/usr/include/coin/CbcSimpleInteger.hpp is in coinor-libcbc-dev 2.8.12-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | // $Id: CbcSimpleInteger.hpp 1902 2013-04-10 16:58:16Z stefan $
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
// Edwin 11/9/2009-- carved out of CbcBranchActual
#ifndef CbcSimpleInteger_H
#define CbcSimpleInteger_H
#include "CbcBranchingObject.hpp"
/** Simple branching object for an integer variable
This object can specify a two-way branch on an integer variable. For each
arm of the branch, the upper and lower bounds on the variable can be
independently specified.
Variable_ holds the index of the integer variable in the integerVariable_
array of the model.
*/
class CbcIntegerBranchingObject : public CbcBranchingObject {
public:
/// Default constructor
CbcIntegerBranchingObject ();
/** Create a standard floor/ceiling branch object
Specifies a simple two-way branch. Let \p value = x*. One arm of the
branch will be lb <= x <= floor(x*), the other ceil(x*) <= x <= ub.
Specify way = -1 to set the object state to perform the down arm first,
way = 1 for the up arm.
*/
CbcIntegerBranchingObject (CbcModel *model, int variable,
int way , double value) ;
/** Create a degenerate branch object
Specifies a `one-way branch'. Calling branch() for this object will
always result in lowerValue <= x <= upperValue. Used to fix a variable
when lowerValue = upperValue.
*/
CbcIntegerBranchingObject (CbcModel *model, int variable, int way,
double lowerValue, double upperValue) ;
/// Copy constructor
CbcIntegerBranchingObject ( const CbcIntegerBranchingObject &);
/// Assignment operator
CbcIntegerBranchingObject & operator= (const CbcIntegerBranchingObject& rhs);
/// Clone
virtual CbcBranchingObject * clone() const;
/// Destructor
virtual ~CbcIntegerBranchingObject ();
/// Does part of constructor
void fillPart ( int variable, int way , double value) ;
using CbcBranchingObject::branch ;
/** \brief Sets the bounds for the variable according to the current arm
of the branch and advances the object state to the next arm.
Returns change in guessed objective on next branch
*/
virtual double branch();
/** Update bounds in solver as in 'branch' and update given bounds.
branchState is -1 for 'down' +1 for 'up' */
virtual void fix(OsiSolverInterface * solver,
double * lower, double * upper,
int branchState) const ;
/** Change (tighten) bounds in object to reflect bounds in solver.
Return true if now fixed */
virtual bool tighten(OsiSolverInterface * ) ;
#ifdef JJF_ZERO
// No need to override. Default works fine.
/** Reset every information so that the branching object appears to point to
the previous child. This method does not need to modify anything in any
solver. */
virtual void previousBranch();
#endif
using CbcBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print();
/// Lower and upper bounds for down branch
inline const double * downBounds() const {
return down_;
}
/// Lower and upper bounds for up branch
inline const double * upBounds() const {
return up_;
}
/// Set lower and upper bounds for down branch
inline void setDownBounds(const double bounds[2]) {
memcpy(down_, bounds, 2*sizeof(double));
}
/// Set lower and upper bounds for up branch
inline void setUpBounds(const double bounds[2]) {
memcpy(up_, bounds, 2*sizeof(double));
}
#ifdef FUNNY_BRANCHING
/** Which variable (top bit if upper bound changing,
next bit if on down branch */
inline const int * variables() const {
return variables_;
}
// New bound
inline const double * newBounds() const {
return newBounds_;
}
/// Number of bound changes
inline int numberExtraChangedBounds() const {
return numberExtraChangedBounds_;
}
/// Just apply extra bounds to one variable - COIN_DBL_MAX ignore
int applyExtraBounds(int iColumn, double lower, double upper, int way) ;
/// Deactivate bounds for branching
void deactivate();
/// Are active bounds for branching
inline bool active() const {
return (down_[1] != -COIN_DBL_MAX);
}
#endif
/** Return the type (an integer identifier) of \c this */
virtual CbcBranchObjType type() const {
return SimpleIntegerBranchObj;
}
/** Compare the \c this with \c brObj. \c this and \c brObj must be os the
same type and must have the same original object, but they may have
different feasible regions.
Return the appropriate CbcRangeCompare value (first argument being the
sub/superset if that's the case). In case of overlap (and if \c
replaceIfOverlap is true) replace the current branching object with one
whose feasible region is the overlap.
*/
virtual CbcRangeCompare compareBranchingObject
(const CbcBranchingObject* brObj, const bool replaceIfOverlap = false);
protected:
/// Lower [0] and upper [1] bounds for the down arm (way_ = -1)
double down_[2];
/// Lower [0] and upper [1] bounds for the up arm (way_ = 1)
double up_[2];
#ifdef FUNNY_BRANCHING
/** Which variable (top bit if upper bound changing)
next bit if changing on down branch only */
int * variables_;
// New bound
double * newBounds_;
/// Number of Extra bound changes
int numberExtraChangedBounds_;
#endif
};
/// Define a single integer class
class CbcSimpleInteger : public CbcObject {
public:
// Default Constructor
CbcSimpleInteger ();
// Useful constructor - passed model and index
CbcSimpleInteger (CbcModel * model, int iColumn, double breakEven = 0.5);
// Useful constructor - passed model and Osi object
CbcSimpleInteger (CbcModel * model, const OsiSimpleInteger * object);
// Copy constructor
CbcSimpleInteger ( const CbcSimpleInteger &);
/// Clone
virtual CbcObject * clone() const;
// Assignment operator
CbcSimpleInteger & operator=( const CbcSimpleInteger& rhs);
// Destructor
virtual ~CbcSimpleInteger ();
/// Construct an OsiSimpleInteger object
OsiSimpleInteger * osiObject() const;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info,
int &preferredWay) const;
using CbcObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Create a branching object and indicate which way to branch first.
The branching object has to know how to create branches (fix
variables, etc.)
*/
virtual CbcBranchingObject * createCbcBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) ;
/// Fills in a created branching object
void fillCreateBranch(CbcIntegerBranchingObject * branching, const OsiBranchingInformation * info, int way) ;
using CbcObject::solverBranch ;
/** Create an OsiSolverBranch object
This returns NULL if branch not represented by bound changes
*/
virtual OsiSolverBranch * solverBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. The algorithm takes a bit of care in order to compensate for
minor numerical inaccuracy.
*/
virtual void feasibleRegion();
/** Column number if single column object -1 otherwise,
so returns >= 0
Used by heuristics
*/
virtual int columnNumber() const;
/// Set column number
inline void setColumnNumber(int value) {
columnNumber_ = value;
}
/** Reset variable bounds to their original values.
Bounds may be tightened, so it may be good to be able to set this info in object.
*/
virtual void resetBounds(const OsiSolverInterface * solver) ;
/** Change column numbers after preprocessing
*/
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns) ;
/// Original bounds
inline double originalLowerBound() const {
return originalLower_;
}
inline void setOriginalLowerBound(double value) {
originalLower_ = value;
}
inline double originalUpperBound() const {
return originalUpper_;
}
inline void setOriginalUpperBound(double value) {
originalUpper_ = value;
}
/// Breakeven e.g 0.7 -> >= 0.7 go up first
inline double breakEven() const {
return breakEven_;
}
/// Set breakeven e.g 0.7 -> >= 0.7 go up first
inline void setBreakEven(double value) {
breakEven_ = value;
}
protected:
/// data
/// Original lower bound
double originalLower_;
/// Original upper bound
double originalUpper_;
/// Breakeven i.e. >= this preferred is up
double breakEven_;
/// Column number in model
int columnNumber_;
/// If -1 down always chosen first, +1 up always, 0 normal
int preferredWay_;
};
#endif
|