/usr/include/coin/CbcHeuristic.hpp is in coinor-libcbc-dev 2.8.12-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | /* $Id: CbcHeuristic.hpp 1883 2013-04-06 13:33:15Z stefan $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef CbcHeuristic_H
#define CbcHeuristic_H
#include <string>
#include <vector>
#include "CoinPackedMatrix.hpp"
#include "OsiCuts.hpp"
#include "CoinHelperFunctions.hpp"
#include "OsiBranchingObject.hpp"
class OsiSolverInterface;
class CbcModel;
//#############################################################################
class CbcHeuristicNodeList;
class CbcBranchingObject;
/** A class describing the branching decisions that were made to get
to the node where a heuristic was invoked from */
class CbcHeuristicNode {
private:
void gutsOfConstructor(CbcModel& model);
CbcHeuristicNode();
CbcHeuristicNode& operator=(const CbcHeuristicNode&);
private:
/// The number of branching decisions made
int numObjects_;
/** The indices of the branching objects. Note: an index may be
listed multiple times. E.g., a general integer variable that has
been branched on multiple times. */
CbcBranchingObject** brObj_;
public:
CbcHeuristicNode(CbcModel& model);
CbcHeuristicNode(const CbcHeuristicNode& rhs);
~CbcHeuristicNode();
double distance(const CbcHeuristicNode* node) const;
double minDistance(const CbcHeuristicNodeList& nodeList) const;
bool minDistanceIsSmall(const CbcHeuristicNodeList& nodeList,
const double threshold) const;
double avgDistance(const CbcHeuristicNodeList& nodeList) const;
};
class CbcHeuristicNodeList {
private:
void gutsOfDelete();
void gutsOfCopy(const CbcHeuristicNodeList& rhs);
private:
std::vector<CbcHeuristicNode*> nodes_;
public:
CbcHeuristicNodeList() {}
CbcHeuristicNodeList(const CbcHeuristicNodeList& rhs);
CbcHeuristicNodeList& operator=(const CbcHeuristicNodeList& rhs);
~CbcHeuristicNodeList();
void append(CbcHeuristicNode*& node);
void append(const CbcHeuristicNodeList& nodes);
inline const CbcHeuristicNode* node(int i) const {
return nodes_[i];
}
inline int size() const {
return static_cast<int>(nodes_.size());
}
};
//#############################################################################
/** Heuristic base class */
class CbcHeuristic {
private:
void gutsOfDelete() {}
void gutsOfCopy(const CbcHeuristic & rhs);
public:
// Default Constructor
CbcHeuristic ();
// Constructor with model - assumed before cuts
CbcHeuristic (CbcModel & model);
// Copy constructor
CbcHeuristic ( const CbcHeuristic &);
virtual ~CbcHeuristic();
/// Clone
virtual CbcHeuristic * clone() const = 0;
/// Assignment operator
CbcHeuristic & operator=(const CbcHeuristic& rhs);
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model) = 0;
/** returns 0 if no solution, 1 if valid solution
with better objective value than one passed in
Sets solution values if good, sets objective value
This is called after cuts have been added - so can not add cuts
*/
virtual int solution(double & objectiveValue,
double * newSolution) = 0;
/** returns 0 if no solution, 1 if valid solution, -1 if just
returning an estimate of best possible solution
with better objective value than one passed in
Sets solution values if good, sets objective value (only if nonzero code)
This is called at same time as cut generators - so can add cuts
Default is do nothing
*/
virtual int solution2(double & /*objectiveValue*/,
double * /*newSolution*/,
OsiCuts & /*cs*/) {
return 0;
}
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate() {}
/** Sets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.
If 10 added then don't worry if validate says there are funny objects
as user knows it will be fine
*/
inline void setWhen(int value) {
when_ = value;
}
/// Gets "when" flag - 0 off, 1 at root, 2 other than root, 3 always
inline int when() const {
return when_;
}
/// Sets number of nodes in subtree (default 200)
inline void setNumberNodes(int value) {
numberNodes_ = value;
}
/// Gets number of nodes in a subtree (default 200)
inline int numberNodes() const {
return numberNodes_;
}
/** Switches (does not apply equally to all heuristics)
1 bit - stop once allowable gap on objective reached
2 bit - always do given number of passes
4 bit - weaken cutoff by 5% every 50 passes?
8 bit - if has cutoff and suminf bobbling for 20 passes then
first try halving distance to best possible then
try keep halving distance to known cutoff
16 bit - needs new solution to run
1024 bit - stop all heuristics on max time
*/
inline void setSwitches(int value) {
switches_ = value;
}
/** Switches (does not apply equally to all heuristics)
1 bit - stop once allowable gap on objective reached
2 bit - always do given number of passes
4 bit - weaken cutoff by 5% every 50 passes?
8 bit - if has cutoff and suminf bobbling for 20 passes then
first try halving distance to best possible then
try keep halving distance to known cutoff
16 bit - needs new solution to run
1024 bit - stop all heuristics on max time
*/
inline int switches() const {
return switches_;
}
/// Whether to exit at once on gap
bool exitNow(double bestObjective) const;
/// Sets feasibility pump options (-1 is off)
inline void setFeasibilityPumpOptions(int value) {
feasibilityPumpOptions_ = value;
}
/// Gets feasibility pump options (-1 is off)
inline int feasibilityPumpOptions() const {
return feasibilityPumpOptions_;
}
/// Just set model - do not do anything else
inline void setModelOnly(CbcModel * model) {
model_ = model;
}
/// Sets fraction of new(rows+columns)/old(rows+columns) before doing small branch and bound (default 1.0)
inline void setFractionSmall(double value) {
fractionSmall_ = value;
}
/// Gets fraction of new(rows+columns)/old(rows+columns) before doing small branch and bound (default 1.0)
inline double fractionSmall() const {
return fractionSmall_;
}
/// Get how many solutions the heuristic thought it got
inline int numberSolutionsFound() const {
return numberSolutionsFound_;
}
/// Increment how many solutions the heuristic thought it got
inline void incrementNumberSolutionsFound() {
numberSolutionsFound_++;
}
/** Do mini branch and bound - return
0 not finished - no solution
1 not finished - solution
2 finished - no solution
3 finished - solution
(could add global cut if finished)
-1 returned on size
-2 time or user event
*/
int smallBranchAndBound(OsiSolverInterface * solver, int numberNodes,
double * newSolution, double & newSolutionValue,
double cutoff , std::string name) const;
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * ) {}
/// Create C++ lines to get to current state - does work for base class
void generateCpp( FILE * fp, const char * heuristic) ;
/// Returns true if can deal with "odd" problems e.g. sos type 2
virtual bool canDealWithOdd() const {
return false;
}
/// return name of heuristic
inline const char *heuristicName() const {
return heuristicName_.c_str();
}
/// set name of heuristic
inline void setHeuristicName(const char *name) {
heuristicName_ = name;
}
/// Set random number generator seed
void setSeed(int value);
/// Get random number generator seed
int getSeed() const;
/// Sets decay factor (for howOften) on failure
inline void setDecayFactor(double value) {
decayFactor_ = value;
}
/// Set input solution
void setInputSolution(const double * solution, double objValue);
/* Runs if bit set
0 - before cuts at root node (or from doHeuristics)
1 - during cuts at root
2 - after root node cuts
3 - after cuts at other nodes
4 - during cuts at other nodes
8 added if previous heuristic in loop found solution
*/
inline void setWhereFrom(int value) {
whereFrom_ = value;
}
inline int whereFrom() const {
return whereFrom_;
}
/** Upto this depth we call the tree shallow and the heuristic can be called
multiple times. That is, the test whether the current node is far from
the others where the jeuristic was invoked will not be done, only the
frequency will be tested. After that depth the heuristic will can be
invoked only once per node, right before branching. That's when it'll be
tested whether the heur should run at all. */
inline void setShallowDepth(int value) {
shallowDepth_ = value;
}
/** How often to invoke the heuristics in the shallow part of the tree */
inline void setHowOftenShallow(int value) {
howOftenShallow_ = value;
}
/** How "far" should this node be from every other where the heuristic was
run in order to allow the heuristic to run in this node, too. Currently
this is tested, but we may switch to avgDistanceToRun_ in the future. */
inline void setMinDistanceToRun(int value) {
minDistanceToRun_ = value;
}
/** Check whether the heuristic should run at all
0 - before cuts at root node (or from doHeuristics)
1 - during cuts at root
2 - after root node cuts
3 - after cuts at other nodes
4 - during cuts at other nodes
8 added if previous heuristic in loop found solution
*/
virtual bool shouldHeurRun(int whereFrom);
/** Check whether the heuristic should run this time */
bool shouldHeurRun_randomChoice();
void debugNodes();
void printDistanceToNodes();
/// how many times the heuristic has actually run
inline int numRuns() const {
return numRuns_;
}
/// How many times the heuristic could run
inline int numCouldRun() const {
return numCouldRun_;
}
/*! \brief Clone, but ...
If type is
- 0 clone the solver for the model,
- 1 clone the continuous solver for the model
- Add 2 to say without integer variables which are at low priority
- Add 4 to say quite likely infeasible so give up easily (clp only).
*/
OsiSolverInterface * cloneBut(int type);
protected:
/// Model
CbcModel * model_;
/// When flag - 0 off, 1 at root, 2 other than root, 3 always
int when_;
/// Number of nodes in any sub tree
int numberNodes_;
/** Feasibility pump options , -1 is off
>=0 for feasibility pump itself
-2 quick proximity search
-3 longer proximity search
*/
int feasibilityPumpOptions_;
/// Fraction of new(rows+columns)/old(rows+columns) before doing small branch and bound
mutable double fractionSmall_;
/// Thread specific random number generator
CoinThreadRandom randomNumberGenerator_;
/// Name for printing
std::string heuristicName_;
/// How often to do (code can change)
int howOften_;
/// How much to increase how often
double decayFactor_;
/** Switches (does not apply equally to all heuristics)
1 bit - stop once allowable gap on objective reached
2 bit - always do given number of passes
4 bit - weaken cutoff by 5% every 50 passes?
8 bit - if has cutoff and suminf bobbling for 20 passes then
first try halving distance to best possible then
try keep halving distance to known cutoff
16 bit - needs new solution to run
1024 bit - stop all heuristics on max time
*/
mutable int switches_;
/* Runs if bit set
0 - before cuts at root node (or from doHeuristics)
1 - during cuts at root
2 - after root node cuts
3 - after cuts at other nodes
4 - during cuts at other nodes
8 added if previous heuristic in loop found solution
*/
int whereFrom_;
/** Upto this depth we call the tree shallow and the heuristic can be called
multiple times. That is, the test whether the current node is far from
the others where the jeuristic was invoked will not be done, only the
frequency will be tested. After that depth the heuristic will can be
invoked only once per node, right before branching. That's when it'll be
tested whether the heur should run at all. */
int shallowDepth_;
/** How often to invoke the heuristics in the shallow part of the tree */
int howOftenShallow_;
/** How many invocations happened within the same node when in a shallow
part of the tree. */
int numInvocationsInShallow_;
/** How many invocations happened when in the deep part of the tree. For
every node we count only one invocation. */
int numInvocationsInDeep_;
/** After how many deep invocations was the heuristic run last time */
int lastRunDeep_;
/// how many times the heuristic has actually run
int numRuns_;
/** How "far" should this node be from every other where the heuristic was
run in order to allow the heuristic to run in this node, too. Currently
this is tested, but we may switch to avgDistanceToRun_ in the future. */
int minDistanceToRun_;
/// The description of the nodes where this heuristic has been applied
CbcHeuristicNodeList runNodes_;
/// How many times the heuristic could run
int numCouldRun_;
/// How many solutions the heuristic thought it got
int numberSolutionsFound_;
/// How many nodes the heuristic did this go
mutable int numberNodesDone_;
// Input solution - so can be used as seed
double * inputSolution_;
#ifdef JJF_ZERO
/// Lower bounds of last node where the heuristic found a solution
double * lowerBoundLastNode_;
/// Upper bounds of last node where the heuristic found a solution
double * upperBoundLastNode_;
#endif
};
/** Rounding class
*/
class CbcRounding : public CbcHeuristic {
public:
// Default Constructor
CbcRounding ();
// Constructor with model - assumed before cuts
CbcRounding (CbcModel & model);
// Copy constructor
CbcRounding ( const CbcRounding &);
// Destructor
~CbcRounding ();
/// Assignment operator
CbcRounding & operator=(const CbcRounding& rhs);
/// Clone
virtual CbcHeuristic * clone() const;
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution
with better objective value than one passed in
Sets solution values if good, sets objective value (only if good)
This is called after cuts have been added - so can not add cuts
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/** returns 0 if no solution, 1 if valid solution
with better objective value than one passed in
Sets solution values if good, sets objective value (only if good)
This is called after cuts have been added - so can not add cuts
Use solutionValue rather than solvers one
*/
virtual int solution(double & objectiveValue,
double * newSolution,
double solutionValue);
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate();
/// Set seed
void setSeed(int value) {
seed_ = value;
}
protected:
// Data
// Original matrix by column
CoinPackedMatrix matrix_;
// Original matrix by
CoinPackedMatrix matrixByRow_;
// Down locks
unsigned short * down_;
// Up locks
unsigned short * up_;
// Equality locks
unsigned short * equal_;
// Seed for random stuff
int seed_;
};
/** Partial solution class
If user knows a partial solution this tries to get an integer solution
it uses hotstart information
*/
class CbcHeuristicPartial : public CbcHeuristic {
public:
// Default Constructor
CbcHeuristicPartial ();
/** Constructor with model - assumed before cuts
Fixes all variables with priority <= given
and does given number of nodes
*/
CbcHeuristicPartial (CbcModel & model, int fixPriority = 10000, int numberNodes = 200);
// Copy constructor
CbcHeuristicPartial ( const CbcHeuristicPartial &);
// Destructor
~CbcHeuristicPartial ();
/// Assignment operator
CbcHeuristicPartial & operator=(const CbcHeuristicPartial& rhs);
/// Clone
virtual CbcHeuristic * clone() const;
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution
with better objective value than one passed in
Sets solution values if good, sets objective value (only if good)
This is called after cuts have been added - so can not add cuts
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate();
/// Set priority level
void setFixPriority(int value) {
fixPriority_ = value;
}
/** Check whether the heuristic should run at all */
virtual bool shouldHeurRun(int whereFrom);
protected:
// Data
// All variables with abs priority <= this will be fixed
int fixPriority_;
};
/** heuristic - just picks up any good solution
found by solver - see OsiBabSolver
*/
class CbcSerendipity : public CbcHeuristic {
public:
// Default Constructor
CbcSerendipity ();
/* Constructor with model
*/
CbcSerendipity (CbcModel & model);
// Copy constructor
CbcSerendipity ( const CbcSerendipity &);
// Destructor
~CbcSerendipity ();
/// Assignment operator
CbcSerendipity & operator=(const CbcSerendipity& rhs);
/// Clone
virtual CbcHeuristic * clone() const;
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/// update model
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good)
We leave all variables which are at one at this node of the
tree to that value and will
initially set all others to zero. We then sort all variables in order of their cost
divided by the number of entries in rows which are not yet covered. We randomize that
value a bit so that ties will be broken in different ways on different runs of the heuristic.
We then choose the best one and set it to one and repeat the exercise.
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
protected:
};
/** Just One class - this chooses one at random
*/
class CbcHeuristicJustOne : public CbcHeuristic {
public:
// Default Constructor
CbcHeuristicJustOne ();
// Constructor with model - assumed before cuts
CbcHeuristicJustOne (CbcModel & model);
// Copy constructor
CbcHeuristicJustOne ( const CbcHeuristicJustOne &);
// Destructor
~CbcHeuristicJustOne ();
/// Clone
virtual CbcHeuristicJustOne * clone() const;
/// Assignment operator
CbcHeuristicJustOne & operator=(const CbcHeuristicJustOne& rhs);
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/** returns 0 if no solution, 1 if valid solution
with better objective value than one passed in
Sets solution values if good, sets objective value (only if good)
This is called after cuts have been added - so can not add cuts
This does Fractional Diving
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
/// Selects the next variable to branch on
/** Returns true if all the fractional variables can be trivially
rounded. Returns false, if there is at least one fractional variable
that is not trivially roundable. In this case, the bestColumn
returned will not be trivially roundable.
This is dummy as never called
*/
virtual bool selectVariableToBranch(OsiSolverInterface* /*solver*/,
const double* /*newSolution*/,
int& /*bestColumn*/,
int& /*bestRound*/) {
return true;
}
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate();
/// Adds an heuristic with probability
void addHeuristic(const CbcHeuristic * heuristic, double probability);
/// Normalize probabilities
void normalizeProbabilities();
protected:
// Data
// Probability of running a heuristic
double * probabilities_;
// Heuristics
CbcHeuristic ** heuristic_;
// Number of heuristics
int numberHeuristics_;
};
#endif
|