This file is indexed.

/usr/share/inkscape/extensions/pathalongpath.py is in inkscape 0.48.5-3.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#! /usr/bin/python
'''
Copyright (C) 2006 Jean-Francois Barraud, barraud@math.univ-lille1.fr

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
barraud@math.univ-lille1.fr

Quick description:
This script deforms an object (the pattern) along other paths (skeletons)...
The first selected object is the pattern
the last selected ones are the skeletons.

Imagine a straight horizontal line L in the middle of the bounding box of the pattern.
Consider the normal bundle of L: the collection of all the vertical lines meeting L.
Consider this as the initial state of the plane; in particular, think of the pattern
as painted on these lines.

Now move and bend L to make it fit a skeleton, and see what happens to the normals:
they move and rotate, deforming the pattern.
'''

import inkex, cubicsuperpath, bezmisc
import pathmodifier,simpletransform
import copy, math, re, random
import gettext
_ = gettext.gettext

def flipxy(path):
    for pathcomp in path:
        for ctl in pathcomp:
            for pt in ctl:
                tmp=pt[0]
                pt[0]=-pt[1]
                pt[1]=-tmp

def offset(pathcomp,dx,dy):
    for ctl in pathcomp:
        for pt in ctl:
            pt[0]+=dx
            pt[1]+=dy

def stretch(pathcomp,xscale,yscale,org):
    for ctl in pathcomp:
        for pt in ctl:
            pt[0]=org[0]+(pt[0]-org[0])*xscale
            pt[1]=org[1]+(pt[1]-org[1])*yscale

def linearize(p,tolerance=0.001):
    '''
    This function recieves a component of a 'cubicsuperpath' and returns two things:
    The path subdivided in many straight segments, and an array containing the length of each segment.
    
    We could work with bezier path as well, but bezier arc lengths are (re)computed for each point 
    in the deformed object. For complex paths, this might take a while.
    '''
    zero=0.000001
    i=0
    d=0
    lengths=[]
    while i<len(p)-1:
        box  = bezmisc.pointdistance(p[i  ][1],p[i  ][2])
        box += bezmisc.pointdistance(p[i  ][2],p[i+1][0])
        box += bezmisc.pointdistance(p[i+1][0],p[i+1][1])
        chord = bezmisc.pointdistance(p[i][1], p[i+1][1])
        if (box - chord) > tolerance:
            b1, b2 = bezmisc.beziersplitatt([p[i][1],p[i][2],p[i+1][0],p[i+1][1]], 0.5)
            p[i  ][2][0],p[i  ][2][1]=b1[1]
            p[i+1][0][0],p[i+1][0][1]=b2[2]
            p.insert(i+1,[[b1[2][0],b1[2][1]],[b1[3][0],b1[3][1]],[b2[1][0],b2[1][1]]])
        else:
            d=(box+chord)/2
            lengths.append(d)
            i+=1
    new=[p[i][1] for i in range(0,len(p)-1) if lengths[i]>zero]
    new.append(p[-1][1])
    lengths=[l for l in lengths if l>zero]
    return(new,lengths)

class PathAlongPath(pathmodifier.Diffeo):
    def __init__(self):
        pathmodifier.Diffeo.__init__(self)
        self.OptionParser.add_option("--title")
        self.OptionParser.add_option("-n", "--noffset",
                        action="store", type="float", 
                        dest="noffset", default=0.0, help="normal offset")
        self.OptionParser.add_option("-t", "--toffset",
                        action="store", type="float", 
                        dest="toffset", default=0.0, help="tangential offset")
        self.OptionParser.add_option("-k", "--kind",
                        action="store", type="string", 
                        dest="kind", default=True,
                        help="choose between wave or snake effect")
        self.OptionParser.add_option("-c", "--copymode",
                        action="store", type="string", 
                        dest="copymode", default=True,
                        help="repeat the path to fit deformer's length")
        self.OptionParser.add_option("-p", "--space",
                        action="store", type="float", 
                        dest="space", default=0.0)
        self.OptionParser.add_option("-v", "--vertical",
                        action="store", type="inkbool", 
                        dest="vertical", default=False,
                        help="reference path is vertical")
        self.OptionParser.add_option("-d", "--duplicate",
                        action="store", type="inkbool", 
                        dest="duplicate", default=False,
                        help="duplicate pattern before deformation")

    def prepareSelectionList(self):

        idList=self.options.ids
        idList=pathmodifier.zSort(self.document.getroot(),idList)
        id = idList[-1]
        self.patterns={id:self.selected[id]}

##        ##first selected->pattern, all but first selected-> skeletons
##        id = self.options.ids[-1]
##        self.patterns={id:self.selected[id]}

        if self.options.duplicate:
            self.patterns=self.duplicateNodes(self.patterns)
        self.expandGroupsUnlinkClones(self.patterns, True, True)
        self.objectsToPaths(self.patterns)
        del self.selected[id]

        self.skeletons=self.selected
        self.expandGroupsUnlinkClones(self.skeletons, True, False)
        self.objectsToPaths(self.skeletons)

    def lengthtotime(self,l):
        '''
        Recieves an arc length l, and returns the index of the segment in self.skelcomp 
        containing the coresponding point, to gether with the position of the point on this segment.

        If the deformer is closed, do computations modulo the toal length.
        '''
        if self.skelcompIsClosed:
            l=l % sum(self.lengths)
        if l<=0:
            return 0,l/self.lengths[0]
        i=0
        while (i<len(self.lengths)) and (self.lengths[i]<=l):
            l-=self.lengths[i]
            i+=1
        t=l/self.lengths[min(i,len(self.lengths)-1)]
        return i, t

    def applyDiffeo(self,bpt,vects=()):
        '''
        The kernel of this stuff:
        bpt is a base point and for v in vectors, v'=v-p is a tangent vector at bpt.
        '''
        s=bpt[0]-self.skelcomp[0][0]
        i,t=self.lengthtotime(s)
        if i==len(self.skelcomp)-1:
            x,y=bezmisc.tpoint(self.skelcomp[i-1],self.skelcomp[i],1+t)
            dx=(self.skelcomp[i][0]-self.skelcomp[i-1][0])/self.lengths[-1]
            dy=(self.skelcomp[i][1]-self.skelcomp[i-1][1])/self.lengths[-1]
        else:
            x,y=bezmisc.tpoint(self.skelcomp[i],self.skelcomp[i+1],t)
            dx=(self.skelcomp[i+1][0]-self.skelcomp[i][0])/self.lengths[i]
            dy=(self.skelcomp[i+1][1]-self.skelcomp[i][1])/self.lengths[i]

        vx=0
        vy=bpt[1]-self.skelcomp[0][1]
        if self.options.wave:
            bpt[0]=x+vx*dx
            bpt[1]=y+vy+vx*dy
        else:
            bpt[0]=x+vx*dx-vy*dy
            bpt[1]=y+vx*dy+vy*dx

        for v in vects:
            vx=v[0]-self.skelcomp[0][0]-s
            vy=v[1]-self.skelcomp[0][1]
            if self.options.wave:
                v[0]=x+vx*dx
                v[1]=y+vy+vx*dy
            else:
                v[0]=x+vx*dx-vy*dy
                v[1]=y+vx*dy+vy*dx

    def effect(self):
        if len(self.options.ids)<2:
            inkex.errormsg(_("This extension requires two selected paths."))
            return
        self.prepareSelectionList()
        self.options.wave = (self.options.kind=="Ribbon")
        if self.options.copymode=="Single":
            self.options.repeat =False
            self.options.stretch=False
        elif self.options.copymode=="Repeated":
            self.options.repeat =True
            self.options.stretch=False
        elif self.options.copymode=="Single, stretched":
            self.options.repeat =False
            self.options.stretch=True
        elif self.options.copymode=="Repeated, stretched":
            self.options.repeat =True
            self.options.stretch=True

        bbox=simpletransform.computeBBox(self.patterns.values())
                    
        if self.options.vertical:
            #flipxy(bbox)...
            bbox=(-bbox[3],-bbox[2],-bbox[1],-bbox[0])
            
        width=bbox[1]-bbox[0]
        dx=width+self.options.space

        for id, node in self.patterns.iteritems():
            if node.tag == inkex.addNS('path','svg') or node.tag=='path':
                d = node.get('d')
                p0 = cubicsuperpath.parsePath(d)
                if self.options.vertical:
                    flipxy(p0)

                newp=[]
                for skelnode in self.skeletons.itervalues(): 
                    self.curSekeleton=cubicsuperpath.parsePath(skelnode.get('d'))
                    if self.options.vertical:
                        flipxy(self.curSekeleton)
                    for comp in self.curSekeleton:
                        p=copy.deepcopy(p0)
                        self.skelcomp,self.lengths=linearize(comp)
                        #!!!!>----> TODO: really test if path is closed! end point==start point is not enough!
                        self.skelcompIsClosed = (self.skelcomp[0]==self.skelcomp[-1])

                        length=sum(self.lengths)
                        xoffset=self.skelcomp[0][0]-bbox[0]+self.options.toffset
                        yoffset=self.skelcomp[0][1]-(bbox[2]+bbox[3])/2-self.options.noffset


                        if self.options.repeat:
                            NbCopies=max(1,int(round((length+self.options.space)/dx)))
                            width=dx*NbCopies
                            if not self.skelcompIsClosed:
                                width-=self.options.space
                            bbox=bbox[0],bbox[0]+width, bbox[2],bbox[3]
                            new=[]
                            for sub in p:
                                for i in range(0,NbCopies,1):
                                    new.append(copy.deepcopy(sub))
                                    offset(sub,dx,0)
                            p=new

                        for sub in p:
                            offset(sub,xoffset,yoffset)

                        if self.options.stretch:
                            for sub in p:
                                stretch(sub,length/width,1,self.skelcomp[0])

                        for sub in p:
                            for ctlpt in sub:
                                self.applyDiffeo(ctlpt[1],(ctlpt[0],ctlpt[2]))

                        if self.options.vertical:
                            flipxy(p)
                        newp+=p

                node.set('d', cubicsuperpath.formatPath(newp))

if __name__ == '__main__':
    e = PathAlongPath()
    e.affect()

                    
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99