This file is indexed.

/usr/share/julia/base/floatfuncs.jl is in julia 0.3.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
## floating-point functions ##

copysign(x::Float64, y::Float64) = box(Float64,copysign_float(unbox(Float64,x),unbox(Float64,y)))
copysign(x::Float32, y::Float32) = box(Float32,copysign_float(unbox(Float32,x),unbox(Float32,y)))
copysign(x::Float32, y::Real) = copysign(x, float32(y))
copysign(x::Float64, y::Real) = copysign(x, float64(y))
@vectorize_2arg Real copysign

flipsign(x::Float64, y::Float64) = box(Float64,xor_int(unbox(Float64,x),and_int(unbox(Float64,y),0x8000000000000000)))
flipsign(x::Float32, y::Float32) = box(Float32,xor_int(unbox(Float32,x),and_int(unbox(Float32,y),0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, float64(y))
@vectorize_2arg Real flipsign

signbit(x::Float64) = signbit(reinterpret(Int64,x))
signbit(x::Float32) = signbit(reinterpret(Int32,x))
signbit(x::Float16) = signbit(reinterpret(Int16,x))

maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = float32(16777216.)
maxintfloat(::Type{Float16}) = float16(2048f0)
maxintfloat{T<:FloatingPoint}(x::T)  = maxintfloat(T)
maxintfloat() = maxintfloat(Float64)

isinteger(x::FloatingPoint) = (trunc(x)==x)&isfinite(x)

num2hex(x::Float16) = hex(reinterpret(Uint16,x), 4)
num2hex(x::Float32) = hex(box(Uint32,unbox(Float32,x)),8)
num2hex(x::Float64) = hex(box(Uint64,unbox(Float64,x)),16)

function hex2num(s::String)
    if length(s) <= 8
        return box(Float32,unbox(Int32,parseint(Int32,s,16)))
    end
    return box(Float64,unbox(Int64,parseint(Int64,s,16)))
end

@vectorize_1arg Real iround
@vectorize_1arg Real itrunc
@vectorize_1arg Real ifloor
@vectorize_1arg Real iceil

@vectorize_1arg Number abs
@vectorize_1arg Number abs2
@vectorize_1arg Number angle

@vectorize_1arg Number isnan
@vectorize_1arg Number isinf
@vectorize_1arg Number isfinite

iround{T<:Integer,R<:Real}(::Type{T}, x::AbstractArray{R,1}) = [ iround(T, x[i]) for i = 1:length(x) ]
iround{T<:Integer,R<:Real}(::Type{T}, x::AbstractArray{R,2}) = [ iround(T, x[i,j]) for i = 1:size(x,1), j = 1:size(x,2) ]
iround{T<:Integer,R<:Real}(::Type{T}, x::AbstractArray{R}) = reshape([ iround(T, x[i]) for i = 1:length(x) ], size(x))

# adapted from Matlab File Exchange roundsd: http://www.mathworks.com/matlabcentral/fileexchange/26212
# for round, og is the power of 10 relative to the decimal point
# for signif, og is the absolute power of 10
# digits and base must be integers, x must be convertable to float

function _signif_og(x, digits, base)
    if base == 10
        oftype(x, 10. ^ floor(log10(abs(x)) - digits + 1.))
    elseif base == 2
        oftype(x, 2. ^ floor(log2(abs(x)) - digits + 1.))
    else
        oftype(x, float(base) ^ floor(log2(abs(x))/log2(base) - digits + 1.))
    end
end

function signif(x, digits::Integer, base::Integer=10)
    if digits < 0
        throw(DomainError())
    end
    x = float(x)
    if x==0 || !isfinite(x)
        return x
    end
    og = _signif_og(x, digits, base)
    round(x/og) * og
end

for f in (:round, :ceil, :floor, :trunc)
    @eval begin
        function ($f)(x, digits::Integer, base::Integer=10)
            x = float(x)
            og = oftype(eltype(x),base)^digits
            ($f)(x * og) / og
        end
    end
end

# isapprox: Tolerant comparison of floating point numbers
function isapprox(x::FloatingPoint, y::FloatingPoint; rtol::Real=rtoldefault(x,y), atol::Real=atoldefault(x,y))
    (isinf(x) || isinf(y)) ? x == y : abs(x-y) <= atol + rtol.*max(abs(x), abs(y))
end

# promotion of non-floats
isapprox(x::Real, y::FloatingPoint; rtol::Real=rtoldefault(x, y), atol::Real=atoldefault(x, y)) = isapprox(promote(x, y)...; rtol=rtol, atol=atol)
isapprox(x::FloatingPoint, y::Real; rtol::Real=rtoldefault(x, y), atol::Real=atoldefault(x, y)) = isapprox(promote(x, y)...; rtol=rtol, atol=atol)

# other real numbers
isapprox(x::Real, y::Real; rtol::Real=0, atol::Real=0) = abs(x-y) <= atol

# complex numbers
isapprox(z::Complex, w::Complex; rtol::Real=rtoldefault(abs(z), abs(w)), atol::Real=atoldefault(abs(z), abs(w))) = abs(z-w) <= atol + rtol*max(abs(z), abs(w))

# real-complex combinations
isapprox(x::Real, z::Complex; rtol::Real=rtoldefault(x, abs(z)), atol::Real=atoldefault(x, abs(z))) = isapprox(complex(x), z; rtol=rtol, atol=atol)
isapprox(z::Complex, x::Real; rtol::Real=rtoldefault(x, abs(z)), atol::Real=atoldefault(x, abs(z))) = isapprox(complex(x), z; rtol=rtol, atol=atol)

# default tolerance arguments
rtoldefault(x::FloatingPoint, y::FloatingPoint) = cbrt(max(eps(x), eps(y)))
atoldefault(x::FloatingPoint, y::FloatingPoint) = sqrt(max(eps(x), eps(y)))

# promotion of non-floats
for fun in (:rtoldefault, :atoldefault)
    @eval begin
        ($fun)(x::Real, y::FloatingPoint) = ($fun)(promote(x,y)...)
        ($fun)(x::FloatingPoint, y::Real) = ($fun)(promote(x,y)...)
    end
end