances)
class RangeFeature(Feature):
RANGE_RE = re.compile('(-?\d+):(-?\d+)')
def parse_value(self, s, position, reentrances, parser):
m = self.RANGE_RE.match(s, position)
if not m: raise ValueError('range', position)
return (int(m.group(1)), int(m.group(2))), m.end()
def unify_base_values(self, fval1, fval2, bindings):
if fval1 is None: return fval2
if fval2 is None: return fval1
rng = max(fval1[0], fval2[0]), min(fval1[1], fval2[1])
if rng[1] < rng[0]: return UnificationFailure
return rng
SLASH = SlashFeature('slash', default=False, display='slash')
TYPE = Feature('type', display='prefix')
######################################################################
# Specialized Feature Values
######################################################################
class CustomFeatureValue(object):
"""
An abstract base class for base values that define a custom
unification method. A C{CustomFeatureValue}'s custom unification
method will be used during feature structure unification if:
- The C{CustomFeatureValue} is unified with another base value.
- The C{CustomFeatureValue} is not the value of a customized
L{Feature} (which defines its own unification method).
If two C{CustomFeatureValue} objects are unified with one another
during feature structure unification, then the unified base values
they return I{must} be equal; otherwise, an C{AssertionError} will
be raised.
Subclasses must define L{unify()} and L{__cmp__()}. Subclasses
may also wish to define L{__hash__()}.
"""
def unify(self, other):
"""
If this base value unifies with C{other}, then return the
unified value. Otherwise, return L{UnificationFailure}.
"""
raise NotImplementedError('abstract base class')
def __cmp__(self, other):
raise NotImplementedError('abstract base class')
def __hash__(self):
raise TypeError('%s objects or unhashable' % self.__class__.__name__)
######################################################################
# Feature Structure Parser
######################################################################
class FeatStructParser(object):
def __init__(self, features=(SLASH, TYPE), fdict_class=FeatStruct,
flist_class=FeatList, logic_parser=None):
self._features = dict((f.name,f) for f in features)
self._fdict_class = fdict_class
self._flist_class = flist_class
self._prefix_feature = None
self._slash_feature = None
for feature in features:
if feature.display == 'slash':
if self._slash_feature:
raise ValueError('Multiple features w/ display=slash')
self._slash_feature = feature
if feature.display == 'prefix':
if self._prefix_feature:
raise ValueError('Multiple features w/ display=prefix')
self._prefix_feature = feature
self._features_with_defaults = [feature for feature in features
if feature.default is not None]
if logic_parser is None:
logic_parser = LogicParser()
self._logic_parser = logic_parser
def parse(self, s, fstruct=None):
"""
Convert a string representation of a feature structure (as
displayed by repr) into a C{FeatStruct}. This parse
imposes the following restrictions on the string
representation:
- Feature names cannot contain any of the following:
whitespace, parenthases, quote marks, equals signs,
dashes, commas, and square brackets. Feature names may
not begin with plus signs or minus signs.
- Only the following basic feature value are supported:
strings, integers, variables, C{None}, and unquoted
alphanumeric strings.
- For reentrant values, the first mention must specify
a reentrance identifier and a value; and any subsequent
mentions must use arrows (C{'->'}) to reference the
reentrance identifier.
"""
s = s.strip()
value, position = self.partial_parse(s, 0, {}, fstruct)
if position != len(s):
self._error(s, 'end of string', position)
return value
_START_FSTRUCT_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+)?(\[)')
_END_FSTRUCT_RE = re.compile(r'\s*]\s*')
_SLASH_RE = re.compile(r'/')
_FEATURE_NAME_RE = re.compile(r'\s*([+-]?)([^\s\(\)<>"\'\-=\[\],]+)\s*')
_REENTRANCE_RE = re.compile(r'\s*->\s*')
_TARGET_RE = re.compile(r'\s*\((\d+)\)\s*')
_ASSIGN_RE = re.compile(r'\s*=\s*')
_COMMA_RE = re.compile(r'\s*,\s*')
_BARE_PREFIX_RE = re.compile(r'\s*(?:\((\d+)\)\s*)?(\??[\w-]+\s*)()')
# This one is used to distinguish fdicts from flists:
_START_FDICT_RE = re.compile(r'(%s)|(%s\s*(%s\s*(=|->)|[+-]%s|\]))' % (
_BARE_PREFIX_RE.pattern, _START_FSTRUCT_RE.pattern,
_FEATURE_NAME_RE.pattern, _FEATURE_NAME_RE.pattern))
def partial_parse(self, s, position=0, reentrances=None, fstruct=None):
"""
Helper function that parses a feature structure.
@param s: The string to parse.
@param position: The position in the string to start parsing.
@param reentrances: A dictionary from reentrance ids to values.
Defaults to an empty dictionary.
@return: A tuple (val, pos) of the feature structure created
by parsing and the position where the parsed feature
structure ends.
"""
if reentrances is None: reentrances = {}
try:
return self._partial_parse(s, position, reentrances, fstruct)
except ValueError, e:
if len(e.args) != 2: raise
self._error(s, *e.args)
def _partial_parse(self, s, position, reentrances, fstruct=None):
# Create the new feature structure
if fstruct is None:
if self._START_FDICT_RE.match(s, position):
fstruct = self._fdict_class()
else:
fstruct = self._flist_class()
# Read up to the open bracket.
match = self._START_FSTRUCT_RE.match(s, position)
if not match:
match = self._BARE_PREFIX_RE.match(s, position)
if not match:
raise ValueError('open bracket or identifier', position)
position = match.end()
# If there as an identifier, record it.
if match.group(1):
identifier = match.group(1)
if identifier in reentrances:
raise ValueError('new identifier', match.start(1))
reentrances[identifier] = fstruct
if isinstance(fstruct, FeatDict):
fstruct.clear()
return self._partial_parse_featdict(s, position, match,
reentrances, fstruct)
else:
del fstruct[:]
return self._partial_parse_featlist(s, position, match,
reentrances, fstruct)
def _partial_parse_featlist(self, s, position, match,
reentrances, fstruct):
# Prefix features are not allowed:
if match.group(2): raise ValueError('open bracket')
# Bare prefixes are not allowed:
if not match.group(3): raise ValueError('open bracket')
# Build a list of the features defined by the structure.
while position < len(s):
# Check for the close bracket.
match = self._END_FSTRUCT_RE.match(s, position)
if match is not None:
return fstruct, match.end()
# Reentances have the form "-> (target)"
match = self._REENTRANCE_RE.match(s, position)
if match:
position = match.end()
match = _TARGET_RE.match(s, position)
if not match: raise ValueError('identifier', position)
target = match.group(1)
if target not in reentrances:
raise ValueError('bound identifier', position)
position = match.end()
fstruct.append(reentrances[target])
# Anything else is a value.
else:
value, position = (
self._parse_value(0, s, position, reentrances))
fstruct.append(value)
# If there's a close bracket, handle it at the top of the loop.
if self._END_FSTRUCT_RE.match(s, position):
continue
# Otherwise, there should be a comma
match = self._COMMA_RE.match(s, position)
if match is None: raise ValueError('comma', position)
position = match.end()
# We never saw a close bracket.
raise ValueError('close bracket', position)
def _partial_parse_featdict(self, s, position, match,
reentrances, fstruct):
# If there was a prefix feature, record it.
if match.group(2):
if self._prefix_feature is None:
raise ValueError('open bracket or identifier', match.start(2))
prefixval = match.group(2).strip()
if prefixval.startswith('?'):
prefixval = Variable(prefixval)
fstruct[self._prefix_feature] = prefixval
# If group 3 is empty, then we just have a bare prefix, so
# we're done.
if not match.group(3):
return self._finalize(s, match.end(), reentrances, fstruct)
# Build a list of the features defined by the structure.
# Each feature has one of the three following forms:
# name = value
# name -> (target)
# +name
# -name
while position < len(s):
# Use these variables to hold info about each feature:
name = value = None
# Check for the close bracket.
match = self._END_FSTRUCT_RE.match(s, position)
if match is not None:
return self._finalize(s, match.end(), reentrances, fstruct)
# Get the feature name's name
match = self._FEATURE_NAME_RE.match(s, position)
if match is None: raise ValueError('feature name', position)
name = match.group(2)
position = match.end()
# Check if it's a special feature.
if name[0] == '*' and name[-1] == '*':
name = self._features.get(name[1:-1])
if name is None:
raise ValueError('known special feature', match.start(2))
# Check if this feature has a value already.
if name in fstruct:
raise ValueError('new name', match.start(2))
# Boolean value ("+name" or "-name")
if match.group(1) == '+': value = True
if match.group(1) == '-': value = False
# Reentrance link ("-> (target)")
if value is None:
match = self._REENTRANCE_RE.match(s, position)
if match is not None:
position = match.end()
match = self._TARGET_RE.match(s, position)
if not match:
raise ValueError('identifier', position)
target = match.group(1)
if target not in reentrances:
raise ValueError('bound identifier', position)
position = match.end()
value = reentrances[target]
# Assignment ("= value").
if value is None:
match = self._ASSIGN_RE.match(s, position)
if match:
position = match.end()
value, position = (
self._parse_value(name, s, position, reentrances))
# None of the above: error.
else:
raise ValueError('equals sign', position)
# Store the value.
fstruct[name] = value
# If there's a close bracket, handle it at the top of the loop.
if self._END_FSTRUCT_RE.match(s, position):
continue
# Otherwise, there should be a comma
match = self._COMMA_RE.match(s, position)
if match is None: raise ValueError('comma', position)
position = match.end()
# We never saw a close bracket.
raise ValueError('close bracket', position)
def _finalize(self, s, pos, reentrances, fstruct):
"""
Called when we see the close brace -- checks for a slash feature,
and adds in default values.
"""
# Add the slash feature (if any)
match = self._SLASH_RE.match(s, pos)
if match:
name = self._slash_feature
v, pos = self._parse_value(name, s, match.end(), reentrances)
fstruct[name] = v
## Add any default features. -- handle in unficiation instead?
#for feature in self._features_with_defaults:
# fstruct.setdefault(feature, feature.default)
# Return the value.
return fstruct, pos
def _parse_value(self, name, s, position, reentrances):
if isinstance(name, Feature):
return name.parse_value(s, position, reentrances, self)
else:
return self.parse_value(s, position, reentrances)
def parse_value(self, s, position, reentrances):
for (handler, regexp) in self.VALUE_HANDLERS:
match = regexp.match(s, position)
if match:
handler_func = getattr(self, handler)
return handler_func(s, position, reentrances, match)
raise ValueError('value', position)
def _error(self, s, expected, position):
lines = s.split('\n')
while position > len(lines[0]):
position -= len(lines.pop(0))+1 # +1 for the newline.
estr = ('Error parsing feature structure\n ' +
lines[0] + '\n ' + ' '*position + '^ ' +
'Expected %s' % expected)
raise ValueError, estr
#////////////////////////////////////////////////////////////
#{ Value Parsers
#////////////////////////////////////////////////////////////
#: A table indicating how feature values should be parsed. Each
#: entry in the table is a pair (handler, regexp). The first entry
#: with a matching regexp will have its handler called. Handlers
#: should have the following signature::
#:
#: def handler(s, position, reentrances, match): ...
#:
#: and should return a tuple (value, position), where position is
#: the string position where the value ended. (n.b.: order is
#: important here!)
VALUE_HANDLERS = [
('parse_fstruct_value', _START_FSTRUCT_RE),
('parse_var_value', re.compile(r'\?[a-zA-Z_][a-zA-Z0-9_]*')),
('parse_str_value', re.compile("[uU]?[rR]?(['\"])")),
('parse_int_value', re.compile(r'-?\d+')),
('parse_sym_value', re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*')),
('parse_app_value', re.compile(r'<(app)\((\?[a-z][a-z]*)\s*,'
r'\s*(\?[a-z][a-z]*)\)>')),
# ('parse_logic_value', re.compile(r'<([^>]*)>')),
#lazily match any character after '<' until we hit a '>' not preceded by '-'
('parse_logic_value', re.compile(r'<(.*?)(?<!-)>')),
('parse_set_value', re.compile(r'{')),
('parse_tuple_value', re.compile(r'\(')),
]
def parse_fstruct_value(self, s, position, reentrances, match):
return self.partial_parse(s, position, reentrances)
def parse_str_value(self, s, position, reentrances, match):
return nltk.internals.parse_str(s, position)
def parse_int_value(self, s, position, reentrances, match):
return int(match.group()), match.end()
# Note: the '?' is included in the variable name.
def parse_var_value(self, s, position, reentrances, match):
return Variable(match.group()), match.end()
_SYM_CONSTS = {'None':None, 'True':True, 'False':False}
def parse_sym_value(self, s, position, reentrances, match):
val, end = match.group(), match.end()
return self._SYM_CONSTS.get(val, val), end
def parse_app_value(self, s, position, reentrances, match):
"""Mainly included for backwards compat."""
return self._logic_parser.parse('%s(%s)' % match.group(2,3)), match.end()
def parse_logic_value(self, s, position, reentrances, match):
try:
try:
expr = self._logic_parser.parse(match.group(1))
except ParseException:
raise ValueError()
return expr, match.end()
except ValueError:
raise ValueError('logic expression', match.start(1))
def parse_tuple_value(self, s, position, reentrances, match):
return self._parse_seq_value(s, position, reentrances, match, ')',
FeatureValueTuple, FeatureValueConcat)
def parse_set_value(self, s, position, reentrances, match):
return self._parse_seq_value(s, position, reentrances, match, '}',
FeatureValueSet, FeatureValueUnion)
def _parse_seq_value(self, s, position, reentrances, match,
close_paren, seq_class, plus_class):
"""
Helper function used by parse_tuple_value and parse_set_value.
"""
cp = re.escape(close_paren)
position = match.end()
# Special syntax fo empty tuples:
m = re.compile(r'\s*/?\s*%s' % cp).match(s, position)
if m: return seq_class(), m.end()
# Read values:
values = []
seen_plus = False
while True:
# Close paren: return value.
m = re.compile(r'\s*%s' % cp).match(s, position)
if m:
if seen_plus: return plus_class(values), m.end()
else: return seq_class(values), m.end()
# Read the next value.
val, position = self.parse_value(s, position, reentrances)
values.append(val)
# Comma or looking at close paren
m = re.compile(r'\s*(,|\+|(?=%s))\s*' % cp).match(s, position)
if m.group(1) == '+': seen_plus = True
if not m: raise ValueError("',' or '+' or '%s'" % cp, position)
position = m.end()
######################################################################
#{ Demo
######################################################################
def display_unification(fs1, fs2, indent=' '):
# Print the two input feature structures, side by side.
fs1_lines = str(fs1).split('\n')
fs2_lines = str(fs2).split('\n')
if len(fs1_lines) > len(fs2_lines):
blankline = '['+' '*(len(fs2_lines[0])-2)+']'
fs2_lines += [blankline]*len(fs1_lines)
else:
blankline = '['+' '*(len(fs1_lines[0])-2)+']'
fs1_lines += [blankline]*len(fs2_lines)
for (fs1_line, fs2_line) in zip(fs1_lines, fs2_lines):
print indent + fs1_line + ' ' + fs2_line
print indent+'-'*len(fs1_lines[0])+' '+'-'*len(fs2_lines[0])
linelen = len(fs1_lines[0])*2+3
print indent+'| |'.center(linelen)
print indent+'+-----UNIFY-----+'.center(linelen)
print indent+'|'.center(linelen)
print indent+'V'.center(linelen)
bindings = {}
result = fs1.unify(fs2, bindings)
if result is None:
print indent+'(FAILED)'.center(linelen)
else:
print '\n'.join(indent+l.center(linelen)
for l in str(result).split('\n'))
if bindings and len(bindings.bound_variables()) > 0:
print repr(bindings).center(linelen)
return result
def interactivedemo(trace=False):
import random, sys
HELP = '''
1-%d: Select the corresponding feature structure
q: Quit
t: Turn tracing on or off
l: List all feature structures
?: Help
'''
print '''
This demo will repeatedly present you with a list of feature
structures, and ask you to choose two for unification. Whenever a
new feature structure is generated, it is added to the list of
choices that you can pick from. However, since this can be a
large number of feature structures, the demo will only print out a
random subset for you to choose between at a given time. If you
want to see the complete lists, type "l". For a list of valid
commands, type "?".
'''
print 'Press "Enter" to continue...'
sys.stdin.readline()
fstruct_strings = [
'[agr=[number=sing, gender=masc]]',
'[agr=[gender=masc, person=3rd]]',
'[agr=[gender=fem, person=3rd]]',
'[subj=[agr=(1)[]], agr->(1)]',
'[obj=?x]', '[subj=?x]',
'[/=None]', '[/=NP]',
'[cat=NP]', '[cat=VP]', '[cat=PP]',
'[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]',
'[gender=masc, agr=?C]',
'[gender=?S, agr=[gender=?S,person=3rd]]'
]
all_fstructs = [(i, FeatStruct.parse(fstruct_strings[i]))
for i in range(len(fstruct_strings))]
def list_fstructs(fstructs):
for i, fstruct in fstructs:
print
lines = str(fstruct).split('\n')
print '%3d: %s' % (i+1, lines[0])
for line in lines[1:]: print ' '+line
print
while 1:
# Pick 5 feature structures at random from the master list.
MAX_CHOICES = 5
if len(all_fstructs) > MAX_CHOICES:
fstructs = random.sample(all_fstructs, MAX_CHOICES)
fstructs.sort()
else:
fstructs = all_fstructs
print '_'*75
print 'Choose two feature structures to unify:'
list_fstructs(fstructs)
selected = [None,None]
for (nth,i) in (('First',0), ('Second',1)):
while selected[i] is None:
print ('%s feature structure (1-%d,q,t,l,?): '
% (nth, len(all_fstructs))),
try:
input = sys.stdin.readline().strip()
if input in ('q', 'Q', 'x', 'X'): return
if input in ('t', 'T'):
trace = not trace
print ' Trace = %s' % trace
continue
if input in ('h', 'H', '?'):
print HELP % len(fstructs); continue
if input in ('l', 'L'):
list_fstructs(all_fstructs); continue
num = int(input)-1
selected[i] = all_fstructs[num][1]
print
except:
print 'Bad sentence number'
continue
if trace:
result = selected[0].unify(selected[1], trace=1)
else:
result = display_unification(selected[0], selected[1])
if result is not None:
for i, fstruct in all_fstructs:
if `result` == `fstruct`: break
else:
all_fstructs.append((len(all_fstructs), result))
print '\nType "Enter" to continue unifying; or "q" to quit.'
input = sys.stdin.readline().strip()
if input in ('q', 'Q', 'x', 'X'): return
def demo(trace=False):
"""
Just for testing
"""
#import random
# parser breaks with values like '3rd'
fstruct_strings = [
'[agr=[number=sing, gender=masc]]',
'[agr=[gender=masc, person=3]]',
'[agr=[gender=fem, person=3]]',
'[subj=[agr=(1)[]], agr->(1)]',
'[obj=?x]', '[subj=?x]',
'[/=None]', '[/=NP]',
'[cat=NP]', '[cat=VP]', '[cat=PP]',
'[subj=[agr=[gender=?y]], obj=[agr=[gender=?y]]]',
'[gender=masc, agr=?C]',
'[gender=?S, agr=[gender=?S,person=3]]'
]
all_fstructs = [FeatStruct(fss) for fss in fstruct_strings]
#MAX_CHOICES = 5
#if len(all_fstructs) > MAX_CHOICES:
#fstructs = random.sample(all_fstructs, MAX_CHOICES)
#fstructs.sort()
#else:
#fstructs = all_fstructs
for fs1 in all_fstructs:
for fs2 in all_fstructs:
print "\n*******************\nfs1 is:\n%s\n\nfs2 is:\n%s\n\nresult is:\n%s" % (fs1, fs2, unify(fs1, fs2))
if __name__ == '__main__':
demo()
|