/usr/include/coin/IpIpoptCalculatedQuantities.hpp is in coinor-libipopt-dev 3.11.9-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 | // Copyright (C) 2004, 2011 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpIpoptCalculatedQuantities.hpp 2020 2011-06-16 20:46:16Z andreasw $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPIPOPTCALCULATEDQUANTITIES_HPP__
#define __IPIPOPTCALCULATEDQUANTITIES_HPP__
#include "IpSmartPtr.hpp"
#include "IpCachedResults.hpp"
#include <string>
namespace Ipopt
{
class IpoptNLP;
class IpoptData;
class Vector;
class Matrix;
class SymMatrix;
class Journalist;
class OptionsList;
class RegisteredOptions;
/** Norm types */
enum ENormType {
NORM_1=0,
NORM_2,
NORM_MAX
};
/** Base class for additional calculated quantities that is special
* to a particular type of algorithm, such as the CG penalty
* function, or using iterative linear solvers. The regular
* IpoptCalculatedQuantities object should be given a derivation of
* this base class when it is created. */
class IpoptAdditionalCq : public ReferencedObject
{
public:
/**@name Constructors/Destructors */
//@{
/** Default Constructor */
IpoptAdditionalCq()
{}
/** Default destructor */
virtual ~IpoptAdditionalCq()
{}
//@}
/** This method is called to initialize the global algorithmic
* parameters. The parameters are taken from the OptionsList
* object. */
virtual bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix) = 0;
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
IpoptAdditionalCq(const IpoptAdditionalCq&);
/** Overloaded Equals Operator */
void operator=(const IpoptAdditionalCq&);
//@}
};
/** Class for all IPOPT specific calculated quantities.
*
*/
class IpoptCalculatedQuantities : public ReferencedObject
{
public:
/**@name Constructors/Destructors */
//@{
/** Constructor */
IpoptCalculatedQuantities(const SmartPtr<IpoptNLP>& ip_nlp,
const SmartPtr<IpoptData>& ip_data);
/** Default destructor */
virtual ~IpoptCalculatedQuantities();
//@}
/** Method for setting pointer for additional calculated
* quantities. This needs to be called before Initialized. */
void SetAddCq(SmartPtr<IpoptAdditionalCq> add_cq)
{
DBG_ASSERT(!HaveAddCq());
add_cq_ = add_cq;
}
/** Method detecting if additional object for calculated
* quantities has already been set */
bool HaveAddCq()
{
return IsValid(add_cq_);
}
/** This method must be called to initialize the global
* algorithmic parameters. The parameters are taken from the
* OptionsList object. */
bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix);
/** @name Slacks */
//@{
/** Slacks for x_L (at current iterate) */
SmartPtr<const Vector> curr_slack_x_L();
/** Slacks for x_U (at current iterate) */
SmartPtr<const Vector> curr_slack_x_U();
/** Slacks for s_L (at current iterate) */
SmartPtr<const Vector> curr_slack_s_L();
/** Slacks for s_U (at current iterate) */
SmartPtr<const Vector> curr_slack_s_U();
/** Slacks for x_L (at trial point) */
SmartPtr<const Vector> trial_slack_x_L();
/** Slacks for x_U (at trial point) */
SmartPtr<const Vector> trial_slack_x_U();
/** Slacks for s_L (at trial point) */
SmartPtr<const Vector> trial_slack_s_L();
/** Slacks for s_U (at trial point) */
SmartPtr<const Vector> trial_slack_s_U();
/** Indicating whether or not we "fudged" the slacks */
Index AdjustedTrialSlacks();
/** Reset the flags for "fudged" slacks */
void ResetAdjustedTrialSlacks();
//@}
/** @name Objective function */
//@{
/** Value of objective function (at current point) */
virtual Number curr_f();
/** Unscaled value of the objective function (at the current point) */
virtual Number unscaled_curr_f();
/** Value of objective function (at trial point) */
virtual Number trial_f();
/** Unscaled value of the objective function (at the trial point) */
virtual Number unscaled_trial_f();
/** Gradient of objective function (at current point) */
SmartPtr<const Vector> curr_grad_f();
/** Gradient of objective function (at trial point) */
SmartPtr<const Vector> trial_grad_f();
//@}
/** @name Barrier Objective Function */
//@{
/** Barrier Objective Function Value
* (at current iterate with current mu)
*/
virtual Number curr_barrier_obj();
/** Barrier Objective Function Value
* (at trial point with current mu)
*/
virtual Number trial_barrier_obj();
/** Gradient of barrier objective function with respect to x
* (at current point with current mu) */
SmartPtr<const Vector> curr_grad_barrier_obj_x();
/** Gradient of barrier objective function with respect to s
* (at current point with current mu) */
SmartPtr<const Vector> curr_grad_barrier_obj_s();
/** Gradient of the damping term with respect to x (times
* kappa_d) */
SmartPtr<const Vector> grad_kappa_times_damping_x();
/** Gradient of the damping term with respect to s (times
* kappa_d) */
SmartPtr<const Vector> grad_kappa_times_damping_s();
//@}
/** @name Constraints */
//@{
/** c(x) (at current point) */
SmartPtr<const Vector> curr_c();
/** unscaled c(x) (at current point) */
SmartPtr<const Vector> unscaled_curr_c();
/** c(x) (at trial point) */
SmartPtr<const Vector> trial_c();
/** unscaled c(x) (at trial point) */
SmartPtr<const Vector> unscaled_trial_c();
/** d(x) (at current point) */
SmartPtr<const Vector> curr_d();
/** unscaled d(x) (at current point) */
SmartPtr<const Vector> unscaled_curr_d();
/** d(x) (at trial point) */
SmartPtr<const Vector> trial_d();
/** d(x) - s (at current point) */
SmartPtr<const Vector> curr_d_minus_s();
/** d(x) - s (at trial point) */
SmartPtr<const Vector> trial_d_minus_s();
/** Jacobian of c (at current point) */
SmartPtr<const Matrix> curr_jac_c();
/** Jacobian of c (at trial point) */
SmartPtr<const Matrix> trial_jac_c();
/** Jacobian of d (at current point) */
SmartPtr<const Matrix> curr_jac_d();
/** Jacobian of d (at trial point) */
SmartPtr<const Matrix> trial_jac_d();
/** Product of Jacobian (evaluated at current point) of C
* transpose with general vector */
SmartPtr<const Vector> curr_jac_cT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at trial point) of C
* transpose with general vector */
SmartPtr<const Vector> trial_jac_cT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of D
* transpose with general vector */
SmartPtr<const Vector> curr_jac_dT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at trial point) of D
* transpose with general vector */
SmartPtr<const Vector> trial_jac_dT_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of C
* transpose with current y_c */
SmartPtr<const Vector> curr_jac_cT_times_curr_y_c();
/** Product of Jacobian (evaluated at trial point) of C
* transpose with trial y_c */
SmartPtr<const Vector> trial_jac_cT_times_trial_y_c();
/** Product of Jacobian (evaluated at current point) of D
* transpose with current y_d */
SmartPtr<const Vector> curr_jac_dT_times_curr_y_d();
/** Product of Jacobian (evaluated at trial point) of D
* transpose with trial y_d */
SmartPtr<const Vector> trial_jac_dT_times_trial_y_d();
/** Product of Jacobian (evaluated at current point) of C
* with general vector */
SmartPtr<const Vector> curr_jac_c_times_vec(const Vector& vec);
/** Product of Jacobian (evaluated at current point) of D
* with general vector */
SmartPtr<const Vector> curr_jac_d_times_vec(const Vector& vec);
/** Constraint Violation (at current iterate). This value should
* be used in the line search, and not curr_primal_infeasibility().
* What type of norm is used depends on constr_viol_normtype */
virtual Number curr_constraint_violation();
/** Constraint Violation (at trial point). This value should
* be used in the line search, and not curr_primal_infeasibility().
* What type of norm is used depends on constr_viol_normtype */
virtual Number trial_constraint_violation();
/** Real constraint violation in a given norm (at current
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number curr_nlp_constraint_violation(ENormType NormType);
/** Unscaled real constraint violation in a given norm (at current
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number unscaled_curr_nlp_constraint_violation(ENormType NormType);
/** Unscaled real constraint violation in a given norm (at trial
* iterate). This considers the inequality constraints without
* slacks. */
virtual Number unscaled_trial_nlp_constraint_violation(ENormType NormType);
//@}
/** @name Hessian matrices */
//@{
/** exact Hessian at current iterate (uncached) */
SmartPtr<const SymMatrix> curr_exact_hessian();
//@}
/** @name primal-dual error and its components */
//@{
/** x-part of gradient of Lagrangian function (at current point) */
SmartPtr<const Vector> curr_grad_lag_x();
/** x-part of gradient of Lagrangian function (at trial point) */
SmartPtr<const Vector> trial_grad_lag_x();
/** s-part of gradient of Lagrangian function (at current point) */
SmartPtr<const Vector> curr_grad_lag_s();
/** s-part of gradient of Lagrangian function (at trial point) */
SmartPtr<const Vector> trial_grad_lag_s();
/** x-part of gradient of Lagrangian function (at current point)
including linear damping term */
SmartPtr<const Vector> curr_grad_lag_with_damping_x();
/** s-part of gradient of Lagrangian function (at current point)
including linear damping term */
SmartPtr<const Vector> curr_grad_lag_with_damping_s();
/** Complementarity for x_L (for current iterate) */
SmartPtr<const Vector> curr_compl_x_L();
/** Complementarity for x_U (for current iterate) */
SmartPtr<const Vector> curr_compl_x_U();
/** Complementarity for s_L (for current iterate) */
SmartPtr<const Vector> curr_compl_s_L();
/** Complementarity for s_U (for current iterate) */
SmartPtr<const Vector> curr_compl_s_U();
/** Complementarity for x_L (for trial iterate) */
SmartPtr<const Vector> trial_compl_x_L();
/** Complementarity for x_U (for trial iterate) */
SmartPtr<const Vector> trial_compl_x_U();
/** Complementarity for s_L (for trial iterate) */
SmartPtr<const Vector> trial_compl_s_L();
/** Complementarity for s_U (for trial iterate) */
SmartPtr<const Vector> trial_compl_s_U();
/** Relaxed complementarity for x_L (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_x_L();
/** Relaxed complementarity for x_U (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_x_U();
/** Relaxed complementarity for s_L (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_s_L();
/** Relaxed complementarity for s_U (for current iterate and current mu) */
SmartPtr<const Vector> curr_relaxed_compl_s_U();
/** Primal infeasibility in a given norm (at current iterate). */
virtual Number curr_primal_infeasibility(ENormType NormType);
/** Primal infeasibility in a given norm (at trial point) */
virtual Number trial_primal_infeasibility(ENormType NormType);
/** Dual infeasibility in a given norm (at current iterate) */
virtual Number curr_dual_infeasibility(ENormType NormType);
/** Dual infeasibility in a given norm (at trial iterate) */
virtual Number trial_dual_infeasibility(ENormType NormType);
/** Unscaled dual infeasibility in a given norm (at current iterate) */
virtual Number unscaled_curr_dual_infeasibility(ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at current iterate) */
virtual Number curr_complementarity(Number mu, ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at trial iterate) */
virtual Number trial_complementarity(Number mu, ENormType NormType);
/** Complementarity (for all complementarity conditions together)
* in a given norm (at current iterate) without NLP scaling. */
virtual Number unscaled_curr_complementarity(Number mu, ENormType NormType);
/** Centrality measure (in spirit of the -infinity-neighborhood. */
Number CalcCentralityMeasure(const Vector& compl_x_L,
const Vector& compl_x_U,
const Vector& compl_s_L,
const Vector& compl_s_U);
/** Centrality measure at current point */
virtual Number curr_centrality_measure();
/** Total optimality error for the original NLP at the current
* iterate, using scaling factors based on multipliers. Note
* that here the constraint violation is measured without slacks
* (nlp_constraint_violation) */
virtual Number curr_nlp_error();
/** Total optimality error for the original NLP at the current
* iterate, but using no scaling based on multipliers, and no
* scaling for the NLP. Note that here the constraint violation
* is measured without slacks (nlp_constraint_violation) */
virtual Number unscaled_curr_nlp_error();
/** Total optimality error for the barrier problem at the
* current iterate, using scaling factors based on multipliers. */
virtual Number curr_barrier_error();
/** Norm of the primal-dual system for a given mu (at current
* iterate). The norm is defined as the sum of the 1-norms of
* dual infeasibiliy, primal infeasibility, and complementarity,
* all divided by the number of elements of the vectors of which
* the norm is taken.
*/
virtual Number curr_primal_dual_system_error(Number mu);
/** Norm of the primal-dual system for a given mu (at trial
* iterate). The norm is defined as the sum of the 1-norms of
* dual infeasibiliy, primal infeasibility, and complementarity,
* all divided by the number of elements of the vectors of which
* the norm is taken.
*/
virtual Number trial_primal_dual_system_error(Number mu);
//@}
/** @name Computing fraction-to-the-boundary step sizes */
//@{
/** Fraction to the boundary from (current) primal variables x and s
* for a given step */
Number primal_frac_to_the_bound(Number tau,
const Vector& delta_x,
const Vector& delta_s);
/** Fraction to the boundary from (current) primal variables x and s
* for internal (current) step */
Number curr_primal_frac_to_the_bound(Number tau);
/** Fraction to the boundary from (current) dual variables z and v
* for a given step */
Number dual_frac_to_the_bound(Number tau,
const Vector& delta_z_L,
const Vector& delta_z_U,
const Vector& delta_v_L,
const Vector& delta_v_U);
/** Fraction to the boundary from (current) dual variables z and v
* for a given step, without caching */
Number uncached_dual_frac_to_the_bound(Number tau,
const Vector& delta_z_L,
const Vector& delta_z_U,
const Vector& delta_v_L,
const Vector& delta_v_U);
/** Fraction to the boundary from (current) dual variables z and v
* for internal (current) step */
Number curr_dual_frac_to_the_bound(Number tau);
/** Fraction to the boundary from (current) slacks for a given
* step in the slacks. Usually, one will use the
* primal_frac_to_the_bound method to compute the primal fraction
* to the boundary step size, but if it is cheaper to provide the
* steps in the slacks directly (e.g. when the primal step sizes
* are only temporary), the this method is more efficient. This
* method does not cache computations. */
Number uncached_slack_frac_to_the_bound(Number tau,
const Vector& delta_x_L,
const Vector& delta_x_U,
const Vector& delta_s_L,
const Vector& delta_s_U);
//@}
/** @name Sigma matrices */
//@{
SmartPtr<const Vector> curr_sigma_x();
SmartPtr<const Vector> curr_sigma_s();
//@}
/** average of current values of the complementarities */
Number curr_avrg_compl();
/** average of trial values of the complementarities */
Number trial_avrg_compl();
/** inner_product of current barrier obj. fn. gradient with
* current search direction */
Number curr_gradBarrTDelta();
/** Compute the norm of a specific type of a set of vectors (uncached) */
Number
CalcNormOfType(ENormType NormType,
std::vector<SmartPtr<const Vector> > vecs);
/** Compute the norm of a specific type of two vectors (uncached) */
Number
CalcNormOfType(ENormType NormType,
const Vector& vec1, const Vector& vec2);
/** Norm type used for calculating constraint violation */
ENormType constr_viol_normtype() const
{
return constr_viol_normtype_;
}
/** Method returning true if this is a square problem */
bool IsSquareProblem() const;
/** Method returning the IpoptNLP object. This should only be
* used with care! */
SmartPtr<IpoptNLP>& GetIpoptNLP()
{
return ip_nlp_;
}
IpoptAdditionalCq& AdditionalCq()
{
DBG_ASSERT(IsValid(add_cq_));
return *add_cq_;
}
/** Methods for IpoptType */
//@{
/** Called by IpoptType to register the options */
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Default Constructor */
IpoptCalculatedQuantities();
/** Copy Constructor */
IpoptCalculatedQuantities(const IpoptCalculatedQuantities&);
/** Overloaded Equals Operator */
void operator=(const IpoptCalculatedQuantities&);
//@}
/** @name Pointers for easy access to data and NLP information */
//@{
/** Ipopt NLP object */
SmartPtr<IpoptNLP> ip_nlp_;
/** Ipopt Data object */
SmartPtr<IpoptData> ip_data_;
/** Chen-Goldfarb specific calculated quantities */
SmartPtr<IpoptAdditionalCq> add_cq_;
//@}
/** @name Algorithmic Parameters that can be set throught the
* options list. Those parameters are initialize by calling the
* Initialize method.*/
//@{
/** Parameter in formula for computing overall primal-dual
* optimality error */
Number s_max_;
/** Weighting factor for the linear damping term added to the
* barrier objective funciton. */
Number kappa_d_;
/** fractional movement allowed in bounds */
Number slack_move_;
/** Norm type to be used when calculating the constraint violation */
ENormType constr_viol_normtype_;
/** Flag indicating whether the TNLP with identical structure has
* already been solved before. */
bool warm_start_same_structure_;
/** Desired value of the barrier parameter */
Number mu_target_;
//@}
/** @name Caches for slacks */
//@{
CachedResults< SmartPtr<Vector> > curr_slack_x_L_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_x_U_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_s_L_cache_;
CachedResults< SmartPtr<Vector> > curr_slack_s_U_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_x_L_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_x_U_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_s_L_cache_;
CachedResults< SmartPtr<Vector> > trial_slack_s_U_cache_;
Index num_adjusted_slack_x_L_;
Index num_adjusted_slack_x_U_;
Index num_adjusted_slack_s_L_;
Index num_adjusted_slack_s_U_;
//@}
/** @name Cached for objective function stuff */
//@{
CachedResults<Number> curr_f_cache_;
CachedResults<Number> trial_f_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_f_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_f_cache_;
//@}
/** @name Caches for barrier function stuff */
//@{
CachedResults<Number> curr_barrier_obj_cache_;
CachedResults<Number> trial_barrier_obj_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_barrier_obj_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_barrier_obj_s_cache_;
CachedResults< SmartPtr<const Vector> > grad_kappa_times_damping_x_cache_;
CachedResults< SmartPtr<const Vector> > grad_kappa_times_damping_s_cache_;
//@}
/** @name Caches for constraint stuff */
//@{
CachedResults< SmartPtr<const Vector> > curr_c_cache_;
CachedResults< SmartPtr<const Vector> > trial_c_cache_;
CachedResults< SmartPtr<const Vector> > curr_d_cache_;
CachedResults< SmartPtr<const Vector> > trial_d_cache_;
CachedResults< SmartPtr<const Vector> > curr_d_minus_s_cache_;
CachedResults< SmartPtr<const Vector> > trial_d_minus_s_cache_;
CachedResults< SmartPtr<const Matrix> > curr_jac_c_cache_;
CachedResults< SmartPtr<const Matrix> > trial_jac_c_cache_;
CachedResults< SmartPtr<const Matrix> > curr_jac_d_cache_;
CachedResults< SmartPtr<const Matrix> > trial_jac_d_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_cT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > trial_jac_cT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_dT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > trial_jac_dT_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_c_times_vec_cache_;
CachedResults< SmartPtr<const Vector> > curr_jac_d_times_vec_cache_;
CachedResults<Number> curr_constraint_violation_cache_;
CachedResults<Number> trial_constraint_violation_cache_;
CachedResults<Number> curr_nlp_constraint_violation_cache_;
CachedResults<Number> unscaled_curr_nlp_constraint_violation_cache_;
CachedResults<Number> unscaled_trial_nlp_constraint_violation_cache_;
//@}
/** Cache for the exact Hessian */
CachedResults< SmartPtr<const SymMatrix> > curr_exact_hessian_cache_;
/** @name Components of primal-dual error */
//@{
CachedResults< SmartPtr<const Vector> > curr_grad_lag_x_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_lag_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_s_cache_;
CachedResults< SmartPtr<const Vector> > trial_grad_lag_s_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_with_damping_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_grad_lag_with_damping_s_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_compl_s_U_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > trial_compl_s_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_x_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_x_U_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_s_L_cache_;
CachedResults< SmartPtr<const Vector> > curr_relaxed_compl_s_U_cache_;
CachedResults<Number> curr_primal_infeasibility_cache_;
CachedResults<Number> trial_primal_infeasibility_cache_;
CachedResults<Number> curr_dual_infeasibility_cache_;
CachedResults<Number> trial_dual_infeasibility_cache_;
CachedResults<Number> unscaled_curr_dual_infeasibility_cache_;
CachedResults<Number> curr_complementarity_cache_;
CachedResults<Number> trial_complementarity_cache_;
CachedResults<Number> curr_centrality_measure_cache_;
CachedResults<Number> curr_nlp_error_cache_;
CachedResults<Number> unscaled_curr_nlp_error_cache_;
CachedResults<Number> curr_barrier_error_cache_;
CachedResults<Number> curr_primal_dual_system_error_cache_;
CachedResults<Number> trial_primal_dual_system_error_cache_;
//@}
/** @name Caches for fraction to the boundary step sizes */
//@{
CachedResults<Number> primal_frac_to_the_bound_cache_;
CachedResults<Number> dual_frac_to_the_bound_cache_;
//@}
/** @name Caches for sigma matrices */
//@{
CachedResults< SmartPtr<const Vector> > curr_sigma_x_cache_;
CachedResults< SmartPtr<const Vector> > curr_sigma_s_cache_;
//@}
/** Cache for average of current complementarity */
CachedResults<Number> curr_avrg_compl_cache_;
/** Cache for average of trial complementarity */
CachedResults<Number> trial_avrg_compl_cache_;
/** Cache for grad barrier obj. fn inner product with step */
CachedResults<Number> curr_gradBarrTDelta_cache_;
/** @name Indicator vectors required for the linear damping terms
* to handle unbounded solution sets. */
//@{
/** Indicator vector for selecting the elements in x that have
* only lower bounds. */
SmartPtr<Vector> dampind_x_L_;
/** Indicator vector for selecting the elements in x that have
* only upper bounds. */
SmartPtr<Vector> dampind_x_U_;
/** Indicator vector for selecting the elements in s that have
* only lower bounds. */
SmartPtr<Vector> dampind_s_L_;
/** Indicator vector for selecting the elements in s that have
* only upper bounds. */
SmartPtr<Vector> dampind_s_U_;
//@}
/** @name Temporary vectors for intermediate calcuations. We keep
* these around to avoid unnecessarily many new allocations of
* Vectors. */
//@{
SmartPtr<Vector> tmp_x_;
SmartPtr<Vector> tmp_s_;
SmartPtr<Vector> tmp_c_;
SmartPtr<Vector> tmp_d_;
SmartPtr<Vector> tmp_x_L_;
SmartPtr<Vector> tmp_x_U_;
SmartPtr<Vector> tmp_s_L_;
SmartPtr<Vector> tmp_s_U_;
/** Accessor methods for the temporary vectors */
Vector& Tmp_x();
Vector& Tmp_s();
Vector& Tmp_c();
Vector& Tmp_d();
Vector& Tmp_x_L();
Vector& Tmp_x_U();
Vector& Tmp_s_L();
Vector& Tmp_s_U();
//@}
/** flag indicating if Initialize method has been called (for
* debugging) */
bool initialize_called_;
/** @name Auxiliary functions */
//@{
/** Compute new vector containing the slack to a lower bound
* (uncached)
*/
SmartPtr<Vector> CalcSlack_L(const Matrix& P,
const Vector& x,
const Vector& x_bound);
/** Compute new vector containing the slack to a upper bound
* (uncached)
*/
SmartPtr<Vector> CalcSlack_U(const Matrix& P,
const Vector& x,
const Vector& x_bound);
/** Compute barrier term at given point
* (uncached)
*/
Number CalcBarrierTerm(Number mu,
const Vector& slack_x_L,
const Vector& slack_x_U,
const Vector& slack_s_L,
const Vector& slack_s_U);
/** Compute complementarity for slack / multiplier pair */
SmartPtr<const Vector> CalcCompl(const Vector& slack,
const Vector& mult);
/** Compute fraction to the boundary parameter for lower and upper bounds */
Number CalcFracToBound(const Vector& slack_L,
Vector& tmp_L,
const Matrix& P_L,
const Vector& slack_U,
Vector& tmp_U,
const Matrix& P_U,
const Vector& delta,
Number tau);
/** Compute the scaling factors for the optimality error. */
void ComputeOptimalityErrorScaling(const Vector& y_c, const Vector& y_d,
const Vector& z_L, const Vector& z_U,
const Vector& v_L, const Vector& v_U,
Number s_max,
Number& s_d, Number& s_c);
/** Check if slacks are becoming too small. If slacks are
* becoming too small, they are change. The return value is the
* number of corrected slacks. */
Index CalculateSafeSlack(SmartPtr<Vector>& slack,
const SmartPtr<const Vector>& bound,
const SmartPtr<const Vector>& curr_point,
const SmartPtr<const Vector>& multiplier);
/** Computes the indicator vectors that can be used to filter out
* those entries in the slack_... variables, that correspond to
* variables with only lower and upper bounds. This is required
* for the linear damping term in the barrier objective function
* to handle unbounded solution sets. */
void ComputeDampingIndicators(SmartPtr<const Vector>& dampind_x_L,
SmartPtr<const Vector>& dampind_x_U,
SmartPtr<const Vector>& dampind_s_L,
SmartPtr<const Vector>& dampind_s_U);
/** Check if we are in the restoration phase. Returns true, if the
* ip_nlp is of the type RestoIpoptNLP. ToDo: We probably want to
* handle this more elegant and don't have an explicit dependency
* here. Now I added this because otherwise the caching doesn't
* work properly since the restoration phase objective function
* depends on the current barrier parameter. */
bool in_restoration_phase();
//@}
};
} // namespace Ipopt
#endif
|