This file is indexed.

/usr/include/ace/Malloc_T.h is in libace-dev 6.2.8+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
// -*- C++ -*-

//==========================================================================
/**
 *  @file    Malloc_T.h
 *
 *  $Id: Malloc_T.h 92085 2010-09-29 12:23:13Z johnnyw $
 *
 *  @author Douglas C. Schmidt <schmidt@cs.wustl.edu> and
 *          Irfan Pyarali <irfan@cs.wustl.edu>
 */
//==========================================================================

#ifndef ACE_MALLOC_T_H
#define ACE_MALLOC_T_H
#include /**/ "ace/pre.h"

#include "ace/Malloc.h"               /* Need ACE_Control_Block */
#include "ace/Malloc_Base.h"          /* Need ACE_Allocator */

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#include "ace/Malloc_Allocator.h"
#include "ace/Free_List.h"
#include "ace/Guard_T.h"

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

/**
 * @class ACE_Cached_Mem_Pool_Node
 *
 * @brief ACE_Cached_Mem_Pool_Node keeps unused memory within a free
 * list.
 *
 * The length of a piece of unused memory must be greater than
 * sizeof (void*).  This makes sense because we'll waste even
 * more memory if we keep them in a separate data structure.
 * This class should really be placed within the ACE_Cached_Allocator
 * class but this can't be done due to C++ compiler portability problems.
 */
template <class T>
class ACE_Cached_Mem_Pool_Node
{
public:
  /// Return the address of free memory.
  T *addr (void);

  /// Get the next ACE_Cached_Mem_Pool_Node in a list.
  ACE_Cached_Mem_Pool_Node<T> *get_next (void);

  /// Set the next ACE_Cached_Mem_Pool_Node.
  void set_next (ACE_Cached_Mem_Pool_Node<T> *ptr);

private:
  /**
   * Since memory is not used when placed in a free list,
   * we can use it to maintain the structure of free list.
   * I was using union to hide the fact of overlapping memory
   * usage.  However, that cause problem on MSVC.  So, I now turn
   * back to hack this with casting.
   */
  ACE_Cached_Mem_Pool_Node<T> *next_;
};

/**
 * @class ACE_Cached_Allocator
 *
 * @brief A fixed-size allocator that caches items for quicker access.
 *
 * This class enables caching of dynamically allocated,
 * fixed-sized classes.  Notice that the <code>sizeof (TYPE)</code>
 * must be greater than or equal to <code> sizeof (void*) </code> for
 * this to work properly.
 *
 * This class can be configured flexibly with different types of
 * ACE_LOCK strategies that support the @a ACE_Thread_Mutex,
 * @a ACE_Thread_Semaphore, @a ACE_Process_Mutex, and @a
 * ACE_Process_Semaphore constructor API.
 *
 * @sa ACE_Dynamic_Cached_Allocator
 */
template <class T, class ACE_LOCK>
class ACE_Cached_Allocator : public ACE_New_Allocator
{
public:
  /// Create a cached memory pool with @a n_chunks chunks
  /// each with sizeof (TYPE) size.
  ACE_Cached_Allocator (size_t n_chunks);

  /// Clear things up.
  ~ACE_Cached_Allocator (void);

  /**
   * Get a chunk of memory from free list cache.  Note that @a nbytes is
   * only checked to make sure that it's less or equal to sizeof T, and is
   * otherwise ignored since @c malloc() always returns a pointer to an
   * item of sizeof (T).
   */
  void *malloc (size_t nbytes = sizeof (T));

  /**
   * Get a chunk of memory from free list cache, giving them
   * @a initial_value.  Note that @a nbytes is only checked to make sure
   * that it's less or equal to sizeof T, and is otherwise ignored since
   * calloc() always returns a pointer to an item of sizeof (T).
   */
  virtual void *calloc (size_t nbytes,
                        char initial_value = '\0');

  /// This method is a no-op and just returns 0 since the free list
  /// only works with fixed sized entities.
  virtual void *calloc (size_t n_elem,
                        size_t elem_size,
                        char initial_value = '\0');

  /// Return a chunk of memory back to free list cache.
  void free (void *);

  /// Return the number of chunks available in the cache.
  size_t pool_depth (void);

private:
  /// Remember how we allocate the memory in the first place so
  /// we can clear things up later.
  char *pool_;

  /// Maintain a cached memory free list.
  ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<T>, ACE_LOCK> free_list_;
};

/**
 * @class ACE_Dynamic_Cached_Allocator
 *
 * @brief A size-based allocator that caches blocks for quicker access.
 *
 * This class enables caching of dynamically allocated,
 * fixed-size chunks.  Notice that the <code>chunk_size</code>
 * must be greater than or equal to <code> sizeof (void*) </code> for
 * this to work properly.
 *
 * This class can be configured flexibly with different types of
 * ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
 * ACE_Process_Mutex constructor API.
 *
 * @sa ACE_Cached_Allocator
 */
template <class ACE_LOCK>
class ACE_Dynamic_Cached_Allocator : public ACE_New_Allocator
{
public:
  /// Create a cached memory pool with @a n_chunks chunks
  /// each with @a chunk_size size.
  ACE_Dynamic_Cached_Allocator (size_t n_chunks, size_t chunk_size);

  /// Clear things up.
  ~ACE_Dynamic_Cached_Allocator (void);

  /**
   * Get a chunk of memory from free list cache.  Note that @a nbytes is
   * only checked to make sure that it's less or equal to @a chunk_size,
   * and is otherwise ignored since malloc() always returns a pointer to an
   * item of @a chunk_size size.
   */
  void *malloc (size_t nbytes = 0);

  /**
   * Get a chunk of memory from free list cache, giving them
   * @a initial_value.  Note that @a nbytes is only checked to make sure
   * that it's less or equal to @a chunk_size, and is otherwise ignored
   * since calloc() always returns a pointer to an item of @a chunk_size.
   */
  virtual void *calloc (size_t nbytes,
                        char initial_value = '\0');

  /// This method is a no-op and just returns 0 since the free list
  /// only works with fixed sized entities.
  virtual void *calloc (size_t n_elem,
                        size_t elem_size,
                        char initial_value = '\0');

  /// Return a chunk of memory back to free list cache.
  void free (void *);

  /// Return the number of chunks available in the cache.
  size_t pool_depth (void);

private:
  /// Remember how we allocate the memory in the first place so
  /// we can clear things up later.
  char *pool_;

  /// Maintain a cached memory free list. We use @c char as template
  /// parameter, although sizeof(char) is usually less than
  /// sizeof(void*). Really important is that @a chunk_size
  /// must be greater or equal to sizeof(void*).
  ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<char>, ACE_LOCK> free_list_;

  /// Remember the size of our chunks.
  size_t chunk_size_;
};

/**
 * @class ACE_Allocator_Adapter
 *
 * @brief This class is an adapter that allows the ACE_Allocator to
 * use the ACE_Malloc class below.
 */
template <class MALLOC>
class ACE_Allocator_Adapter : public ACE_Allocator
{
public:
  // Trait.
  typedef MALLOC ALLOCATOR;
  typedef const typename MALLOC::MEMORY_POOL_OPTIONS *MEMORY_POOL_OPTIONS;

  // = Initialization.
  /**
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so. */
  ACE_Allocator_Adapter (const char *pool_name = 0);

  /**
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so.
   */
  ACE_Allocator_Adapter (const char *pool_name,
                         const char *lock_name,
                         MEMORY_POOL_OPTIONS options = 0);

#if defined (ACE_HAS_WCHAR)
  /**
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so. */
  ACE_Allocator_Adapter (const wchar_t *pool_name);

  /**
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so.
   */
  ACE_Allocator_Adapter (const wchar_t *pool_name,
                         const wchar_t *lock_name,
                         MEMORY_POOL_OPTIONS options = 0);
#endif /* ACE_HAS_WCHAR */

  /// Destructor.
  virtual ~ACE_Allocator_Adapter (void);

  // = Memory Management

  /// Allocate @a nbytes, but don't give them any initial value.
  virtual void *malloc (size_t nbytes);

  /// Allocate @a nbytes, giving them all an @a initial_value.
  virtual void *calloc (size_t nbytes, char initial_value = '\0');

  /// Allocate @a n_elem each of size @a elem_size, giving them
  /// @a initial_value.
  virtual void *calloc (size_t n_elem,
                        size_t elem_size,
                        char initial_value = '\0');

  /// Free @a ptr (must have been allocated by ACE_Allocator::malloc()).
  virtual void free (void *ptr);

  /// Remove any resources associated with this memory manager.
  virtual int remove (void);

  // = Map manager like functions

  /**
   * Associate @a name with @a pointer.  If @a duplicates == 0 then do
   * not allow duplicate @a name/pointer associations, else if
   * @a duplicates != 0 then allow duplicate @a name/pointer
   * associations.  Returns 0 if successfully binds (1) a previously
   * unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
   * bind a previously bound @a name and @a duplicates == 0, else
   * returns -1 if a resource failure occurs.
   */
  virtual int bind (const char *name, void *pointer, int duplicates = 0);

  /**
   * Associate @a name with @a pointer.  Does not allow duplicate
   * name/pointer associations.  Returns 0 if successfully binds
   * (1) a previously unbound @a name, 1 if trying to bind a previously
   * bound @a name, or returns -1 if a resource failure occurs.  When
   * this call returns, @a pointer's value will always reference the
   * void * that @a name is associated with.  Thus, if the caller needs
   * to use @a pointer (e.g., to free it) a copy must be maintained by
   * the caller.
   */
  virtual int trybind (const char *name, void *&pointer);

  /// Locate @a name and pass out parameter via pointer.  If found,
  /// return 0, returns -1 if @a name isn't found.
  virtual int find (const char *name, void *&pointer);

  /// Returns 0 if the name is in the mapping and -1 if not.
  virtual int find (const char *name);

  /// Unbind (remove) the name from the map.  Don't return the pointer
  /// to the caller
  virtual int unbind (const char *name);

  /// Break any association of name.  Returns the value of pointer in
  /// case the caller needs to deallocate memory.
  virtual int unbind (const char *name, void *&pointer);

  // = Protection and "sync" (i.e., flushing data to backing store).

  /**
   * Sync @a len bytes of the memory region to the backing store
   * starting at @c this->base_addr_.  If @a len == -1 then sync the
   * whole region.
   */
  virtual int sync (ssize_t len = -1, int flags = MS_SYNC);

  /// Sync @a len bytes of the memory region to the backing store
  /// starting at @c addr_.
  virtual int sync (void *addr, size_t len, int flags = MS_SYNC);

  /**
   * Change the protection of the pages of the mapped region to @a prot
   * starting at @c this->base_addr_ up to @a len bytes.  If @a len == -1
   * then change protection of all pages in the mapped region.
   */
  virtual int protect (ssize_t len = -1, int prot = PROT_RDWR);

  /// Change the protection of the pages of the mapped region to @a prot
  /// starting at @a addr up to @a len bytes.
  virtual int protect (void *addr, size_t len, int prot = PROT_RDWR);

  /// Returns the underlying allocator.
  ALLOCATOR &alloc (void);

#if defined (ACE_HAS_MALLOC_STATS)
  /// Dump statistics of how malloc is behaving.
  virtual void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */

  /// Dump the state of the object.
  virtual void dump (void) const;

private:
  /// ALLOCATOR instance, which is owned by the adapter.
  ALLOCATOR allocator_;
};

/**
 * @class ACE_Static_Allocator
 *
 * @brief Defines a class that provided a highly optimized memory
 * management scheme for allocating memory statically.
 *
 * This class allocates a fixed-size @c POOL_SIZE of memory and
 * uses the ACE_Static_Allocator_Base class implementations of
 * malloc() and calloc() to optimize memory allocation from this
 * pool.
 */
template <size_t POOL_SIZE>
class ACE_Static_Allocator : public ACE_Static_Allocator_Base
{
public:
  ACE_Static_Allocator (void)
    : ACE_Static_Allocator_Base (pool_, POOL_SIZE)
  {
    // This function <{must}> be inlined!!!
  }

private:
  /// Pool contents.
  char pool_[POOL_SIZE];
};

// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T;

// Ensure backwards compatibility...
#define ACE_Malloc_Iterator ACE_Malloc_LIFO_Iterator

// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T;

/**
 * @class ACE_Malloc_T
 *
 * @brief A class template that uses parameterized types to provide
 * an extensible mechanism for encapsulating various dynamic
 * memory management strategies.
 *
 * This class can be configured flexibly with different
 * MEMORY_POOL strategies and different types of ACE_LOCK
 * strategies that support the ACE_Thread_Mutex and ACE_Process_Mutex
 * constructor API.
 *
 * Common MEMORY_POOL strategies to use with this class are:
 *   - ACE_Local_Memory_Pool
 *   - ACE_MMAP_Memory_Pool
 *   - ACE_Pagefile_Memory_Pool
 *   - ACE_Shared_Memory_Pool
 *   - ACE_Sbrk_Memory_Pool
 *
 * The MEMORY_POOL class must provide the following methods:
 *   - constructor (const ACE_TCHAR *pool_name)
 *   - constructor (const ACE_TCHAR *pool_name, const MEMORY_POOL_OPTIONS *options)
 *   - void dump (void) const (needed if ACE is built with ACE_HAS_DUMP defined)
 *   - void *init_acquire (size_t nbytes, size_t &rounded_bytes, int &first_time);
 *   - int release (void)
 *   - void *acquire (size_t nbytes, size_t &rounded_bytes)
 *   - void *base_addr (void)
 *   - seh_selector() (only needed on Windows)
 *
 * Note that the ACE_Allocator_Adapter class can be used to integrate allocator
 * classes which do not meet the interface requirements of ACE_Malloc_T.
 *
 * @Note The bind() and find() methods use linear search, so
 * it's not a good idea to use them for managing a large number of
 * entities.  If you need to manage a large number of entities, it's
 * recommended that you bind() an ACE_Hash_Map_Manager that
 * resides in shared memory, use find() to locate it, and then
 * store/retrieve the entities in the hash map.
 */
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_T
{
public:
  friend class ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
  friend class ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
  typedef ACE_MEM_POOL MEMORY_POOL;
  typedef ACE_MEM_POOL_OPTIONS MEMORY_POOL_OPTIONS;
  typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
  typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;

  // = Initialization and termination methods.
  /**
   * Initialize ACE_Malloc.  This constructor passes @a pool_name to
   * initialize the memory pool, and uses ACE::basename() to
   * automatically extract out the name used for the underlying lock
   * name (if necessary).
   *
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so.
   */
  ACE_Malloc_T (const ACE_TCHAR *pool_name = 0);

  /**
   * Initialize ACE_Malloc.  This constructor passes @a pool_name to
   * initialize the memory pool, and uses @a lock_name to automatically
   * extract out the name used for the underlying lock name (if
   * necessary).  In addition, @a options is passed through to
   * initialize the underlying memory pool.
   *
   * Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so.
   */
  ACE_Malloc_T (const ACE_TCHAR *pool_name,
                const ACE_TCHAR *lock_name,
                const ACE_MEM_POOL_OPTIONS *options = 0);

  /**
   * Initialize an ACE_Malloc with an external ACE_LOCK.
   * This constructor passes @a pool_name and @a options to initialize
   * the memory pool. @a lock is used as the pool lock, and must be
   * properly set up and ready for use before being passed to this method.
   */
  ACE_Malloc_T (const ACE_TCHAR *pool_name,
                const ACE_MEM_POOL_OPTIONS *options,
                ACE_LOCK *lock);

  /// Destructor
  ~ACE_Malloc_T (void);

  /// Get Reference counter.
  int ref_counter (void);

  /// Release ref counter.
  int release (int close = 0);

  /// Releases resources allocated by this object.
  int remove (void);

  // = Memory management

  /// Allocate @a nbytes, but don't give them any initial value.
  void *malloc (size_t nbytes);

  /// Allocate @a nbytes, giving them @a initial_value.
  void *calloc (size_t nbytes, char initial_value = '\0');

  /// Allocate @a n_elem each of size @a elem_size, giving them
  /// @a initial_value.
  void *calloc (size_t n_elem,
                size_t elem_size,
                char initial_value = '\0');

  /// Deallocate memory pointed to by @a ptr, which must have been
  /// allocated previously by malloc().
  void free (void *ptr);

  /// Returns a reference to the underlying memory pool.
  MEMORY_POOL &memory_pool (void);

  // = Map manager like functions

  /**
   * Associate @a name with @a pointer.  If @a duplicates == 0 then do
   * not allow duplicate name/pointer associations, else if
   * @a duplicates != 0 then allow duplicate name/pointer
   * associations.  Returns 0 if successfully binds (1) a previously
   * unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
   * bind a previously bound @a name and @a duplicates == 0, else
   * returns -1 if a resource failure occurs.
   */
  int bind (const char *name, void *pointer, int duplicates = 0);

  /**
   * Associate @a name with @a pointer.  Does not allow duplicate
   * name/pointer associations.  Returns 0 if successfully binds
   * (1) a previously unbound @a name, 1 if trying to bind a previously
   * bound @a name, or returns -1 if a resource failure occurs.  When
   * this call returns @a pointer's value will always reference the
   * void * that @a name is associated with.  Thus, if the caller needs
   * to use @a pointer (e.g., to free it) a copy must be maintained by
   * the caller.
   */
  int trybind (const char *name, void *&pointer);

  /// Locate @a name and pass out parameter via @a pointer.  If found,
  /// return 0, returns -1 if failure occurs.
  int find (const char *name, void *&pointer);

  /// Returns 0 if @a name is in the mapping. -1, otherwise.
  int find (const char *name);

  /**
   * Unbind (remove) the name from the map.  Don't return the pointer
   * to the caller.  If you want to remove all occurrences of @a name
   * you'll need to call this method multiple times until it fails...
   */
  int unbind (const char *name);

  /**
   * Unbind (remove) one association of @a name to @a pointer.  Returns
   * the value of pointer in case the caller needs to deallocate
   * memory.  If you want to remove all occurrences of @a name you'll
   * need to call this method multiple times until it fails...
   */
  int unbind (const char *name, void *&pointer);

  // = Protection and "sync" (i.e., flushing data to backing store).

  /**
   * Sync @a len bytes of the memory region to the backing store
   * starting at @c this->base_addr_.  If @a len == -1 then sync the
   * whole region.
   */
  int sync (ssize_t len = -1, int flags = MS_SYNC);

  /// Sync @a len bytes of the memory region to the backing store
  /// starting at @c addr_.
  int sync (void *addr, size_t len, int flags = MS_SYNC);

  /**
   * Change the protection of the pages of the mapped region to @a prot
   * starting at @c this->base_addr_ up to @a len bytes.  If @a len == -1
   * then change protection of all pages in the mapped region.
   */
  int protect (ssize_t len = -1, int prot = PROT_RDWR);

  /// Change the protection of the pages of the mapped region to @a prot
  /// starting at @a addr up to @a len bytes.
  int protect (void *addr, size_t len, int prot = PROT_RDWR);

  /**
   * Returns a count of the number of available chunks that can hold
   * @a size byte allocations.  Function can be used to determine if you
   * have reached a water mark. This implies a fixed amount of allocated
   * memory.
   *
   * @param size  The chunk size of that you would like a count of
   * @return Function returns the number of chunks of the given size
   *          that would fit in the currently allocated memory.
   */
  ssize_t avail_chunks (size_t size) const;

#if defined (ACE_HAS_MALLOC_STATS)
  /// Dump statistics of how malloc is behaving.
  void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */

  /// Returns a pointer to the lock used to provide mutual exclusion to
  /// an ACE_Malloc allocator.
  ACE_LOCK &mutex (void);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

  /// Return cb_ptr value.
  void *base_addr (void);

  /**
   * Bad flag.  This operation should be called immediately after the
   * construction of the Malloc object to query whether the object was
   * constructed successfully.  If not, the user should invoke @c
   * remove and release the object (it is not usable.)
   * @retval 0 if all is fine.  non-zero if this malloc object is
   *         unuable.
   */
  int bad (void);

private:
  /// Initialize the Malloc pool.
  int open (void);

  /// Associate @a name with @a pointer.  Assumes that locks are held by
  /// callers.
  int shared_bind (const char *name,
                   void *pointer);

  /**
   * Try to locate @a name.  If found, return the associated
   * ACE_Name_Node, else returns 0 if can't find the @a name.
   * Assumes that locks are held by callers.  Remember to cast the
   * return value to ACE_CB::ACE_Name_Node*.
   */
  void *shared_find (const char *name);

  /// Allocate memory.  Assumes that locks are held by callers.
  void *shared_malloc (size_t nbytes);

  /// Deallocate memory.  Assumes that locks are held by callers.
  void shared_free (void *ptr);

  /// Pointer to the control block that is stored in memory controlled
  /// by <MEMORY_POOL>.
  ACE_CB *cb_ptr_;

  /// Pool of memory used by ACE_Malloc to manage its freestore.
  MEMORY_POOL memory_pool_;

  /// Lock that ensures mutual exclusion for the memory pool.
  ACE_LOCK *lock_;

  /// True if destructor should delete the lock
  bool delete_lock_;

  /// Keep track of failure in constructor.
  int bad_flag_;
};

/*****************************************************************************/

/**
 * @class ACE_Malloc_Lock_Adapter_T
 *
 * @brief Template functor adapter for lock strategies used with ACE_Malloc_T.
 *
 * This class acts as a factory for lock strategies that have various ctor
 * signatures.  If the lock strategy's ctor takes an ACE_TCHAR* as the first
 * and only required parameter, it will just work.  Otherwise use template
 * specialization to create a version that matches the lock strategy's ctor
 * signature.  See ACE_Process_Semaphore and ACE_Thread_Semaphore for
 * examples.
 *
 */
/*****************************************************************************/

/**
 * @class ACE_Malloc_LIFO_Iterator_T
 *
 * @brief LIFO iterator for names stored in Malloc'd memory.
 *
 * This class can be configured flexibly with different types of
 * ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
 * ACE_Process_Mutex constructor API.
 *
 * Does not support deletions while iteration is occurring.
 */
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T
{
public:
  typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
  typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;

  // = Initialization method.
  /// If @a name = 0 it will iterate through everything else only
  /// through those entries whose @a name match.
  ACE_Malloc_LIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
                              const char *name = 0);

  /// Destructor.
  ~ACE_Malloc_LIFO_Iterator_T (void);

  // = Iteration methods.

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Pass back the next entry in the set that hasn't yet been
  /// visited.  Returns 0 when all items have been seen, else 1.
  int next (void *&next_entry);

  /**
   * Pass back the next entry (and the name associated with it) in
   * the set that hasn't yet been visited.  Returns 0 when all items
   * have been seen, else 1.
   */
  int next (void *&next_entry, const char *&name);

  /// Move forward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int advance (void);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Malloc we are iterating over.
  ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;

  /// Keeps track of how far we've advanced...
  NAME_NODE *curr_;

// FUZZ: disable check_for_ACE_Guard
  /// Lock Malloc for the lifetime of the iterator.
  ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard

  /// Name that we are searching for.
  const char *name_;
};

/**
 * @class ACE_Malloc_FIFO_Iterator_T
 *
 * @brief FIFO iterator for names stored in Malloc'd memory.
 *
 * This class can be configured flexibly with different types of
 * ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
 * ACE_Process_Mutex constructor API.
 *
 * Does not support deletions while iteration is occurring.
 */
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T
{
public:
  typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
  typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;

  /// If @a name = 0 it will iterate through everything else only
  /// through those entries whose @a name match.
  ACE_Malloc_FIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
                              const char *name = 0);

  /// Destructor.
  ~ACE_Malloc_FIFO_Iterator_T (void);

  // = Iteration methods.

  /// Returns 1 when all items have been seen, else 0.
  int done (void) const;

  /// Pass back the next entry in the set that hasn't yet been
  /// visited.  Returns 0 when all items have been seen, else 1.
  int next (void *&next_entry);

  /**
   * Pass back the next entry (and the name associated with it) in
   * the set that hasn't yet been visited.  Returns 0 when all items
   * have been seen, else 1.
   */
  int next (void *&next_entry, const char *&name);

  /// Move forward by one element in the set.  Returns 0 when all the
  /// items in the set have been seen, else 1.
  int advance (void);

  /// Go to the starting element that was inserted first. Returns 0
  /// when there is no item in the set, else 1.
  int start (void);

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

private:
  /// Malloc we are iterating over.
  ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;

  /// Keeps track of how far we've advanced...
  NAME_NODE *curr_;

// FUZZ: disable check_for_ACE_Guard
  /// Lock Malloc for the lifetime of the iterator.
  ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard

  /// Name that we are searching for.
  const char *name_;
};

template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc : public ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
  // = Initialization and termination methods.
  /**
   * Initialize ACE_Malloc.  This constructor passes @a pool_name to
   * initialize the memory pool, and uses ACE::basename() to
   * automatically extract out the name used for the underlying lock
   * name (if necessary).  Note that @a pool_name should be located in
   * a directory with the appropriate visibility and protection so
   * that all processes that need to access it can do so.
   */
  ACE_Malloc (const ACE_TCHAR *pool_name = 0);

  /**
   * Initialize ACE_Malloc.  This constructor passes @a pool_name to
   * initialize the memory pool, and uses @a lock_name to automatically
   * extract out the name used for the underlying lock name (if
   * necessary).  In addition, @a options is passed through to
   * initialize the underlying memory pool.  Note that @a pool_name
   * should be located in a directory with the appropriate visibility
   * and protection so that all processes that need to access it can
   * do so.
   */
  ACE_Malloc (const ACE_TCHAR *pool_name,
              const ACE_TCHAR *lock_name,
              const ACE_MEM_POOL_OPTIONS *options = 0);
};

template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_LIFO_Iterator : public ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
  /// If @a name = 0 it will iterate through everything else only
  /// through those entries whose @a name match.
  ACE_Malloc_LIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
                            const char *name = 0);
};

template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_FIFO_Iterator : public ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
  /// If @a name = 0 it will iterate through everything else only
  /// through those entries whose @a name match.
  ACE_Malloc_FIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
                            const char *name = 0);
};

template <class ACE_LOCK>
class ACE_Malloc_Lock_Adapter_T
{
public:
  ACE_LOCK * operator () (const ACE_TCHAR *myname);
};

ACE_END_VERSIONED_NAMESPACE_DECL

#if defined (__ACE_INLINE__)
#include "ace/Malloc_T.inl"
#endif /* __ACE_INLINE__ */

#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Malloc_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */

#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Malloc_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */

#include /**/ "ace/post.h"
#endif /* ACE_MALLOC_H */