This file is indexed.

/usr/include/coin/CoinPackedVector.hpp is in coinor-libcoinutils-dev 2.9.15-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/* $Id: CoinPackedVector.hpp 1509 2011-12-05 13:50:48Z forrest $ */
// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef CoinPackedVector_H
#define CoinPackedVector_H

#include <map>

#include "CoinPragma.hpp"
#include "CoinPackedVectorBase.hpp"
#include "CoinSort.hpp"

#ifdef COIN_FAST_CODE
#ifndef COIN_NOTEST_DUPLICATE
#define COIN_NOTEST_DUPLICATE
#endif
#endif

#ifndef COIN_NOTEST_DUPLICATE
#define COIN_DEFAULT_VALUE_FOR_DUPLICATE true
#else
#define COIN_DEFAULT_VALUE_FOR_DUPLICATE false
#endif
/** Sparse Vector

Stores vector of indices and associated element values.
Supports sorting of vector while maintaining the original indices.

Here is a sample usage:
@verbatim
    const int ne = 4;
    int inx[ne] =   {  1,   4,  0,   2 }
    double el[ne] = { 10., 40., 1., 50. }

    // Create vector and set its value
    CoinPackedVector r(ne,inx,el);

    // access each index and element
    assert( r.indices ()[0]== 1  );
    assert( r.elements()[0]==10. );
    assert( r.indices ()[1]== 4  );
    assert( r.elements()[1]==40. );
    assert( r.indices ()[2]== 0  );
    assert( r.elements()[2]== 1. );
    assert( r.indices ()[3]== 2  );
    assert( r.elements()[3]==50. );

    // access original position of index
    assert( r.originalPosition()[0]==0 );
    assert( r.originalPosition()[1]==1 );
    assert( r.originalPosition()[2]==2 );
    assert( r.originalPosition()[3]==3 );

    // access as a full storage vector
    assert( r[ 0]==1. );
    assert( r[ 1]==10.);
    assert( r[ 2]==50.);
    assert( r[ 3]==0. );
    assert( r[ 4]==40.);

    // sort Elements in increasing order
    r.sortIncrElement();

    // access each index and element
    assert( r.indices ()[0]== 0  );
    assert( r.elements()[0]== 1. );
    assert( r.indices ()[1]== 1  );
    assert( r.elements()[1]==10. );
    assert( r.indices ()[2]== 4  );
    assert( r.elements()[2]==40. );
    assert( r.indices ()[3]== 2  );
    assert( r.elements()[3]==50. );    

    // access original position of index    
    assert( r.originalPosition()[0]==2 );
    assert( r.originalPosition()[1]==0 );
    assert( r.originalPosition()[2]==1 );
    assert( r.originalPosition()[3]==3 );

    // access as a full storage vector
    assert( r[ 0]==1. );
    assert( r[ 1]==10.);
    assert( r[ 2]==50.);
    assert( r[ 3]==0. );
    assert( r[ 4]==40.);

    // Restore orignal sort order
    r.sortOriginalOrder();
    
    assert( r.indices ()[0]== 1  );
    assert( r.elements()[0]==10. );
    assert( r.indices ()[1]== 4  );
    assert( r.elements()[1]==40. );
    assert( r.indices ()[2]== 0  );
    assert( r.elements()[2]== 1. );
    assert( r.indices ()[3]== 2  );
    assert( r.elements()[3]==50. );

    // Tests for equality and equivalence
    CoinPackedVector r1;
    r1=r;
    assert( r==r1 );
    assert( r.equivalent(r1) );
    r.sortIncrElement();
    assert( r!=r1 );
    assert( r.equivalent(r1) );

    // Add packed vectors.
    // Similarly for subtraction, multiplication,
    // and division.
    CoinPackedVector add = r + r1;
    assert( add[0] ==  1.+ 1. );
    assert( add[1] == 10.+10. );
    assert( add[2] == 50.+50. );
    assert( add[3] ==  0.+ 0. );
    assert( add[4] == 40.+40. );

    assert( r.sum() == 10.+40.+1.+50. );
@endverbatim
*/
class CoinPackedVector : public CoinPackedVectorBase {
   friend void CoinPackedVectorUnitTest();
  
public:
   /**@name Get methods. */
   //@{
   /// Get the size
   virtual int getNumElements() const { return nElements_; }
   /// Get indices of elements
   virtual const int * getIndices() const { return indices_; }
   /// Get element values
   virtual const double * getElements() const { return elements_; }
   /// Get indices of elements
   int * getIndices() { return indices_; }
   /// Get the size
   inline int getVectorNumElements() const { return nElements_; }
   /// Get indices of elements
   inline const int * getVectorIndices() const { return indices_; }
   /// Get element values
   inline const double * getVectorElements() const { return elements_; }
   /// Get element values
   double * getElements() { return elements_; }
   /** Get pointer to int * vector of original postions.
       If the packed vector has not been sorted then this
       function returns the vector: 0, 1, 2, ..., size()-1. */
   const int * getOriginalPosition() const { return origIndices_; }
   //@}
 
   //-------------------------------------------------------------------
   // Set indices and elements
   //------------------------------------------------------------------- 
   /**@name Set methods */
   //@{
   /// Reset the vector (as if were just created an empty vector)
   void clear();
   /** Assignment operator. <br>
       <strong>NOTE</strong>: This operator keeps the current
       <code>testForDuplicateIndex</code> setting, and affter copying the data
       it acts accordingly. */
   CoinPackedVector & operator=(const CoinPackedVector &);
   /** Assignment operator from a CoinPackedVectorBase. <br>
       <strong>NOTE</strong>: This operator keeps the current
       <code>testForDuplicateIndex</code> setting, and affter copying the data
       it acts accordingly. */
   CoinPackedVector & operator=(const CoinPackedVectorBase & rhs);

   /** Assign the ownership of the arguments to this vector.
       Size is the length of both the indices and elements vectors.
       The indices and elements vectors are copied into this class instance's
       member data. The last argument indicates whether this vector will have
       to be tested for duplicate indices.
   */
   void assignVector(int size, int*& inds, double*& elems,
		     bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);

   /** Set vector size, indices, and elements.
       Size is the length of both the indices and elements vectors.
       The indices and elements vectors are copied into this class instance's
       member data. The last argument specifies whether this vector will have
       to be checked for duplicate indices whenever that can happen. */
   void setVector(int size, const int * inds, const double * elems,
		  bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
  
   /** Elements set to have the same scalar value */
   void setConstant(int size, const int * inds, double elems,
		    bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
  
   /** Indices are not specified and are taken to be 0,1,...,size-1 */
   void setFull(int size, const double * elems,
		bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);

   /** Indices are not specified and are taken to be 0,1,...,size-1,
    but only where non zero*/
   void setFullNonZero(int size, const double * elems,
		bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);

   /** Set an existing element in the packed vector
       The first argument is the "index" into the elements() array
   */
   void setElement(int index, double element);

   /// Insert an element into the vector
   void insert(int index, double element);
   /// Append a CoinPackedVector to the end
   void append(const CoinPackedVectorBase & caboose);

   /// Swap values in positions i and j of indices and elements
   void swap(int i, int j); 

   /** Resize the packed vector to be the first newSize elements.
       Problem with truncate: what happens with origIndices_ ??? */
   void truncate(int newSize); 
   //@}

   /**@name Arithmetic operators. */
   //@{
   /// add <code>value</code> to every entry
   void operator+=(double value);
   /// subtract <code>value</code> from every entry
   void operator-=(double value);
   /// multiply every entry by <code>value</code>
   void operator*=(double value);
   /// divide every entry by <code>value</code>
   void operator/=(double value);
   //@}

   /**@name Sorting */
   //@{ 
   /** Sort the packed storage vector.
       Typcical usages:
       <pre> 
       packedVector.sort(CoinIncrIndexOrdered());   //increasing indices
       packedVector.sort(CoinIncrElementOrdered()); // increasing elements
       </pre>
   */ 
   template <class CoinCompare3>
   void sort(const CoinCompare3 & tc)
   { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_,
		tc); }

   void sortIncrIndex()
   { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_,
		CoinFirstLess_3<int, int, double>()); }

   void sortDecrIndex()
   { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_,
		CoinFirstGreater_3<int, int, double>()); }
  
   void sortIncrElement()
   { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_,
		CoinFirstLess_3<double, int, int>()); }

   void sortDecrElement()
   { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_,
		CoinFirstGreater_3<double, int, int>()); }
  

   /** Sort in original order.
       If the vector has been sorted, then this method restores
       to its orignal sort order.
   */
   void sortOriginalOrder();
   //@}

   /**@name Memory usage */
   //@{
   /** Reserve space.
       If one knows the eventual size of the packed vector,
       then it may be more efficient to reserve the space.
   */
   void reserve(int n);
   /** capacity returns the size which could be accomodated without
       having to reallocate storage.
   */
   int capacity() const { return capacity_; }
   //@}
   /**@name Constructors and destructors */
   //@{
   /** Default constructor */
   CoinPackedVector(bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
   /** \brief Alternate Constructors - set elements to vector of doubles
   
     This constructor copies the vectors provided as parameters.
   */
   CoinPackedVector(int size, const int * inds, const double * elems,
		   bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
   /** \brief Alternate Constructors - set elements to vector of doubles

     This constructor takes ownership of the vectors passed as parameters.
     \p inds and \p elems will be NULL on return.
   */
   CoinPackedVector(int capacity, int size, int *&inds, double *&elems,
		    bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
   /** Alternate Constructors - set elements to same scalar value */
   CoinPackedVector(int size, const int * inds, double element,
		   bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
   /** Alternate Constructors - construct full storage with indices 0 through
       size-1. */
   CoinPackedVector(int size, const double * elements,
		   bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE);
   /** Copy constructor. */
   CoinPackedVector(const CoinPackedVector &);
   /** Copy constructor <em>from a PackedVectorBase</em>. */
   CoinPackedVector(const CoinPackedVectorBase & rhs);
   /** Destructor */
   virtual ~CoinPackedVector ();
   //@}
    
private:
   /**@name Private methods */
   //@{  
   /// Copy internal date
   void gutsOfSetVector(int size,
			const int * inds, const double * elems,
			bool testForDuplicateIndex,
			const char * method);
   ///
   void gutsOfSetConstant(int size,
			  const int * inds, double value,
			  bool testForDuplicateIndex,
			  const char * method);
   //@}

private:
   /**@name Private member data */
   //@{
   /// Vector indices
   int * indices_;
   ///Vector elements
   double * elements_;
   /// Size of indices and elements vectors
   int nElements_;
   /// original unsorted indices
   int * origIndices_;
   /// Amount of memory allocated for indices_, origIndices_, and elements_.
   int capacity_;
   //@}
};

//#############################################################################

/**@name Arithmetic operators on packed vectors.

   <strong>NOTE</strong>: These methods operate on those positions where at
   least one of the arguments has a value listed. At those positions the
   appropriate operation is executed, Otherwise the result of the operation is
   considered 0.<br>
   <strong>NOTE 2</strong>: There are two kind of operators here. One is used
   like "c = binaryOp(a, b)", the other is used like "binaryOp(c, a, b)", but
   they are really the same. The first is much more natural to use, but it
   involves the creation of a temporary object (the function *must* return an
   object), while the second form puts the result directly into the argument
   "c". Therefore, depending on the circumstances, the second form can be
   significantly faster.
 */
//@{
template <class BinaryFunction> void
binaryOp(CoinPackedVector& retVal,
	 const CoinPackedVectorBase& op1, double value,
	 BinaryFunction bf)
{
   retVal.clear();
   const int s = op1.getNumElements();
   if (s > 0) {
      retVal.reserve(s);
      const int * inds = op1.getIndices();
      const double * elems = op1.getElements();
      for (int i=0; i<s; ++i ) {
	 retVal.insert(inds[i], bf(value, elems[i]));
      }
   }
}

template <class BinaryFunction> inline void
binaryOp(CoinPackedVector& retVal,
	 double value, const CoinPackedVectorBase& op2,
	 BinaryFunction bf)
{
   binaryOp(retVal, op2, value, bf);
}

template <class BinaryFunction> void
binaryOp(CoinPackedVector& retVal,
	 const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2,
	 BinaryFunction bf)
{
   retVal.clear();
   const int s1 = op1.getNumElements();
   const int s2 = op2.getNumElements();
/*
  Replaced || with &&, in response to complaint from Sven deVries, who
  rightly points out || is not appropriate for additive operations. &&
  should be ok as long as binaryOp is understood not to create something
  from nothing.		-- lh, 04.06.11
*/
   if (s1 == 0 && s2 == 0)
      return;

   retVal.reserve(s1+s2);

   const int * inds1 = op1.getIndices();
   const double * elems1 = op1.getElements();
   const int * inds2 = op2.getIndices();
   const double * elems2 = op2.getElements();

   int i;
   // loop once for each element in op1
   for ( i=0; i<s1; ++i ) {
      const int index = inds1[i];
      const int pos2 = op2.findIndex(index);
      const double val = bf(elems1[i], pos2 == -1 ? 0.0 : elems2[pos2]);
      // if (val != 0.0) // *THINK* : should we put in only nonzeros?
      retVal.insert(index, val);
   }
   // loop once for each element in operand2  
   for ( i=0; i<s2; ++i ) {
      const int index = inds2[i];
      // if index exists in op1, then element was processed in prior loop
      if ( op1.isExistingIndex(index) )
	 continue;
      // Index does not exist in op1, so the element value must be zero
      const double val = bf(0.0, elems2[i]);
      // if (val != 0.0) // *THINK* : should we put in only nonzeros?
      retVal.insert(index, val);
   }
}

//-----------------------------------------------------------------------------

template <class BinaryFunction> CoinPackedVector
binaryOp(const CoinPackedVectorBase& op1, double value,
	 BinaryFunction bf)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, value, bf);
   return retVal;
}

template <class BinaryFunction> CoinPackedVector
binaryOp(double value, const CoinPackedVectorBase& op2,
	 BinaryFunction bf)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op2, value, bf);
   return retVal;
}

template <class BinaryFunction> CoinPackedVector
binaryOp(const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2,
	 BinaryFunction bf)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, op2, bf);
   return retVal;
}

//-----------------------------------------------------------------------------
/// Return the sum of two packed vectors
inline CoinPackedVector operator+(const CoinPackedVectorBase& op1,
				  const CoinPackedVectorBase& op2)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, op2, std::plus<double>());
   return retVal;
}

/// Return the difference of two packed vectors
inline CoinPackedVector operator-(const CoinPackedVectorBase& op1,
				 const CoinPackedVectorBase& op2)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, op2, std::minus<double>());
   return retVal;
}

/// Return the element-wise product of two packed vectors
inline CoinPackedVector operator*(const CoinPackedVectorBase& op1,
				  const CoinPackedVectorBase& op2)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, op2, std::multiplies<double>());
   return retVal;
}

/// Return the element-wise ratio of two packed vectors
inline CoinPackedVector operator/(const CoinPackedVectorBase& op1,
				  const CoinPackedVectorBase& op2)
{
   CoinPackedVector retVal;
   retVal.setTestForDuplicateIndex(true);
   binaryOp(retVal, op1, op2, std::divides<double>());
   return retVal;
}
//@}

/// Returns the dot product of two CoinPackedVector objects whose elements are
/// doubles.  Use this version if the vectors are *not* guaranteed to be sorted.
inline double sparseDotProduct(const CoinPackedVectorBase& op1,
                        const CoinPackedVectorBase& op2){
  int len, i;
  double acc = 0.0;
  CoinPackedVector retVal;

  CoinPackedVector retval = op1*op2;
  len = retval.getNumElements();
  double * CParray = retval.getElements();

  for(i = 0; i < len; i++){
    acc += CParray[i];
  }
return acc;
}


/// Returns the dot product of two sorted CoinPackedVector objects.
///  The vectors should be sorted in ascending order of indices.
inline double sortedSparseDotProduct(const CoinPackedVectorBase& op1,
                        const CoinPackedVectorBase& op2){
  int i, j, len1, len2;
  double acc = 0.0;

  const double* v1val = op1.getElements();
  const double* v2val = op2.getElements();
  const int* v1ind = op1.getIndices();
  const int* v2ind = op2.getIndices();

  len1 = op1.getNumElements();
  len2 = op2.getNumElements();

  i = 0;
  j = 0;

  while(i < len1 && j < len2){
    if(v1ind[i] == v2ind[j]){
      acc += v1val[i] * v2val[j];
      i++;
      j++;
   }
    else if(v2ind[j] < v1ind[i]){
      j++;
    }
    else{
      i++;
    } // end if-else-elseif
  } // end while
  return acc;
 }


//-----------------------------------------------------------------------------

/**@name Arithmetic operators on packed vector and a constant. <br>
   These functions create a packed vector as a result. That packed vector will
   have the same indices as <code>op1</code> and the specified operation is
   done entry-wise with the given value. */
//@{
/// Return the sum of a packed vector and a constant
inline CoinPackedVector
operator+(const CoinPackedVectorBase& op1, double value)
{
   CoinPackedVector retVal(op1);
   retVal += value;
   return retVal;
}

/// Return the difference of a packed vector and a constant
inline CoinPackedVector
operator-(const CoinPackedVectorBase& op1, double value)
{
   CoinPackedVector retVal(op1);
   retVal -= value;
   return retVal;
}

/// Return the element-wise product of a packed vector and a constant
inline CoinPackedVector
operator*(const CoinPackedVectorBase& op1, double value)
{
   CoinPackedVector retVal(op1);
   retVal *= value;
   return retVal;
}

/// Return the element-wise ratio of a packed vector and a constant
inline CoinPackedVector
operator/(const CoinPackedVectorBase& op1, double value)
{
   CoinPackedVector retVal(op1);
   retVal /= value;
   return retVal;
}

//-----------------------------------------------------------------------------

/// Return the sum of a constant and a packed vector
inline CoinPackedVector
operator+(double value, const CoinPackedVectorBase& op1)
{
   CoinPackedVector retVal(op1);
   retVal += value;
   return retVal;
}

/// Return the difference of a constant and a packed vector
inline CoinPackedVector
operator-(double value, const CoinPackedVectorBase& op1)
{
   CoinPackedVector retVal(op1);
   const int size = retVal.getNumElements();
   double* elems = retVal.getElements();
   for (int i = 0; i < size; ++i) {
      elems[i] = value - elems[i];
   }
   return retVal;
}

/// Return the element-wise product of a constant and a packed vector
inline CoinPackedVector
operator*(double value, const CoinPackedVectorBase& op1)
{
   CoinPackedVector retVal(op1);
   retVal *= value;
   return retVal;
}

/// Return the element-wise ratio of a a constant and packed vector
inline CoinPackedVector
operator/(double value, const CoinPackedVectorBase& op1)
{
   CoinPackedVector retVal(op1);
   const int size = retVal.getNumElements();
   double* elems = retVal.getElements();
   for (int i = 0; i < size; ++i) {
      elems[i] = value / elems[i];
   }
   return retVal;
}
//@}

//#############################################################################
/** A function that tests the methods in the CoinPackedVector class. The
    only reason for it not to be a member method is that this way it doesn't
    have to be compiled into the library. And that's a gain, because the
    library should be compiled with optimization on, but this method should be
    compiled with debugging. */
void
CoinPackedVectorUnitTest();

#endif