This file is indexed.

/usr/include/firefox-esr-52/mozilla/gfx/PathHelpers.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_PATHHELPERS_H_
#define MOZILLA_GFX_PATHHELPERS_H_

#include "2D.h"
#include "UserData.h"

#include <cmath>

namespace mozilla {
namespace gfx {

// Kappa constant for 90-degree angle
const Float kKappaFactor = 0.55191497064665766025f;

// Calculate kappa constant for partial curve. The sign of angle in the
// tangent will actually ensure this is negative for a counter clockwise
// sweep, so changing signs later isn't needed.
inline Float ComputeKappaFactor(Float aAngle)
{
  return (4.0f / 3.0f) * tanf(aAngle / 4.0f);
}

/**
 * Draws a partial arc <= 90 degrees given exact start and end points.
 * Assumes that it is continuing from an already specified start point.
 */
template <typename T>
inline void PartialArcToBezier(T* aSink,
                               const Point& aStartOffset, const Point& aEndOffset,
                               const Matrix& aTransform,
                               Float aKappaFactor = kKappaFactor)
{
  Point cp1 =
    aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor;

  Point cp2 =
    aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor;

  aSink->BezierTo(aTransform.TransformPoint(cp1),
                  aTransform.TransformPoint(cp2),
                  aTransform.TransformPoint(aEndOffset));
}

/**
 * Draws an acute arc (<= 90 degrees) given exact start and end points.
 * Specialized version avoiding kappa calculation.
 */
template <typename T>
inline void AcuteArcToBezier(T* aSink,
                             const Point& aOrigin, const Size& aRadius,
                             const Point& aStartPoint, const Point& aEndPoint,
                             Float aKappaFactor = kKappaFactor)
{
  aSink->LineTo(aStartPoint);
  if (!aRadius.IsEmpty()) {
    Float kappaX = aKappaFactor * aRadius.width / aRadius.height;
    Float kappaY = aKappaFactor * aRadius.height / aRadius.width;
    Point startOffset = aStartPoint - aOrigin;
    Point endOffset = aEndPoint - aOrigin;
    aSink->BezierTo(aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY),
                    aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY),
                    aEndPoint);
  } else if (aEndPoint != aStartPoint) {
    aSink->LineTo(aEndPoint);
  }
}

/**
 * Draws an acute arc (<= 90 degrees) given exact start and end points.
 */
template <typename T>
inline void AcuteArcToBezier(T* aSink,
                             const Point& aOrigin, const Size& aRadius,
                             const Point& aStartPoint, const Point& aEndPoint,
                             Float aStartAngle, Float aEndAngle)
{
  AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint,
                   ComputeKappaFactor(aEndAngle - aStartAngle));
}

template <typename T>
void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius,
                 float aStartAngle, float aEndAngle, bool aAntiClockwise,
                 float aRotation = 0.0f)
{
  Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;

  // Calculate the total arc we're going to sweep.
  Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection;

  // Clockwise we always sweep from the smaller to the larger angle, ccw
  // it's vice versa.
  if (arcSweepLeft < 0) {
    // Rerverse sweep is modulo'd into range rather than clamped.
    arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI));
    // Recalculate the start angle to land closer to end angle.
    aStartAngle = aEndAngle - arcSweepLeft * sweepDirection;
  } else if (arcSweepLeft > Float(2.0f * M_PI)) {
    // Sweeping more than 2 * pi is a full circle.
    arcSweepLeft = Float(2.0f * M_PI);
  }

  Float currentStartAngle = aStartAngle;
  Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle));
  Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height);
  if (aRotation != 0.0f) {
    transform *= Matrix::Rotation(aRotation);
  }
  transform.PostTranslate(aOrigin);
  aSink->LineTo(transform.TransformPoint(currentStartOffset));

  while (arcSweepLeft > 0) {
    Float currentEndAngle =
      currentStartAngle + std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection;
    Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle));

    PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform,
                       ComputeKappaFactor(currentEndAngle - currentStartAngle));

    // We guarantee here the current point is the start point of the next
    // curve segment.
    arcSweepLeft -= Float(M_PI / 2.0f);
    currentStartAngle = currentEndAngle;
    currentStartOffset = currentEndOffset;
  }
}

/* This is basically the ArcToBezier with the parameters for drawing a circle
 * inlined which vastly simplifies it and avoids a bunch of transcedental function
 * calls which should make it faster. */
template <typename T>
void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius)
{
  Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y);
  Point currentStartOffset(1, 0);

  aSink->LineTo(transform.TransformPoint(currentStartOffset));

  for (int i = 0; i < 4; i++) {
    // cos(x+pi/2) == -sin(x)
    // sin(x+pi/2) == cos(x)
    Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x);

    PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform);

    // We guarantee here the current point is the start point of the next
    // curve segment.
    currentStartOffset = currentEndOffset;
  }
}

/**
 * Appends a path represending a rectangle to the path being built by
 * aPathBuilder.
 *
 * aRect           The rectangle to append.
 * aDrawClockwise  If set to true, the path will start at the left of the top
 *                 left edge and draw clockwise. If set to false the path will
 *                 start at the right of the top left edge and draw counter-
 *                 clockwise.
 */
GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder,
                                const Rect& aRect,
                                bool aDrawClockwise = true);

inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget,
                                          const Rect& aRect,
                                          bool aDrawClockwise = true)
{
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
  AppendRectToPath(builder, aRect, aDrawClockwise);
  return builder->Finish();
}

struct RectCornerRadii {
  Size radii[RectCorner::Count];

  RectCornerRadii() {}

  explicit RectCornerRadii(Float radius) {
    for (int i = 0; i < RectCorner::Count; i++) {
      radii[i].SizeTo(radius, radius);
    }
  }

  explicit RectCornerRadii(Float radiusX, Float radiusY) {
    for (int i = 0; i < RectCorner::Count; i++) {
      radii[i].SizeTo(radiusX, radiusY);
    }
  }

  RectCornerRadii(Float tl, Float tr, Float br, Float bl) {
    radii[RectCorner::TopLeft].SizeTo(tl, tl);
    radii[RectCorner::TopRight].SizeTo(tr, tr);
    radii[RectCorner::BottomRight].SizeTo(br, br);
    radii[RectCorner::BottomLeft].SizeTo(bl, bl);
  }

  RectCornerRadii(const Size& tl, const Size& tr,
                  const Size& br, const Size& bl) {
    radii[RectCorner::TopLeft] = tl;
    radii[RectCorner::TopRight] = tr;
    radii[RectCorner::BottomRight] = br;
    radii[RectCorner::BottomLeft] = bl;
  }

  const Size& operator[](size_t aCorner) const {
    return radii[aCorner];
  }

  Size& operator[](size_t aCorner) {
    return radii[aCorner];
  }

  bool operator==(const RectCornerRadii& aOther) const {
    for (size_t i = 0; i < RectCorner::Count; i++) {
      if (radii[i] != aOther.radii[i]) return false;
    }
    return true;
  }

  void Scale(Float aXScale, Float aYScale) {
    for (int i = 0; i < RectCorner::Count; i++) {
      radii[i].Scale(aXScale, aYScale);
    }
  }

  const Size TopLeft() const { return radii[RectCorner::TopLeft]; }
  Size& TopLeft() { return radii[RectCorner::TopLeft]; }

  const Size TopRight() const { return radii[RectCorner::TopRight]; }
  Size& TopRight() { return radii[RectCorner::TopRight]; }

  const Size BottomRight() const { return radii[RectCorner::BottomRight]; }
  Size& BottomRight() { return radii[RectCorner::BottomRight]; }

  const Size BottomLeft() const { return radii[RectCorner::BottomLeft]; }
  Size& BottomLeft() { return radii[RectCorner::BottomLeft]; }
};

/**
 * Appends a path represending a rounded rectangle to the path being built by
 * aPathBuilder.
 *
 * aRect           The rectangle to append.
 * aCornerRadii    Contains the radii of the top-left, top-right, bottom-right
 *                 and bottom-left corners, in that order.
 * aDrawClockwise  If set to true, the path will start at the left of the top
 *                 left edge and draw clockwise. If set to false the path will
 *                 start at the right of the top left edge and draw counter-
 *                 clockwise.
 */
GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
                                       const Rect& aRect,
                                       const RectCornerRadii& aRadii,
                                       bool aDrawClockwise = true);

inline already_AddRefed<Path> MakePathForRoundedRect(const DrawTarget& aDrawTarget,
                                                 const Rect& aRect,
                                                 const RectCornerRadii& aRadii,
                                                 bool aDrawClockwise = true)
{
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
  AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise);
  return builder->Finish();
}

/**
 * Appends a path represending an ellipse to the path being built by
 * aPathBuilder.
 *
 * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
 * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
 */
GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
                                   const Point& aCenter,
                                   const Size& aDimensions);

inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget,
                                             const Point& aCenter,
                                             const Size& aDimensions)
{
  RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
  AppendEllipseToPath(builder, aCenter, aDimensions);
  return builder->Finish();
}

/**
 * If aDrawTarget's transform only contains a translation, and if this line is
 * a horizontal or vertical line, this function will snap the line's vertices
 * to align with the device pixel grid so that stroking the line with a one
 * pixel wide stroke will result in a crisp line that is not antialiased over
 * two pixels across its width.
 *
 * @return Returns true if this function snaps aRect's vertices, else returns
 *   false.
 */
GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
                                                 const DrawTarget& aDrawTarget,
                                                 Float aLineWidth);

/**
 * This function paints each edge of aRect separately, snapping the edges using
 * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths
 * helps ensure not only that the stroke spans a single row of device pixels if
 * possible, but also that the ends of stroke dashes start and end on device
 * pixels too.
 */
GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect,
                                        DrawTarget& aDrawTarget,
                                        const ColorPattern& aColor,
                                        const StrokeOptions& aStrokeOptions);

/**
 * Return the margin, in device space, by which a stroke can extend beyond the
 * rendered shape.
 * @param  aStrokeOptions The stroke options that the stroke is drawn with.
 * @param  aTransform     The user space to device space transform.
 * @return                The stroke margin.
 */
GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
                                  const Matrix& aTransform);

extern UserDataKey sDisablePixelSnapping;

/**
 * If aDrawTarget's transform only contains a translation or, if
 * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this
 * function will convert aRect to device space and snap it to device pixels.
 * This function returns true if aRect is modified, otherwise it returns false.
 *
 * Note that the snapping is such that filling the rect using a DrawTarget
 * which has the identity matrix as its transform will result in crisp edges.
 * (That is, aRect will have integer values, aligning its edges between pixel
 * boundaries.)  If on the other hand you stroking the rect with an odd valued
 * stroke width then the edges of the stroke will be antialiased (assuming an
 * AntialiasMode that does antialiasing).
 *
 * Empty snaps are those which result in a rectangle of 0 area.  If they are
 * disallowed, an axis is left unsnapped if the rounding process results in a
 * length of 0.
 */
inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget,
                                     bool aAllowScaleOr90DegreeRotate = false,
                                     bool aAllowEmptySnaps = true)
{
  if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) {
    return false;
  }

  Matrix mat = aDrawTarget.GetTransform();

  const Float epsilon = 0.0000001f;
#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon)
  if (!aAllowScaleOr90DegreeRotate &&
      (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) ||
       !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) {
    // We have non-translation, but only translation is allowed.
    return false;
  }
#undef WITHIN_E

  Point p1 = mat.TransformPoint(aRect.TopLeft());
  Point p2 = mat.TransformPoint(aRect.TopRight());
  Point p3 = mat.TransformPoint(aRect.BottomRight());

  // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
  // two opposite corners define the entire rectangle. So check if
  // the axis-aligned rectangle with opposite corners p1 and p3
  // define an axis-aligned rectangle whose other corners are p2 and p4.
  // We actually only need to check one of p2 and p4, since an affine
  // transform maps parallelograms to parallelograms.
  if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
      Point p1r = p1;
      Point p3r = p3;
      p1r.Round();
      p3r.Round();
      if (aAllowEmptySnaps || p1r.x != p3r.x) {
          p1.x = p1r.x;
          p3.x = p3r.x;
      }
      if (aAllowEmptySnaps || p1r.y != p3r.y) {
          p1.y = p1r.y;
          p3.y = p3r.y;
      }

      aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
      aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
                        std::max(p1.y, p3.y) - aRect.Y()));
      return true;
  }

  return false;
}

/**
 * This function has the same behavior as UserToDevicePixelSnapped except that
 * aRect is not transformed to device space.
 */
inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget,
                                    bool aAllowScaleOr90DegreeRotate = false,
                                    bool aAllowEmptySnaps = true)
{
  if (UserToDevicePixelSnapped(aRect, aDrawTarget,
                               aAllowScaleOr90DegreeRotate, aAllowEmptySnaps)) {
    // Since UserToDevicePixelSnapped returned true we know there is no
    // rotation/skew in 'mat', so we can just use TransformBounds() here.
    Matrix mat = aDrawTarget.GetTransform();
    mat.Invert();
    aRect = mat.TransformBounds(aRect);
    return true;
  }
  return false;
}

} // namespace gfx
} // namespace mozilla

#endif /* MOZILLA_GFX_PATHHELPERS_H_ */