/usr/share/inkscape/extensions/pathalongpath.py is in inkscape 0.48.5-3.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | #! /usr/bin/python
'''
Copyright (C) 2006 Jean-Francois Barraud, barraud@math.univ-lille1.fr
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
barraud@math.univ-lille1.fr
Quick description:
This script deforms an object (the pattern) along other paths (skeletons)...
The first selected object is the pattern
the last selected ones are the skeletons.
Imagine a straight horizontal line L in the middle of the bounding box of the pattern.
Consider the normal bundle of L: the collection of all the vertical lines meeting L.
Consider this as the initial state of the plane; in particular, think of the pattern
as painted on these lines.
Now move and bend L to make it fit a skeleton, and see what happens to the normals:
they move and rotate, deforming the pattern.
'''
import inkex, cubicsuperpath, bezmisc
import pathmodifier,simpletransform
import copy, math, re, random
import gettext
_ = gettext.gettext
def flipxy(path):
for pathcomp in path:
for ctl in pathcomp:
for pt in ctl:
tmp=pt[0]
pt[0]=-pt[1]
pt[1]=-tmp
def offset(pathcomp,dx,dy):
for ctl in pathcomp:
for pt in ctl:
pt[0]+=dx
pt[1]+=dy
def stretch(pathcomp,xscale,yscale,org):
for ctl in pathcomp:
for pt in ctl:
pt[0]=org[0]+(pt[0]-org[0])*xscale
pt[1]=org[1]+(pt[1]-org[1])*yscale
def linearize(p,tolerance=0.001):
'''
This function recieves a component of a 'cubicsuperpath' and returns two things:
The path subdivided in many straight segments, and an array containing the length of each segment.
We could work with bezier path as well, but bezier arc lengths are (re)computed for each point
in the deformed object. For complex paths, this might take a while.
'''
zero=0.000001
i=0
d=0
lengths=[]
while i<len(p)-1:
box = bezmisc.pointdistance(p[i ][1],p[i ][2])
box += bezmisc.pointdistance(p[i ][2],p[i+1][0])
box += bezmisc.pointdistance(p[i+1][0],p[i+1][1])
chord = bezmisc.pointdistance(p[i][1], p[i+1][1])
if (box - chord) > tolerance:
b1, b2 = bezmisc.beziersplitatt([p[i][1],p[i][2],p[i+1][0],p[i+1][1]], 0.5)
p[i ][2][0],p[i ][2][1]=b1[1]
p[i+1][0][0],p[i+1][0][1]=b2[2]
p.insert(i+1,[[b1[2][0],b1[2][1]],[b1[3][0],b1[3][1]],[b2[1][0],b2[1][1]]])
else:
d=(box+chord)/2
lengths.append(d)
i+=1
new=[p[i][1] for i in range(0,len(p)-1) if lengths[i]>zero]
new.append(p[-1][1])
lengths=[l for l in lengths if l>zero]
return(new,lengths)
class PathAlongPath(pathmodifier.Diffeo):
def __init__(self):
pathmodifier.Diffeo.__init__(self)
self.OptionParser.add_option("--title")
self.OptionParser.add_option("-n", "--noffset",
action="store", type="float",
dest="noffset", default=0.0, help="normal offset")
self.OptionParser.add_option("-t", "--toffset",
action="store", type="float",
dest="toffset", default=0.0, help="tangential offset")
self.OptionParser.add_option("-k", "--kind",
action="store", type="string",
dest="kind", default=True,
help="choose between wave or snake effect")
self.OptionParser.add_option("-c", "--copymode",
action="store", type="string",
dest="copymode", default=True,
help="repeat the path to fit deformer's length")
self.OptionParser.add_option("-p", "--space",
action="store", type="float",
dest="space", default=0.0)
self.OptionParser.add_option("-v", "--vertical",
action="store", type="inkbool",
dest="vertical", default=False,
help="reference path is vertical")
self.OptionParser.add_option("-d", "--duplicate",
action="store", type="inkbool",
dest="duplicate", default=False,
help="duplicate pattern before deformation")
def prepareSelectionList(self):
idList=self.options.ids
idList=pathmodifier.zSort(self.document.getroot(),idList)
id = idList[-1]
self.patterns={id:self.selected[id]}
## ##first selected->pattern, all but first selected-> skeletons
## id = self.options.ids[-1]
## self.patterns={id:self.selected[id]}
if self.options.duplicate:
self.patterns=self.duplicateNodes(self.patterns)
self.expandGroupsUnlinkClones(self.patterns, True, True)
self.objectsToPaths(self.patterns)
del self.selected[id]
self.skeletons=self.selected
self.expandGroupsUnlinkClones(self.skeletons, True, False)
self.objectsToPaths(self.skeletons)
def lengthtotime(self,l):
'''
Recieves an arc length l, and returns the index of the segment in self.skelcomp
containing the coresponding point, to gether with the position of the point on this segment.
If the deformer is closed, do computations modulo the toal length.
'''
if self.skelcompIsClosed:
l=l % sum(self.lengths)
if l<=0:
return 0,l/self.lengths[0]
i=0
while (i<len(self.lengths)) and (self.lengths[i]<=l):
l-=self.lengths[i]
i+=1
t=l/self.lengths[min(i,len(self.lengths)-1)]
return i, t
def applyDiffeo(self,bpt,vects=()):
'''
The kernel of this stuff:
bpt is a base point and for v in vectors, v'=v-p is a tangent vector at bpt.
'''
s=bpt[0]-self.skelcomp[0][0]
i,t=self.lengthtotime(s)
if i==len(self.skelcomp)-1:
x,y=bezmisc.tpoint(self.skelcomp[i-1],self.skelcomp[i],1+t)
dx=(self.skelcomp[i][0]-self.skelcomp[i-1][0])/self.lengths[-1]
dy=(self.skelcomp[i][1]-self.skelcomp[i-1][1])/self.lengths[-1]
else:
x,y=bezmisc.tpoint(self.skelcomp[i],self.skelcomp[i+1],t)
dx=(self.skelcomp[i+1][0]-self.skelcomp[i][0])/self.lengths[i]
dy=(self.skelcomp[i+1][1]-self.skelcomp[i][1])/self.lengths[i]
vx=0
vy=bpt[1]-self.skelcomp[0][1]
if self.options.wave:
bpt[0]=x+vx*dx
bpt[1]=y+vy+vx*dy
else:
bpt[0]=x+vx*dx-vy*dy
bpt[1]=y+vx*dy+vy*dx
for v in vects:
vx=v[0]-self.skelcomp[0][0]-s
vy=v[1]-self.skelcomp[0][1]
if self.options.wave:
v[0]=x+vx*dx
v[1]=y+vy+vx*dy
else:
v[0]=x+vx*dx-vy*dy
v[1]=y+vx*dy+vy*dx
def effect(self):
if len(self.options.ids)<2:
inkex.errormsg(_("This extension requires two selected paths."))
return
self.prepareSelectionList()
self.options.wave = (self.options.kind=="Ribbon")
if self.options.copymode=="Single":
self.options.repeat =False
self.options.stretch=False
elif self.options.copymode=="Repeated":
self.options.repeat =True
self.options.stretch=False
elif self.options.copymode=="Single, stretched":
self.options.repeat =False
self.options.stretch=True
elif self.options.copymode=="Repeated, stretched":
self.options.repeat =True
self.options.stretch=True
bbox=simpletransform.computeBBox(self.patterns.values())
if self.options.vertical:
#flipxy(bbox)...
bbox=(-bbox[3],-bbox[2],-bbox[1],-bbox[0])
width=bbox[1]-bbox[0]
dx=width+self.options.space
for id, node in self.patterns.iteritems():
if node.tag == inkex.addNS('path','svg') or node.tag=='path':
d = node.get('d')
p0 = cubicsuperpath.parsePath(d)
if self.options.vertical:
flipxy(p0)
newp=[]
for skelnode in self.skeletons.itervalues():
self.curSekeleton=cubicsuperpath.parsePath(skelnode.get('d'))
if self.options.vertical:
flipxy(self.curSekeleton)
for comp in self.curSekeleton:
p=copy.deepcopy(p0)
self.skelcomp,self.lengths=linearize(comp)
#!!!!>----> TODO: really test if path is closed! end point==start point is not enough!
self.skelcompIsClosed = (self.skelcomp[0]==self.skelcomp[-1])
length=sum(self.lengths)
xoffset=self.skelcomp[0][0]-bbox[0]+self.options.toffset
yoffset=self.skelcomp[0][1]-(bbox[2]+bbox[3])/2-self.options.noffset
if self.options.repeat:
NbCopies=max(1,int(round((length+self.options.space)/dx)))
width=dx*NbCopies
if not self.skelcompIsClosed:
width-=self.options.space
bbox=bbox[0],bbox[0]+width, bbox[2],bbox[3]
new=[]
for sub in p:
for i in range(0,NbCopies,1):
new.append(copy.deepcopy(sub))
offset(sub,dx,0)
p=new
for sub in p:
offset(sub,xoffset,yoffset)
if self.options.stretch:
for sub in p:
stretch(sub,length/width,1,self.skelcomp[0])
for sub in p:
for ctlpt in sub:
self.applyDiffeo(ctlpt[1],(ctlpt[0],ctlpt[2]))
if self.options.vertical:
flipxy(p)
newp+=p
node.set('d', cubicsuperpath.formatPath(newp))
if __name__ == '__main__':
e = PathAlongPath()
e.affect()
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99
|