/usr/include/firefox-esr-52/js/GCVector.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_GCVector_h
#define js_GCVector_h
#include "mozilla/Vector.h"
#include "js/GCPolicyAPI.h"
#include "js/RootingAPI.h"
#include "js/TracingAPI.h"
#include "js/Vector.h"
namespace JS {
// A GCVector is a Vector with an additional trace method that knows how
// to visit all of the items stored in the Vector. For vectors that contain GC
// things, this is usually more convenient than manually iterating and marking
// the contents.
//
// Most types of GC pointers as keys and values can be traced with no extra
// infrastructure. For structs and non-gc-pointer members, ensure that there is
// a specialization of GCPolicy<T> with an appropriate trace method available
// to handle the custom type. Generic helpers can be found in
// js/public/TracingAPI.h.
//
// Note that although this Vector's trace will deal correctly with moved items,
// it does not itself know when to barrier or trace items. To function properly
// it must either be used with Rooted, or barriered and traced manually.
template <typename T,
size_t MinInlineCapacity = 0,
typename AllocPolicy = js::TempAllocPolicy>
class GCVector
{
mozilla::Vector<T, MinInlineCapacity, AllocPolicy> vector;
public:
explicit GCVector(AllocPolicy alloc = AllocPolicy())
: vector(alloc)
{}
GCVector(GCVector&& vec)
: vector(mozilla::Move(vec.vector))
{}
GCVector& operator=(GCVector&& vec) {
vector = mozilla::Move(vec.vector);
return *this;
}
size_t length() const { return vector.length(); }
bool empty() const { return vector.empty(); }
size_t capacity() const { return vector.capacity(); }
T* begin() { return vector.begin(); }
const T* begin() const { return vector.begin(); }
T* end() { return vector.end(); }
const T* end() const { return vector.end(); }
T& operator[](size_t i) { return vector[i]; }
const T& operator[](size_t i) const { return vector[i]; }
T& back() { return vector.back(); }
const T& back() const { return vector.back(); }
bool initCapacity(size_t cap) { return vector.initCapacity(cap); }
bool reserve(size_t req) { return vector.reserve(req); }
void shrinkBy(size_t amount) { return vector.shrinkBy(amount); }
bool growBy(size_t amount) { return vector.growBy(amount); }
bool resize(size_t newLen) { return vector.resize(newLen); }
void clear() { return vector.clear(); }
template<typename U> bool append(U&& item) { return vector.append(mozilla::Forward<U>(item)); }
template<typename... Args>
bool
emplaceBack(Args&&... args) {
return vector.emplaceBack(mozilla::Forward<Args>(args)...);
}
template<typename U>
void infallibleAppend(U&& aU) {
return vector.infallibleAppend(mozilla::Forward<U>(aU));
}
void infallibleAppendN(const T& aT, size_t aN) {
return vector.infallibleAppendN(aT, aN);
}
template<typename U> void
infallibleAppend(const U* aBegin, const U* aEnd) {
return vector.infallibleAppend(aBegin, aEnd);
}
template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) {
return vector.infallibleAppend(aBegin, aLength);
}
template<typename U, size_t O, class BP>
bool appendAll(const mozilla::Vector<U, O, BP>& aU) { return vector.appendAll(aU); }
template<typename U, size_t O, class BP>
bool appendAll(const GCVector<U, O, BP>& aU) { return vector.append(aU.begin(), aU.length()); }
bool appendN(const T& val, size_t count) { return vector.appendN(val, count); }
template<typename U> bool append(const U* aBegin, const U* aEnd) {
return vector.append(aBegin, aEnd);
}
template<typename U> bool append(const U* aBegin, size_t aLength) {
return vector.append(aBegin, aLength);
}
void popBack() { return vector.popBack(); }
T popCopy() { return vector.popCopy(); }
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return vector.sizeOfExcludingThis(mallocSizeOf);
}
size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return vector.sizeOfIncludingThis(mallocSizeOf);
}
static void trace(GCVector* vec, JSTracer* trc) { vec->trace(trc); }
void trace(JSTracer* trc) {
for (auto& elem : vector)
GCPolicy<T>::trace(trc, &elem, "vector element");
}
};
} // namespace JS
namespace js {
template <typename Outer, typename T, size_t Capacity, typename AllocPolicy>
class GCVectorOperations
{
using Vec = JS::GCVector<T, Capacity, AllocPolicy>;
const Vec& vec() const { return static_cast<const Outer*>(this)->get(); }
public:
const AllocPolicy& allocPolicy() const { return vec().allocPolicy(); }
size_t length() const { return vec().length(); }
bool empty() const { return vec().empty(); }
size_t capacity() const { return vec().capacity(); }
const T* begin() const { return vec().begin(); }
const T* end() const { return vec().end(); }
const T& back() const { return vec().back(); }
JS::Handle<T> operator[](size_t aIndex) const {
return JS::Handle<T>::fromMarkedLocation(&vec().operator[](aIndex));
}
};
template <typename Outer, typename T, size_t Capacity, typename AllocPolicy>
class MutableGCVectorOperations
: public GCVectorOperations<Outer, T, Capacity, AllocPolicy>
{
using Vec = JS::GCVector<T, Capacity, AllocPolicy>;
const Vec& vec() const { return static_cast<const Outer*>(this)->get(); }
Vec& vec() { return static_cast<Outer*>(this)->get(); }
public:
const AllocPolicy& allocPolicy() const { return vec().allocPolicy(); }
AllocPolicy& allocPolicy() { return vec().allocPolicy(); }
const T* begin() const { return vec().begin(); }
T* begin() { return vec().begin(); }
const T* end() const { return vec().end(); }
T* end() { return vec().end(); }
const T& back() const { return vec().back(); }
T& back() { return vec().back(); }
JS::Handle<T> operator[](size_t aIndex) const {
return JS::Handle<T>::fromMarkedLocation(&vec().operator[](aIndex));
}
JS::MutableHandle<T> operator[](size_t aIndex) {
return JS::MutableHandle<T>::fromMarkedLocation(&vec().operator[](aIndex));
}
bool initCapacity(size_t aRequest) { return vec().initCapacity(aRequest); }
bool reserve(size_t aRequest) { return vec().reserve(aRequest); }
void shrinkBy(size_t aIncr) { vec().shrinkBy(aIncr); }
bool growBy(size_t aIncr) { return vec().growBy(aIncr); }
bool resize(size_t aNewLength) { return vec().resize(aNewLength); }
bool growByUninitialized(size_t aIncr) { return vec().growByUninitialized(aIncr); }
void infallibleGrowByUninitialized(size_t aIncr) { vec().infallibleGrowByUninitialized(aIncr); }
bool resizeUninitialized(size_t aNewLength) { return vec().resizeUninitialized(aNewLength); }
void clear() { vec().clear(); }
void clearAndFree() { vec().clearAndFree(); }
template<typename U> bool append(U&& aU) { return vec().append(mozilla::Forward<U>(aU)); }
template<typename... Args> bool emplaceBack(Args&&... aArgs) {
return vec().emplaceBack(mozilla::Forward<Args...>(aArgs...));
}
template<typename U, size_t O, class BP>
bool appendAll(const mozilla::Vector<U, O, BP>& aU) { return vec().appendAll(aU); }
template<typename U, size_t O, class BP>
bool appendAll(const JS::GCVector<U, O, BP>& aU) { return vec().appendAll(aU); }
bool appendN(const T& aT, size_t aN) { return vec().appendN(aT, aN); }
template<typename U> bool append(const U* aBegin, const U* aEnd) {
return vec().append(aBegin, aEnd);
}
template<typename U> bool append(const U* aBegin, size_t aLength) {
return vec().append(aBegin, aLength);
}
template<typename U> void infallibleAppend(U&& aU) {
vec().infallibleAppend(mozilla::Forward<U>(aU));
}
void infallibleAppendN(const T& aT, size_t aN) { vec().infallibleAppendN(aT, aN); }
template<typename U> void infallibleAppend(const U* aBegin, const U* aEnd) {
vec().infallibleAppend(aBegin, aEnd);
}
template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) {
vec().infallibleAppend(aBegin, aLength);
}
void popBack() { vec().popBack(); }
T popCopy() { return vec().popCopy(); }
template<typename U> T* insert(T* aP, U&& aVal) {
return vec().insert(aP, mozilla::Forward<U>(aVal));
}
void erase(T* aT) { vec().erase(aT); }
void erase(T* aBegin, T* aEnd) { vec().erase(aBegin, aEnd); }
};
template <typename T, size_t N, typename AP>
class RootedBase<JS::GCVector<T,N,AP>>
: public MutableGCVectorOperations<JS::Rooted<JS::GCVector<T,N,AP>>, T,N,AP>
{};
template <typename T, size_t N, typename AP>
class MutableHandleBase<JS::GCVector<T,N,AP>>
: public MutableGCVectorOperations<JS::MutableHandle<JS::GCVector<T,N,AP>>, T,N,AP>
{};
template <typename T, size_t N, typename AP>
class HandleBase<JS::GCVector<T,N,AP>>
: public GCVectorOperations<JS::Handle<JS::GCVector<T,N,AP>>, T,N,AP>
{};
template <typename T, size_t N, typename AP>
class PersistentRootedBase<JS::GCVector<T,N,AP>>
: public MutableGCVectorOperations<JS::PersistentRooted<JS::GCVector<T,N,AP>>, T,N,AP>
{};
} // namespace js
#endif // js_GCVector_h
|