This file is indexed.

/usr/lib/hugs/oldlib/SkewHeap.hs is in hugs 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
-- Copyright (c) 1998-1999 Chris Okasaki.  
-- See COPYRIGHT file for terms and conditions.

module SkewHeap
	{-# DEPRECATED "This module is unmaintained, and will disappear soon" #-}
    (
    -- type of skew heaps
    Heap, -- instance of Coll/CollX, OrdColl/OrdCollX

    -- CollX operations
    empty,single,fromSeq,insert,insertSeq,union,unionSeq,delete,deleteAll,
    deleteSeq,null,size,member,count,

    -- Coll operations
    toSeq, lookup, lookupM, lookupAll, lookupWithDefault, fold, fold1,
    filter, partition,

    -- OrdCollX operations
    deleteMin,deleteMax,unsafeInsertMin,unsafeInsertMax,unsafeFromOrdSeq,
    unsafeAppend,filterLT,filterLE,filterGT,filterGE,partitionLT_GE,
    partitionLE_GT,partitionLT_GT,

    -- OrdColl operations
    minView,minElem,maxView,maxElem,foldr,foldl,foldr1,foldl1,toOrdSeq,

    -- other supported operations
    unsafeMapMonotonic,

    -- documentation
    moduleName,

    -- re-export view type from EdisonPrelude for convenience
    Maybe2(..)
) where

import Prelude hiding (null,foldr,foldl,foldr1,foldl1,lookup,filter)
import EdisonPrelude(Maybe2(..))
import qualified Collection as C
import qualified Sequence as S
import CollectionDefaults
import Monad
import QuickCheck

moduleName = "SkewHeap"

-- Adapted from
--   Daniel Sleator and Robert Tarjan. "Self-Adjusting Heaps".
--   SIAM Journal on Computing, 15(1):52-69, February 1986.

data Heap a = E | T a (Heap a) (Heap a)

{-
For delete,deleteAll,filter,partition: could compute fringe and reduce
rather that rebuilding with union at every deleted node
-}

empty :: Ord a => Heap a
empty = E

single :: Ord a => a -> Heap a
single x = T x E E

insert :: Ord a => a -> Heap a -> Heap a
insert x E = T x E E
insert x h@(T y a b)
  | x <= y    = T x h E
  | otherwise = T y (insert x b) a

union :: Ord a => Heap a -> Heap a -> Heap a
union E h = h
union h@(T x a b) h' = union' h x a b h'
  where union' h x a b E = h
        union' hx x a b hy@(T y c d)
          | x <= y    = T x (union' hy y c d b) a
          | otherwise = T y (union' hx x a b d) c

delete :: Ord a => a -> Heap a -> Heap a
delete x h = case del h of
               Just h' -> h'
               Nothing -> h
  where del (T y a b) =
          case compare x y of
            LT -> Nothing
            EQ -> Just (union a b)
            GT -> case del b of
                    Just b' -> Just (T y a b')
                    Nothing -> case del a  of
                                 Just a' -> Just (T y a' b)
                                 Nothing -> Nothing
        del E = Nothing

deleteAll :: Ord a => a -> Heap a -> Heap a
deleteAll x h@(T y a b) =
  case compare x y of
    LT -> h
    EQ -> union (deleteAll x a) (deleteAll x b)
    GT -> T y (deleteAll x a) (deleteAll x b)
deleteAll x E = E

null :: Ord a => Heap a -> Bool
null E = True
null _ = False

size :: Ord a => Heap a -> Int
size h = sz h 0
  where sz E i = i
        sz (T _ a b) i = sz a (sz b (i + 1))

member :: Ord a => Heap a -> a -> Bool
member E x = False
member (T y a b) x =
  case compare x y of
    LT -> False
    EQ -> True
    GT -> member b x || member a x

count :: Ord a => Heap a -> a -> Int
count E x = 0
count (T y a b) x =
  case compare x y of
    LT -> 0
    EQ -> 1 + count b x + count a x
    GT -> count b x + count a x

toSeq :: (Ord a,S.Sequence seq) => Heap a -> seq a
toSeq h = tol h S.empty
  where tol E rest = rest
        tol (T x a b) rest = S.cons x (tol b (tol a rest))

lookupM :: Ord a => Heap a -> a -> Maybe a
lookupM E x = Nothing
lookupM (T y a b) x =
  case compare x y of
    LT -> Nothing
    EQ -> Just y
    GT -> lookupM b x `mplus` lookupM a x

lookupAll :: (Ord a,S.Sequence seq) => Heap a -> a -> seq a
lookupAll h x = look h S.empty
  where look E ys = ys
        look (T y a b) ys =
          case compare x y of
            LT -> ys
            EQ -> S.cons y (look b (look a ys))
            GT -> look b (look a ys)

fold :: Ord a => (a -> b -> b) -> b -> Heap a -> b
fold f e E = e
fold f e (T x a b) = f x (fold f (fold f e a) b)

fold1 :: Ord a => (a -> a -> a) -> Heap a -> a
fold1 f E = error "SkewHeap.fold1: empty collection"
fold1 f (T x a b) = fold f (fold f x a) b

filter :: Ord a => (a -> Bool) -> Heap a -> Heap a
filter p E = E
filter p (T x a b)
    | p x = T x (filter p a) (filter p b)
    | otherwise = union (filter p a) (filter p b)

partition :: Ord a => (a -> Bool) -> Heap a -> (Heap a, Heap a)
partition p E = (E, E)
partition p (T x a b)
    | p x = (T x a' b', union a'' b'')
    | otherwise = (union a' b', T x a'' b'')
  where (a', a'') = partition p a
        (b', b'') = partition p b


deleteMin :: Ord a => Heap a -> Heap a
deleteMin E = E
deleteMin (T x a b) = union a b

deleteMax :: Ord a => Heap a -> Heap a
deleteMax h = case maxView h of
                Nothing2 -> E
                Just2 h' x -> h'

unsafeInsertMin :: Ord a => a -> Heap a -> Heap a
unsafeInsertMin x h = T x h E

unsafeAppend :: Ord a => Heap a -> Heap a -> Heap a
unsafeAppend E h = h
unsafeAppend (T x a b) h = T x (unsafeAppend b h) a

filterLT :: Ord a => a -> Heap a -> Heap a
filterLT y (T x a b) | x < y = T x (filterLT y a) (filterLT y b)
filterLT y _ = E

filterLE :: Ord a => a -> Heap a -> Heap a
filterLE y (T x a b) | x <= y = T x (filterLE y a) (filterLE y b)
filterLE y _ = E

filterGT :: Ord a => a -> Heap a -> Heap a
filterGT y h = C.unionList (collect h [])
  where collect E hs = hs
        collect h@(T x a b) hs
          | x > y = h : hs
          | otherwise = collect a (collect b hs)

filterGE :: Ord a => a -> Heap a -> Heap a
filterGE y h = C.unionList (collect h [])
  where collect E hs = hs
        collect h@(T x a b) hs
          | x >= y = h : hs
          | otherwise = collect b (collect a hs)

partitionLT_GE :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLT_GE y h = (h', C.unionList hs)
  where (h', hs) = collect h []

        collect E hs = (E, hs)
        collect h@(T x a b) hs
          | x >= y = (E, h:hs)
          | otherwise = let (a', hs') = collect a hs
                            (b', hs'') = collect b hs'
                        in (T x a' b', hs'')

partitionLE_GT :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLE_GT y h = (h', C.unionList hs)
  where (h', hs) = collect h []

        collect E hs = (E, hs)
        collect h@(T x a b) hs
          | x > y = (E, h:hs)
          | otherwise = let (a', hs') = collect a hs
                            (b', hs'') = collect b hs'
                        in (T x a' b', hs'')

partitionLT_GT :: Ord a => a -> Heap a -> (Heap a, Heap a)
partitionLT_GT y h = (h', C.unionList hs)
  where (h', hs) = collect h []

        collect E hs = (E, hs)
        collect h@(T x a b) hs = 
          case compare x y of
            GT -> (E, h:hs)
            EQ -> let (a', hs') = collect a hs
                      (b', hs'') = collect b hs'
                  in (union a' b', hs'')
            LT -> let (a', hs') = collect a hs
                      (b', hs'') = collect b hs'
                  in (T x a' b', hs'')

minView :: Ord a => Heap a -> Maybe2 a (Heap a)
minView E = Nothing2
minView (T x a b) = Just2 x (union a b)

minElem :: Ord a => Heap a -> a
minElem E = error "SkewHeap.minElem: empty collection"
minElem (T x a b) = x

maxView :: Ord a => Heap a -> Maybe2 (Heap a) a
maxView E = Nothing2
maxView (T x E E) = Just2 E x
maxView (T x a E) = Just2 (T x a' E) y
  where Just2 a' y = maxView a
maxView (T x E a) = Just2 (T x a' E) y
  where Just2 a' y = maxView a
maxView (T x a b)
    | y >= z    = Just2 (T x a' b) y
    | otherwise = Just2 (T x a b') z
  where Just2 a' y = maxView a
        Just2 b' z = maxView b

-- warning: maxView and maxElem may disagree if root is equal to max!

maxElem :: Ord a => Heap a -> a
maxElem E = error "SkewHeap.maxElem: empty collection"
maxElem (T x E E) = x
maxElem (T x a E) = maxElem a
maxElem (T x E a) = maxElem a
maxElem (T x a b) = findMax b (findLeaf a)
  where findMax E m = m
        findMax (T x E E) m
          | m >= x = m
          | otherwise = x
        findMax (T x a E) m = findMax a m
        findMax (T x E a) m = findMax a m
        findMax (T x a b) m = findMax a (findMax b m)

        findLeaf E = error "SkewHeap.maxElem: bug"
        findLeaf (T x E E) = x
        findLeaf (T x a E) = findLeaf a
        findLeaf (T x E a) = findLeaf a
        findLeaf (T x a b) = findMax b (findLeaf a)

foldr :: Ord a => (a -> b -> b) -> b -> Heap a -> b
foldr f e E = e
foldr f e (T x a b) = f x (foldr f e (union a b))

foldl :: Ord a => (b -> a -> b) -> b -> Heap a -> b
foldl f e E = e
foldl f e (T x a b) = foldl f (f e x) (union a b)

foldr1 :: Ord a => (a -> a -> a) -> Heap a -> a
foldr1 f E = error "SkewHeap.foldr1: empty collection"
foldr1 f (T x E E) = x
foldr1 f (T x a b) = f x (foldr1 f (union a b))

foldl1 :: Ord a => (a -> a -> a) -> Heap a -> a
foldl1 f E = error "SkewHeap.foldl1: empty collection"
foldl1 f (T x a b) = foldl f x (union a b)

{- ???? -}
unsafeMapMonotonic :: Ord a => (a -> a) -> Heap a -> Heap a
unsafeMapMonotonic f E = E
unsafeMapMonotonic f (T x a b) =
  T (f x) (unsafeMapMonotonic f a) (unsafeMapMonotonic f b)

-- the remaining functions all use default definitions

fromSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a
fromSeq = fromSeqUsingUnionSeq

insertSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a -> Heap a
insertSeq = insertSeqUsingUnion

unionSeq :: (Ord a,S.Sequence seq) => seq (Heap a) -> Heap a
unionSeq = unionSeqUsingReduce

deleteSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a -> Heap a
deleteSeq = deleteSeqUsingDelete

lookup :: Ord a => Heap a -> a -> a
lookup = lookupUsingLookupM

lookupWithDefault :: Ord a => a -> Heap a -> a -> a
lookupWithDefault = lookupWithDefaultUsingLookupM

unsafeInsertMax :: Ord a => Heap a -> a -> Heap a
unsafeInsertMax = unsafeInsertMaxUsingUnsafeAppend

unsafeFromOrdSeq :: (Ord a,S.Sequence seq) => seq a -> Heap a
unsafeFromOrdSeq = unsafeFromOrdSeqUsingUnsafeInsertMin

toOrdSeq :: (Ord a,S.Sequence seq) => Heap a -> seq a
toOrdSeq = toOrdSeqUsingFoldr

-- instance declarations

instance Ord a => C.CollX Heap a where
  {empty = empty; single = single; fromSeq = fromSeq; insert = insert;
   insertSeq = insertSeq; union = union; unionSeq = unionSeq; 
   delete = delete; deleteAll = deleteAll; deleteSeq = deleteSeq;
   null = null; size = size; member = member; count = count;
   instanceName c = moduleName}

instance Ord a => C.OrdCollX Heap a where
  {deleteMin = deleteMin; deleteMax = deleteMax; 
   unsafeInsertMin = unsafeInsertMin; unsafeInsertMax = unsafeInsertMax; 
   unsafeFromOrdSeq = unsafeFromOrdSeq; unsafeAppend = unsafeAppend; 
   filterLT = filterLT; filterLE = filterLE; filterGT = filterGT; 
   filterGE = filterGE; partitionLT_GE = partitionLT_GE; 
   partitionLE_GT = partitionLE_GT; partitionLT_GT = partitionLT_GT}

instance Ord a => C.Coll Heap a where
  {toSeq = toSeq; lookup = lookup; lookupM = lookupM; 
   lookupAll = lookupAll; lookupWithDefault = lookupWithDefault; 
   fold = fold; fold1 = fold1; filter = filter; partition = partition}

instance Ord a => C.OrdColl Heap a where
  {minView = minView; minElem = minElem; maxView = maxView; 
   maxElem = maxElem; foldr = foldr; foldl = foldl; foldr1 = foldr1; 
   foldl1  = foldl1; toOrdSeq = toOrdSeq}

instance Ord a => Eq (Heap a) where
  xs == ys = C.toOrdList xs == C.toOrdList ys

instance (Ord a, Show a) => Show (Heap a) where
  show xs = show (C.toOrdList xs)

instance (Ord a, Arbitrary a) => Arbitrary (Heap a) where
  arbitrary = sized (\n -> arbTree n)
    where arbTree 0 = return E
          arbTree n =
            frequency [(1, return E),
                       (4, liftM3 sift arbitrary (arbTree (n `div` 2))
                                                 (arbTree (n `div` 4)))]

          sift x s@(T y a b) E
            | y < x = T y (sift x a b) E
          sift x E s@(T y a b)
            | y < x = T y E (sift x a b)
          sift x s@(T y a b) t@(T z c d)
            | y < x && y <= z = T y (sift x a b) t
            | z < x           = T z s (sift x c d)
          sift x a b = T x a b

  coarbitrary E = variant 0
  coarbitrary (T x a b) = 
      variant 1 . coarbitrary x . coarbitrary a . coarbitrary b